
TUGboat. Volume 12 (1991), No. 2 29 1

Babel, a multilingual style-option system for use with U w ' s standard

document styles*

Johannes Braams

Abstract

The standard distribution of I 4 W contains a number of document styles that are

meant to be used, but also serve as examples for other users to create their own

document styles. These styles have become very popular among IPW users. But

it should be kept in mind that they were designed for American tastes and contain

a number of hard-wired texts. This article describes a set of document-style options

that can be used in combination with the standard styles, which makes the latter

adaptable to other languages.

1 Introduction

Although Leslie Lamport has stated [5] that one should not try and write one

document-style option to be used with all the standard document styles of I P W ,

that is exactly what I have done with this system of style options. The reasons for

this approach will be explained in section 2.

A lot of the ideas incorporated in this set of files come from the work of Hubert

Partl [4], german. tex. Some parts in the implementation are different, others are the

same. It will be shown that german.tex can be modified to fit into this scheme of

style options.

2 Why Babel?

When I first started using I4QX I was very happy with just the style files that are
distributed with the standard distributions of and I P W . That means. as long

as I made texts in English I was happy. Then as other users found out about IPT@

and its advantages, they started using it for texts in languages other than English. As

I was the most experienced I P W user at the time, they came to me and asked me

'When I'm writing a report in Dutch I don't want chapters to be named "Chapter",

I want them to be named "Hoofdstuk", how do you change that?' At that time I didn't

know, but I soon found out. The first thing I found was that Leslie Lamport states [2,

pages 85-86] that you have to redefine the command \Qchapapp to get the desired

result. This looked rather promising to me, so I had a look at the style files to find out

how other such strings as "Figure" might be redefined. It was then that I found out

that \Qchapapp is the only string defined this way, whereas all others are hard-wired

into the style.

My first solution to this problem was to create a new document style file called

a r t i k e l . s t y as a "Dutch" counterpart to a r t i c l e . s ty . The same was done for

r epo r t . s t y . This is exactly what Leslie Lamport suggests 151. This approach has one

major drawback however: you get two copies of basically the same file to maintain.
This was discovered when newer releases of the styles reached our site. The stan-

dard styles had to be replaced and edited all over again to get the "Dutch" versions

back. About the same time, in early 1988, a discussion on this subject appeared in

W h a x . One of the persons commenting was Hubert Partl. The method he sug-

gested was to modify the standard document styles by replacing the hard-wired texts

by macros such as \Qchapapp. This led me to my second attempt at a solution. I mod-

ified the standard styles (all four of them) as suggested, but while doing that added

an option. implemented like the option d r a f t , by defining a command \dsQdutch.

* During the development ideas from Nico Poppelier and Piet van Oostrum have

been used.

TUGboat, Volume 12 (1991), No. 2

This command would set a variable to indicate which language was requested. This

variable I used later on in a \case statement. In this \case statement a choice is

made between English, Dutch and possibly other languages for texts such as "Figure"

and "Contents". Unfortunately, some of this implied changing the secondary style

files xxxlO.sty, xxxl l . s t y and xxxl2.s ty. This was unfortunate because one of the

research groups in our laboratories complained their document style didn't work prop-

erly. It turned out that their style was a modified a r t i c l e . s t y that had been given a

different name, but it still loaded a r t 10 . s t y etc. I found a temporary solution, but I

still wasn't exactly happy with the situation. Besides this, the drawback of replacing

the document styles with newer versions still existed.

When after a while a new version of the I4m distribution arrived at our site, I began

to think about a different way to solve the problem. In the meantime Hubert Part1 had

his german. s t y published in TUGboat [4]. His article pointed the way to a different

solution. Triggered by the discussion in W h a x in early 1989 about how to detect

which is the main (primary) style when processing a document, I started work on

what is now available as du tch . s ty version 1.0, dated May 1989'. While working on

this style option I discovered that some parts could be borrowed from german. s t y .

This 'discovery' and some discussions I had with others at E u r o m 8 9 , the fourth

European Conference, held in September 1989 in Karlsruhe, led me towards a

more universal approach. The basic idea behind it was, starting from the algorithm

to detect the main style, to design an approach with one common file that contained

macro definitions needed by a number of language-specific style options. Users specify

the name of any of these language-specific options as an option to the \documentstyle

command. and internally the common file is read.

3 @= and document-style files

Before I discuss some of the code in the babel system I would like to discuss the

document-style mechanism used by I P W . Every I P W document should start with

a line like:

\documentstyle Coptl, opt2, . . . I Cdocstyle)

This line of code instructs I4m to first load the file docs ty le . s t y . When that is

done the 'options' are processed in the order speczfied, by reading the files o p t l .sty2,

opt2.s tyl etc. This implies that definitions made in the file docs ty l e . s t y can be

overridden in one of the option files. It is even possible to redefine code from the very

kernel of U r n , but you have to know what you are doing.

Some care has to be taken in writing document-style options, because a number of

problems can occur. First of all, a document-style option should be modest in size; if

it tries to redefine most of the code in docs ty l e . s t y I think you should write (and

maintain) your own, complete, document style. Next, as it was possible to override

definitions from the main file in an option file, it is of course also possible to override

definitions made in another option file. When this happens, your document might

depend on the order in which you have specified your document-style options.

This mechanism of overriding definitions from the main document style is exploited

in the babel system. The macros that contain the hard-wired texts are redefined in

the common part of babel, replacing each of these texts with a unique macro. These

macros have to be defined in the language-specific files.

4 Islw and multilingual documents

In a european environment it sometimes happens that one wants to write a document

that contains more than one language. I have an example of a document, published

' This file is available from 1is tservQhearn. b i t n e t as file dutch.old.
Except when the documentstyle defines the control sequence \dsQ(optl); in that

case this control sequence will be executed.

TUGboat, Volume 12 (1991), No. 2 293

by the EEC, that contains 9 (nine) different languages. Also in linguistics one can find

documents written in more than one language, i.e. to compare two languages.

If you have to write such a multilingual document you should try to conform to the

typographical conventions in use for each language. A well known example is the

type of quotation marks used. Tj$ supplies the user with "quoted text", but a Dutch

user might want to have ,,quoted text", whereas a German text should contain ,,quoted

text" and a Frenchman would perhaps like to see something like <quoted text>. These

language-specific conventions should be implemented in a document-style option file

for each language. These files should then be useable with all document styles.
- -

In such a multilingual document a user would specify the languages used as options

to the \documents ty le command. He would also want a mechanism to be able to

switch between these languages in a simple way. When he would use version 3.0

for processing his document, he would also want the hyphenation to come out right

for the different languages.

5 Overview of the babel solution

5.1 The core of the system

The problems described in sections 3 and 4 can be solved using the babel system of

document-style options.

The core of this system currently performs three functions.

1. It defines a user interface for switching between languages;

2. It contains code to dynamically load several sets of hyphenation patterns;

3. It 'repairs' the document styles provided in the standard distribution of IPW.

Obviously part 2 can only be used while running i n i w to create a new format,

whereas part 3 should not be read by i n i w . Part 3 should even disappear when

IPm version 3.0 arrives, as the style files supplied with the new I4m will no longer

be language specific. Part 1 can either be loaded into the format with multiple hy-

phenation patterns, or it can be read while processing a document.

For this reason the core of the babel system is stored in two separate files, babelswitch,

containing parts 1 and 2, and b a b e l . s t y which contains part 3. The file b a b e l . s t y

will instruct IPW to load b a b e l . s w i t c h if necessary; the file b a b e l . s w i t c h checks

the format to see if hyphenation patterns can be loaded.

5.2 Language specifics

The language switching mechanism contains a couple of hooks for the developers of

language-specific document-style options.

First of all the macro \or ig inalTeX should be defined. Its function is to disable

special definitions made for a language to bring TQX into a 'defined' state. A language-

specific document-style option might, for example, introduce an extra active character.

It would then also modify the definitions of \ d o s p e c i a l s and \ Q s a n i t i z e . Such an

option would then define a macro to restore the original definitions of these macros

and restore the extra active character to its normal category code. It would then \ l e t

\or ig inalTeX to this 'restoration' macro.

To enable the language-specific definitions three macros are provided in the switching

mechanism, \ c a p t i o n s (language), \date(language) and \ e x t r a s (language).

The macro \captions(language) should provide definitions for the macros that re-

placed the hard-wired texts in the document style and the macro \date(language)

should provide a definition for \ today. The real fun starts with the macro

\ e x t r a s (language). This macro should activate all definitions needed for (language).

6 The user interface

The user interface to the babel system is quite simple. He should specify the languages

he wants to use in his document in the list of document-style options. For instance,

TUGboat, Volume 12 (1991), No. 2

for a document in which both the English and the Dutch language are used. the first

line could read:

Please note that in this case the Dutch-specific definitions are inactive when IPw
has finished processing document-style option files.

If the user then wants to switch from English to Dutch he would include the command

before starting to write Dutch.

If a user wants to write a document-style option of his own he might like to define a

macro that checks which language is in use at the time the macro is executed. For

this purpose the macro \if language(language)(then-clause)(else-case) is available.

7 Implementation of the core of the system

In this section I would like to discuss some parts of the implementation of the babel
system. Not all code will be shown, because some parts of it are just series of slightly

modified code from the standard document styles. The files are fully documented and

interested readers can print them if they have access to the doc option, described by

Frank Mittelbach.

The description of the macros that follows is based on an environment using Tj$ 3.x,

together with a version of 1plain.tex based on plain. tex version 3.x. The actual

implementation allows for other situations as well, i.e. a version of babel. s t y for

Tl$ 2.x will be available.

7.1 Switching languages

For each language to be used in a document a control sequence of the form

\lQ(language) has to be defined. This will be done either while loading hyphen-

ation patterns or while loading the language-specific file. The implementation of

\selectlanguagei(language)) and

\if l a n g u a g e C (l a n g u a g e)) { (t h e n - c l a u s e) (e s e - c a s e) is based on the existence of

\l@(language).

Figure 1: The definition of \selectlanguage.

To switch from one language to another the macro \selectlanguage is available.

Its definition can be seen in figure 1. The first action it takes is to check whether

the (language) is known, if it is not an error is signalled. If the language is known

\originalTeX is called upon to reset any previously set language-specific definitions.

Next the register \language is updated and the three macros that should activate all

language-specific definitions are executed. Finally the macro \originalTeX receives

a new replacement text in order to be able to deactivate the definitions just activated.

TUGboat. Volume 1 2 (19911, NO. 2

Figure 2: The definition of \iflanguage

The macro \if language (see figure 2) will issue a warning when its argument is an 'un-

kown' language. It then goes on to compare the value of \language and \lQ(language}

and executes either its second or third argument.

7.2 Dynamically loading patterns

With the advent of TEX 3.0 it has become possible to build a format with more

than one hyphenation pattern preloaded. The core of the babel system provides

code, to be executed by i n i m only, to dynamically load hyphenation patterns. The

only restriction is that the implementation of TEX that you use has to have rather

high settings of trie-size and trie-op-size to actually load several hyphenation

patterns.

For the purpose of dynamically loading hyphenation patterns a 'configuration file' has

to be introduced. This file will be read by i n i m . Each line should contain either a

comment, nothing or the name of a language and the name of the file that contains

the hyphenation patterns for that language. In figure 3 an example of such a file,

instructing i n i m to load patterns for three languages, English, Dutch and German.

% File : language .dat

% Purpose : tell iniTeX what files with patterns to load

english english.hyphenations

dutch hyphen.dutch % Nederlands
german hyphen.ger

Figure 3: An example configuration file

The configuration file will be read line by line using W ' s \read primitive. Be-

cause the name of a file might be followed by a space-token and comment (as in

the example) a macro to process each line is needed. The definition of this macro,

\processQlanguage, can be found in figure 4. As can be seen in the definition of

this macro, its second argument always has to be followed by a space-token. The

effect of this is that any trailing spaces are removed. The macro strips all spaces fol-

Figure 4: The definition of \processQlanguage.

lowing its arguments. Its first argument is used to define \lQ(language). The macro

\addlanguage is basically a non-outer version of the plain Q j X macro \newlanguage.

The second argument of \processQlanguage is the name of the file containing the

TUGboat, Volume 12 (1991), No. 2

hyphenation patterns. Before the file can be read, the register \language has to

updated.

The configuration file is read in a \loop (see figure 5). When a record is read from

the input file a check is done whether the record was empty. If it was not, a space

token is added to the end of the string of tokens read. The reason for this is that we

have to be sure there always is at least one space token present. When that has been

taken care of the data just read can be processed. The last thing to do is to check the

status of the input file, in order to decide whether has to continue processing the

\loop. When all patterns have been processed the value of \language is restored.

Figure 5: Reading the configuration file line by line

7.3 'Repairing' UTEX'S standard document styles

A large part of the core of the babel system is dedicated to 'repair' the standard

document styles. This means redefining the macros in table 1.

macro

\fnumQfigure

\f numQt able

\ tableof contents

\ l i s t o f f i g u r e s

\ l i s t o f t a b l e s

\thebibliography

\theindex

\abs t rac t

\par t
\chapter

\appendix

\cc
\ e n d

\ps@headings

article report book letter

X X X X

X X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X

X X

X

X

X

Table 1: macros that need to be redefined for the four standard document styles.

As an example of the way the macros have to be redefined, the redefinition of

\ tableof contents is shown in figure 6.

The standard styles can be distinguished by checking the existence of the macros

\chapter (not in a r t i c l e and l e t t e r) and \opening (only in l e t t e r) . The result

of these checks is stored in the macro \docOstyle. When \doc@style already exists

(which is the case when for instance a r t i k e l l . s t y is used [7]) it is not superseded

(see figure 7).

TUGboat, Volume 12 (1991), No. 2

\@ifundefinedCcontentsname)

(\def \tableof contents

C\section*C\contentsname

\~bothC\uppercase\expandafterC\contentsname~~

(\uppercase\expandafter(\contentsname))

Figure 6: An example of redefining a command

Figure 7: Determining the main document style

8 Implementing a language-specific document-style option file

To illustrate the way a language-specific file can be implemented, the file dutch. sty is

discussed here. Note that not all of the code contained in the file dutch. sty is shown

here; only those parts of interest for the scope of this article are included. If the reader

would like to see the complete code, he can print all files in the babel system, using

the file doc. sty, described by Frank Mittelbach in [6].

8.1 Compatibility with plain TEX

The file german. t ex [4] was written in such a way that it can be used by both plain

w users and I 4 w users. This seemed a good idea, so all files in the babel system

can be processed by both plain TEX and I4m. But some of the "useful hacks" from

TPTEX are used, so for a plain TEX user they have to be defined. For this purpose the
format is checked at the start of a language-specific file. If the format is plain an

extra file, called latexhax. tex, is read.

Figure 8: Conditional loading of latexhax. sty

This file should be read only once, so another check is done on the existence of one of

the commands defined there.

A new group is started to keep the definition of the macro \format, which is used in

the following if statement! local. When the current format turns out to be plain w

TUGboat, Volume 12 (1991), No. 2

the file latexhax. sty has to be read. But the definitions in that file should remain

valid after the group is closed. This could be accomplished by making all definitions

global, but another solution is to tell to process the file latexhax. sty after the

current group has been closed. The command \aftergroup puts the next token on a

list to be processed after the group.

8.2 Switching to the Dutch language

In section 7.1 the names of macros needed to switch to a language have been described.

In figure 9 these macros and their definition are shown for the Dutch language.

\gdef\extrasdutchC%

\global\let\dospecials\dutch@dospecials

\global\let\@sanitize\dutch@sanitize

\cat code' \"\active

\gdef"I\protect\dutch@active@dq3

\gdef \"C\protect\@umlaut)

)\endgroup

Figure 9: The macros needed to switch to the Dutch language

The definitions of \captionsdutch and \datedutch are pretty straightforward and

need not be discussed. The macro \extrasdutch will be discussed in some more

detail.

First, because for Dutch (as well as for German) the " character is made active,

the IPw macros \dospecials and \@sanitize have to be redefined to include this

character as well. The new definitions are implemented as two special commands,

so we globally \let the originals to their new versions. Then the " character is

made active and is defined. Then, to prevent an error when \ " appears in a moving

argument, the macro \" is redefined and made robust. All this is done inside a group

to keep the category code change for the " character local.

The macro \extrasdutch has a counterpart, \noextrasdutch, that cancels the extra

definitions made by \extrasdutch. It changes the \catcode of the " character back to

'other' and globally \lets the macros \dospecials and \@sanitize to their original

definitions. The original definition of \" is restored as well.

TUGboat, Volume 12 (1991), No. 2 299

In figure 10 the code needed to redefine \dospecials and \@makeother is shown.

\begingroup

\def\doC\noexpand\do\noexpand)%

\xdef\dutch@dospeciaIs(\dospecials\do\"~%

\expandafter\ifx\csname Qsanitize\endcsname\relax

% do nothing if \@sanitize is undefined . . .
\else

\def \@rnakeother~\noexpand\~makeother\noexpand~%

\xdef\dutchQsanitize{\Qsanitize\@makeother\"~%

\f i

\endgroup

Figure 10: Code needed for the redefinition of \dospecials and \@makeother.

8.3 An extra active character

All the code discussed so far is necessary because we need an extra active character.

This character is then used as indicated in table 2. One of the reasons for this is that

in the Dutch language a word with an umlaut can be hyphenated just before the letter

with the umlaut, but the umlaut has to disappear if the word is broken between the

previous letter and the accented letter.

"a \"a which hyphenates as -a: also implemented for

the other letters.

" I disable ligature a t this position.
11 - an explicit hyphen sign. allowing hyphenation in the

rest of the word.
" ' lowered double left quotes (see example below).
" ' normal double right quotes.

\- like the old \-: but allowing hyphenation in the rest

of the word.

Table 2: The extra definitions made by dutch. sty

In [3] the quoting conventions for the Dutch language are discussed. The preferred

convention is the single-quote Anglo-American convention, i.e. 'This is a quote'. An al-

ternative is the slightly old-fashioned Dutch method with initial double quotes lowered

to the baseline, ,,This is a quote", which should be typed as 'This is a quote" '.

8.3.1 Supporting macro definitions

The definition of the active " character needs a couple of support macros. The

macro \allowhyphens is used make hyphenation of word possible where it oth-

erwise would be inhibited by TjjX Basically its definition is nothing more than

\nobreak \hskip Opt plus Opt.

\gdef\allowhyphensC\penalty\@M \hskip\z@skip)

Then a macro is defined to lower the Dutch left double quote to the same level as the

comma. It prepares a low double opening quote in box register 0. This macro was

copied from german. t ex.

\gdef\set@low@box#1~%

TUGboat, Volume 12 (1991), No. 2

The macro \set@lowQbox is used to define low opening quotes. Since it may be used

in arguments to other macros it needs to be protected.

For reasons of symmetry we also define " ' . This command is defined similar to \dlqq:

except that the quotes aren't lowered to the baseline.

\gdef \@drqqC(%
\if hmode

\edef \QSFi\spacef actor\the\spacef actor}

\else

\let\@SF\empty

\f i

"\@SF\relax))

The original double quote character is saved in the macro \dq to keep it available.

\begingroup \catcode'\"l2

\gdef\dqCH)
\ endgroup

The original definition of \ " is stored as \dieresis. The resason for this is that if

a font with a different encoding scheme is used the definition of \" might not be the

plain TEX one.

In the Dutch language vowels with a dieresis or umlaut accent are treated specially.

If a hyphenation occurs before a vowel-plus-umlaut, the umlaut should disappear. To

be able to do this, the hyphenation break behaviour for the five vowels, both lowercase

and uppercase, could be defined first in terms of \discretionary. But this results in

a large \if -construct in the definition of the active ".
As both Knuth and Lamport have pointed out, a user should not use " when he

really means something like ' ' . For this reason no distinction is made between vowels

and consonants. Therefore one macro, \@umlaut, specifies the hyphenation break

behaviour for all letters.

The last support macro to be defined is \dutchQactiveQdq.

TUGboat, Volume 12 (1991), No. 2

The macro reads the next token and performs some appropriate action. If no special

action is defined, it will produce an umlaut accent on top of argument I .

The last definition needed is a replacement for \-. The new version of \- should

indicate an extra hyphenation position, while allowing other hyphenation positions to

be generated automatically. The standard behaviour of QX in this respect is very

unfortunate for languages such as Dutch and German, where long compound words are

quite normal and all one needs is a means to indicate an extra hyphenation position

on top of the ones that W can generate from the hyphenation patterns.

8.4 Activating the definitions

The last action that should be performed by a language-specific file, is activating its

definitions. Before doing that the macro \originalTeX should be definined.

Also, the macro \lQ(language) should be defined. If it hasn't already been defined,

this means that no hyphenation patterns were loaded for this language.

\Oif undef inedCl@dut ch)C\addlanguageCdutchll{l

\selectlanguage{dut ch)

9 Conclusion

In this article a system of document-style option files has been presented that supports

the multilingual use of IPQX. Some of the code involved has been discussed. The

actual files will be made available through the international networks. They will be

stored in the fileserver in the Netherlands (address: LISTSERVQHEARN.BITNET), the

file babel readme will explain what you need to get to be able to use the system. The

system was developed using the doc option, so the files available are fully documented.

References

[l] Donald E. Knuth, The QjXbook, Addison-Wesley, 1986.

[2] Leslie Lamport. @ w , A document preparatzon System, Addison-Wesley, 1986.

[3] K.F. Treebus. Tekstwzjzer, een gzds uoor het grafisch verwerken van tekst. SDU
Uitgeverij ('s-Gravenhage, 1988). A Dutch book on layout design and typography.

[4] Hubert Partl, German w. TUGboat, 9 (1988) no. 1, pp. 70-72.

[5] Leslie Lamport, in: QXhax Digest, Volume 89, #13, 17 February 1989.

[6] Rank Mittelbach, The doc-optzon, TUGboat 10 (1989) no. 2, pp. 245-273.

[7] Johannes Braams, Victor Eijkhout and Nico Poppelier, The development of na-

tzonal styles, TUGboat 10 (1989) no. 3, pp. 401-406.

[8] Joachim Schrod, Internatzonal UQjX zs ready to use, TUGboat 11 (1990) no. 1,

pp. 87-90.

o Johannes Braams
PTT Research Neher Laboratories
P.O. Box 421

2260 AK Leidschendam
JL-BraamsQpttrn1,nl

