
TUGboat, Volume 8 (1987), No. .J:

QijX Output for the Future

Leslie Lamport

It seems clear that dvi files are a lJjX idiosyncracy,
and the rest of the reasonable world is going to adopt
PostScript as the standard device-independent out-
put format. lJjX will be a lot more useful, and
reach a much wider set of users, if it could produce
PostScript instead of dvi output. This would also
permit the development of standards for incorpo-
rating figures drawn with other systems into lJjX
documents.

What are the problems involved in doing this?
The existence of dvi + PostScript converters indi-
cates that there is no serious problem at the back
end. Allowing the incorporation of other Post-
Script figures into a T)jX document simply requires
implementors of these converters to agree on a con-
vention for the \special commands. Since I gather
that there are now just two such dvi + PostScript
programs, I urge their authors to agree on some
standard that the rest of the world can use.

The more serious problem lies at the front end,
with the fonts. A PostScript font comes with an
.afm file to specify font metrics. T)jX requires a
.tfm file that has additional parameters needed to
use the font in math mode. Consequently, as I
understand the situation, one can use only CMR
fonts in math mode. (I suspect that the .amr file
also lacks parameters for the proper placement of
accents.) It is my understanding that there are no
PostScript versions of the CMR fonts; they must
be printed by converting each character to a set
of pixels, and drawing each pixel individually - a
time-consuming operation.

A first solution to this problem might be a
method of getting METAFONT to produce postsript
fonts with .tfm files. If METAFONT becomes the
wave of the future, with lots of fonts being drawn

with it, this will be a satisfactory solution. If,
as I suspect will be the situation, METAFONT is
ignored by most of the world, one will ultimately,
want a method for producing .tfm files for fonts not
produced by METAFONT.

The problem of converting T)jX to the Post-
Script world is important to anyone who wants to
see T)jX survive. It seems to me that the current
dvi + PostScript drivers are not a viable long-term
solution. I haven't the expertise or the time to
contribute much to a solution. However, I'd be
happy to do what I can to act as a catalyst. There
are a number of people out there who have a
financial stake in the survival of lJjX; I urge them
to start cooperating now on solving this problem.

Software

WEB Adapted to C, Another Approach -
Silvio Levy

- ,

Princeton University
i

I read with great interest a recent TUGboat artid-e
about a C version of WEB, by Klaus Gunterman@
and Joachim Schrod (October, 1986). Since I, to,o,
have written such a CWEB program, 1 would like $a
share some of my experiences. I will concentra.tr&
on the differences between my version and Knufhk
original Pascal version.

I start with TANGLE, since it is easier. I decided
that TANGLE should respect the user's line bre&g
and insert # l ine statements into the C file, so that
the compiler, debugger, etc., would print messagef!
that refer to the CWEB file and not to the C file,'
which is difficult to consult. I am very happy
with this arrangement, especially in terms of the
debugger: I never have to refer to the C file.

Knuth endowed WEB with a macro command @a
because the generic Pascal does not handle macrbs,
But the C preprocessor has a standard and powerful
macro capability, and between having (the tradi:
tional) WEB's treatment of macros and C's I prefe~
the latter option, because of WEB's limitation td

one parameter and, even more annoyingly, because
of the fact that in WEB you can't use a variable
name (even in lJjX text!) before defining it in tlrie
source file. This second constraint runs counter to
the overall philosophy of WEB, which is that things
should be introduced where they logically belong;
e.g., an error-message macro should be introduced
in the section that deals with error handling, and
it may not be convenient, or even logical, to hairi
that section in the beginning of the source file.

'

For this reason my version of TANGLE doe$
not process macros; instead it transforms the WEB,
file's Od statements into #define statements that it
groups at the beginning of the C file. Naturally,
#define statements can still be interspersed in
the C code, if for any reason they should not
migrate to the beginning of the C file. This has
the disadvantage that one cannot write macros
with a variable number of parameters; but in my
experience the gain in simplicity and uniformity far
outweighs this drawback.

Finally, my version of TANGLE always inserts a
blank space after an '=' token. This is because the
C compiler, for reasons of backward compatibility,

TUGboat, Volume 8 (1987), No. 1 13

interprets x=-I to mean "subtract 1 from x,"

which is very annoying. (The current idiom for this
instruction is x-=I, and has been for over a decade.)

In order to "understand" input code and type-
set it correctly, WEAVE'S parser transforms it into a
sequence of scraps. Each scrap has a category (or
cat, in the lingo), which is like its part of speech;
when several scraps with the right cats are found
in sequence, they "fire" a production rule; for this
reason I also call them sparks, a quasi-anagram of
scraps. It turns out that C's syntax is different
enough from Pascal's that I needed to rewrite the
production rules from scratch. For example, WEAVE
should distinguish between the use of '*' and '&I as
unary or binary operators: in the common idiom
char **argv; both *'s "belong" to argv, so the
output should look something like

char **argv;
Here's what the 7QX output of my version of WEAVE
looks like:

\&(char) ${*)(*)\\(argv) ; $

(I'm thankful to Guntermann and Schrod for point-
ing out that this makes treat the asterisk as
an Ord atom, not as a unary operator; but then
I tried making them Op symbols, and the output
didn't look as good to me. Op symbols are meant
for large operators, and things like log.)

Following the syntax definition of C (appendix
A of Kernighan and Ritchie's The C Programming
Language), I wrote a relatively small set of rules
(fewer than in the original WEB) that correctly
parses all C constructs, including variable and
function definitions. (It can fail spectacularly when
module names or macro names are used in unusual
ways; then manual formatting is called for.) In
addition all variables being defined automatically
get an underlined entry in the index. This means
that it is no longer necessary to insert Q! by hand
when certain variables are being defined; I only use
Q ! in special circumstances.

In C, when you say typedef double f oo, the
indentifier foo can no longer be used to hold the
value of a variable and it becomes syntactically
equivalent to double. Thus WEAVE must give it
the same syntactic treatment as a reserved word
like double, and should also give it the same
typographical treatment. Furthermore this should
preferably be done automatically. Currently my
version of WEAVE takes care of this by changing
the ilk of the identifier at parsing time. This is
not very elegant, and doesn't work if the typedef

definition is in a separate file; but then one can
use WEB'S O f control sequence. There is also a new

control sequence Qi which works like #include, but
actually does include the file into WEAVE'S input.

Thanks to these changes, if I write

double inner-prod(vec1, vec2)
double vecl [dim] , vec2 [dim] ;

the variables inner-prod, vecl and vec2 automati-
cally get an underlined reference in the index; and
if I write

typedef double vector [dim] ;

the word vector will from now on appear in
boldface, and its "part of speech" becomes the same
as that of double.

The last addition I made to WEAVE doesn't
show in the output, but it simplifies the grammar
a lot. In the original WEB sparks of certain cats
can be printed in math mode only, others in either
mode and others in non-math mode only. With the
relatively more complex grammar of C this scheme
would imply a great increase in the number of cats
and of production rules. Guntermann and Schrod's
solution (letter of December 11, 1986) was to
typeset everything in math mode, and have the
macros for the various output tokens switch back
to non-math when necessary (using the \ i f mmode
primitive). My solution is somewhat different: my
sparks have a new attribute, their mathness, which
is independent of their cat. When a production
rule is fired, there is a special bit of code that
inserts a '$' between sparks of different mathness,
but the grammar itself doesn't have to contain any
mathness information. This makes WEAVE run about
2% slower, but m ' i n g the WEAVE'd file is faster
because doesn't have to check the modes for
lots of control sequences.

In conclusion, I am quite happy with CWEB,

and do all my programming in it. CWEB itself

is written in CWEB. Although I still consider
the program experimental, I'm distributing it to
interested people, and looking forward to comments
and suggestions for improvements.

My heartfelt thanks to Klaus Guntermann and
Joachim Schrod, for their helpful correspondence,
and to Helmut Jiirgensen and Barbara Beeton for
inviting me to send this paper.

