
TUGboat, Volume 6 (1985), No. 3

Software

Packed (PK) Font File Format

Pixel files, the output of METAFONT79, are now
considered obsolete; their use is being discouraged.
This is not surprising; as a font file format, they
are rather limiting. They tend to be too large,
do not include device character width information,
and only allow 128 characters. Yet, the generic
font file format offered in their place (with new
METAFONT) has some other limitations. GF files
tend to be almost as large as the pixel files they
replace, and the character width data is separated
from the raster data. A new format, called the
packed, or PK format, is therefore being introduced.

This new file format is less than half the size
of the GF format. Since input/output time usually
dominates execution time when reading font files,
the smaller size can also lead to a performance
improvement. The new format is easier to interpret
than the GF format. The minimum bounding box for
the bitmaps is supplied; the horizontal and vertical
size do not need to be checked against the actual bits
of the character. The raster data and width data
for each character is given in the same character

'packet'. Finally, the font parameters (checksum,
design size, etc.) are given at the beginning of the
font file, rather than at the end, so random file
access is not needed.

An additional advantage is that the length of
each character packet is given at the beginning of
the packet. This means that the character packets
can be directly stored into the memory of a driver
without interpretation, and they can be interpreted
on a demand basis. A recent sampling of font
usage at Texas A&M University on their Electrical
Engineering VAX showed that 18 characters per
declared font were used on the average. Thus, a

driver using the packed format might not need to
interpret 110 of the 128 characters in a font, on the
average.

The use of the packed file format does impose
an extra step of processing between METAFONT
and the driver, however. Also, the packed file

format is based to a large extent on the four bit
nybble rather than the eight bit byte, so individual
bytes often need to be split as the file is being
read in. In addition, the generic font format allows
specials and numspecials within character raster
definitions; the packed file format does not. META-
FONT never generates specials inside of character

raster definitions, so this should not pose any
problems.

The size improvement of packed files over pixel
files is almost five to one for a large collection of
fonts. 323 fonts at three hundred dots per inch and
various magnifications were reduced by 79% when
converted to the packed form. This makes the
packed format ideal for microcomputer systems or
any system where disk space is at a premium.

The packed file format is part of the META-
FONTware, with which it will be distributed. Pro-
grams currently on the distribution are GFtoPK,
which converts generic font files to packed files;
PKtoPX, which converts packed files to pixel files:
PXtoPK, which converts pixel files to packed files,
and PKtype, which lists and verifies a packed file.

The rest of this article was extracted from

PKtype, and is a full description of the packed file
format.

1. Packed file format. The packed file format is
a compact representation of the data contained in
a GF file. The information content is the same, but
packed (PK) files are almost always less than half
the size of their GF counterparts. They are also

easier to convert into a raster representation because
they do not have a profusion of paint, skip, and
new-row commands to be separately interpreted.
In addition, the PK format expressly forbids special
commands within a character. The minimum
bounding box for each character is explicit in the
format, and does not need to be scanned for as in
the GF format. Finally, the width and escapement

values are combined with the raster information
into character 'packets', making it simpler in many
cases to process a character.

A PK file is organized as a stream of &bit bytes.

At times, these bytes might be split into 4-bit
nybbles or single bits, or combined into multiple
byte parameters. When bytes are split into smaller
pieces, the 'first' piece is always the most significant
of the byte. For instance, the first bit of a byte is
the bit with value 128; the first nybble can be found
by dividing a byte by 16. Similarly, when bytes
are combined into multiple byte parameters, the

first byte is the most significant of the parameter.
If the parameter is signed, it is represented by
two's-complement notation.

The set of possible eight-bit values are sepa-

rated into two sets, those that introduce a character
definition, and those that do not. The values that
introduce a character definition comprise the range
from 0 to 239; byte values above 239 are inter-

preted commands. Bytes which introduce character

116 TUGboat, Volume 6 (1985), No. 3

definitions are called flag bytes, and various fields

within the byte indicate various things about how

the character definition is encoded. Command

bytes have zero or more parameters, and can never

appear within a character definition or between

parameters of another command, where they would

be interpreted as data.

A PK file consists of a preamble, followed by

a sequence of one or more character definitions,

followed by a postamble. The preamble command

must be the first byte in the file, followed immedi-

ately by its parameters. Any number of character

definitions may follow, and any command but the

preamble command and the postamble command

may occur between character definitions. The very

last command in the file must be the postamble.

2. The packed file format is intended to be easy

to read and interpret by device drivers. The small

size of the file reduces the input/output overhead

each time a font is defined. For those drivers that
load and save each font file into memory, the small

size also helps reduce the memory requirements.

The length of each character packet is specified,

allowing the character raster data to be loaded

into memory by simply counting bytes, rather than

interpreting each command; then, each character

can be interpreted on a demand basis. This also

makes it possible for a driver to skip a particular

character quickly if it knows that the character is

unused.

3. First, the command bytes shall be presented;

then the format of the Character definitions will be

defined. Eight of the possible sixteen commands

(values 240 through 255) are currently defined; the

others are reserved for future extensions. The

commands are listed below. Each command is

specified by its symbolic name (e.g., pk-no-op), its

opcode byte, and any parameters. The parameters

are followed by a bracketed number telling how

many bytes they occupy, with the number preceded

by a plus sign if it is a signed quantity. (Four byte

quantities are always signed, however.)

pk-xxxl 240 k[l] x[k]. This command is undefined

in general; it functions as a (k + 2)-byte no-op

unless special PK-reading programs are being

used. METAFONT generates xxx commands

when encountering a special string. It

is recommended that x be a string having

the form of a keyword followed by possible

parameters relevant to that keyword.

pk-xxx2 241 k[2] x[k]. Like pk-xxxl, but 0 I k <
65536.

pk-xxx3 242 k[3] x[k]. Like pk-xxxl, but 0 5 k <
224. METAFONT uses this when sending a

special string whose length exceeds 255.

pk-xxx4 243 3141 x[k]. Like pk-xxxl, but k can be

ridiculously large; k musn't be negative.

pk-yyy 244 y[4]. This command is undefined in
general; it functions as a five-byte no-op unless

special PK reading programs are being used.

METAFONT puts scaled numbers into yyy's,

as a result of numspecial commands; the

intent is to provide numeric parameters to xxx

commands that immediately precede.

pk-post 245. Beginning of the postamble. This

command is followed by just enough pk-no-op

commands to make the file a multiple of four

bytes long; zero through three are usual, but

four are also allowed. This should make the

file easy to read on machines which pack four

bytes to a word.

pk-no-op 246. No operation, do nothing. Any

number of pk-no-op's may appear between PK

commands, but a pk-no-op cannot be inserted

between a command and its parameters, be-

tween two parameters, or inside a character

definition.

pk-pre 247 i[l] k[l] x[k] ds [4] cs [4] hppp [4] vppp 141.

Preamble command. Here, i is the identifica-

tion byte of the file, currently equal to 89. The

string x is merely a comment, usually indicat-

ing the source of the PK file. The parameters

ds and cs are the design size of the file in 1/216

points, and the checksum of the file, respec-

tively. The checksum should match the TFM file

and the GF files for this font. Parameters hppp

and vppp are the ratios of pixels per point,

horizontally and vertically, multiplied by 216;

they can be used to correlate the font with

specific device resolutions, magnifications, and

'at sizes'. Usually. the name of the PK file is

formed by concatenating the font name (e.g.,

amrl0) with the resolution at which the font is

prepared in pixels per inch multiplied by the

magnification factor, and the letters PK. For

instance, amrlO at 300 dots per inch should

be named AMRIO. 300PK; at one thousand dots

per inch and magstephalf, it should be named

AMR10.1095PK.

TUGboat, Volume 6 (1985), No. 3 117

4. We put a few of the above opcodes into
definitions for symbolic use by this program.

define pk-id = 89

{ the version of PK file described)
define pk-xxxl = 240 { special commands)
define pk-yyy = 244

{ numspecial commands)
define pk-post = 245 { postamble)
define pk-no-op = 246 {no operation)
define p 'c-pre = 247 { preamble)

5. The PK format has two conflicting goals; to pack
character raster and size information as compactly
as possible, while retaining ease of translation into

raster and other forms. A suitable compromise
was found in the use of run-encoding of the raster
information. Instead of packing the individual bits
of the character, we instead count the number of
consecutive 'black' or 'white' pixels in a horizontal
raster row, and then encode this number. Run
counts are found for each row, from the top of the
character to the bottom. This is essentially the way
the GF format works. Instead of presenting each
row individually, however, let us concatenate all of
the horizontal raster rows into one long string of
pixels, and encode this row. With knowledge of the
width of the bit-map, the original character glyph
can be easily reconstructed. In addition, we do not
need special commands to mark the end of one row
and the beginning of the next.

Next, let us put the burden of finding the
minimum bounding box on the part of the font

generator, since the characters will usually be used

much more often than they are generated. The
minimum bounding box is the smallest rectangle
which encloses all 'black' pixels of a character. Let
us also eliminate the need for a special end of
character marker, by supplying exactly as many
bits as are required to fill the minimum bounding
box, from which the end of the character is implicit.

Let us next consider the distribution of the run

counts. Analysis of several dozen pixel files at 300
dots per inch yields a distribution peaking at four,
falling off slowly until ten, then a bit more steeply

until twenty, and then asymptotically approaching
the horizontal. Thus, the great majority of our run
counts will fit in a four-bit nybble. The eight-bit
byte is attractive for our run-counts, as it is the
standard on many systems; however, the wasted
four bits in the majority of cases seems a high price
to pay. Another possibility is to use a Huffman-type
encoding scheme with a variable number of bits for
each run-count; this was rejected because of the

overhead in fetching and examining individual bits
in the file. Thus, the character raster definitions in
the PK file format are based on the four-bit nybble.

6. The analysis of the pixel files yielded another

interesting statistic: fully 37% of the raster rows
were duplicates of the previous row. Thus, the
PK format allows the specification of repeat counts,
which indicate how many times a horizontal raster
row is to be repeated. These repeated rows are
taken out of the character glyph before individual
rows are concatenated into the long string of pixels.

For elegance, we disallow a run count of zero.
The case of a null raster description should be
gleaned from the character width and height being
equal to zero, and no raster data should be read.
No other zero counts are ever necessary. Also, in

the absence of repeat counts, the repeat value is set
to be zero (only the original row is sent.) If a repeat
count is seen, it takes effect on the current row.
The current row is defined as the row on which the
first pixel of the next run count will lie. The repeat
count is set back to zero when the last pixel in the
current row is seen, and the row is sent out.

This poses a problem for entirely black and
entirely white rows, however. Let us say that the
current row ends with four white pixels, and then
we have five entirely empty rows, followed by a
black pixel at the beginning of the next row, and
the character width is ten pixels. We would like to
use a repeat count, but there is no legal place to
put it. If we put it before the white run count, it

will apply to the current row. If we put it after,
it applies to the row with the black pixel at the
beginning. Thus, entirely white or entirely black
repeated rows are always packed as large run counts
(in this case, a white run count of 54) rather than
repeat counts.

7. Now let us turn our attention to the actual
packing of the run counts and repeat counts into
nybbles. There are only sixteen possible nybble

values. We need to indicate run counts and repeat
counts. Since the run counts are much more
common, we will devote the majority of the nybble
values to them. We therefore indicate a repeat

count by a nybble of 14 followed by a packed
number, where a packed number will be explained
later. Since the repeat count value of one is so

common, we indicate a repeat one command by a
single nybble of 15. A 14 followed by the packed
number 1 is still legal for a repeat one count,
however. The run counts are coded directly as
packed numbers.

118 TUGboat, Volume 6 (1985), No. 3

For packed numbers, therefore, we have the
nybble values 0 through 13. We need to represent

the positive integers up to, say, 231 - 1. We would
like the more common smaller numbers to take
only one or two nybbles, and the infrequent large
numbers to take three or more. We could therefore
allocate one nybble value to indicate a large run
count taking three or more nybbles. We do this

with the value 0.

8. We are left with the values 1 through 13. We

can allocate some of these, say dyn-f, to be one-
nybble run counts. These will work for the run
counts 1 . . dyn-f. For subsequent run counts, we
will use a nybble greater than dyn-f, followed by a
second nybble, whose value can run from 0 through
15. Thus, the two-byte nybble values will run from
dyn-f + 1 . . (13 - dyn-f) * 16 + dyn-f. We have our
definition of large run count values now, being all
counts greater than (13 - dyn-f) * 16 + dyn-f.

We can analyze our several dozen pixel files
and determine an optimal value of dyn-f, and use
this value for all of the characters. Unfortunately,
values of dyn-f that pack small characters well tend
to pack the large characters poorly, and values that
pack large characters well are not efficient for the
smaller characters. Thus, we choose the optimal

dyn-f on a character basis, picking the value which
will pack each individual character in the smallest
number of nybbles. Legal values of dyn-f run from
0 (with no one-byte run counts) to 13 (with no
two-byte run counts).

9. Our only remaining task in the coding of
packed numbers is the large run counts. We use a
scheme suggested by D. E. Knuth which will simply
and elegantly represent arbitrarily large values. The
general scheme to represent an integer i is to write
its hexadecimal representation, with leading zeros
removed. Then we count the number of digits, and
prepend one less than that many zeros before the
hexadecimal representation. Thus, the values from
one to fifteen occupy one nybble; the values sixteen
through 255 occupy three, the values 256 through
4095 require five, etc.

For our purposes, however, we have already
represented the numbers one through (13 - dyn-f) *
16 + dyn-f. In addition, the one-nybble values have
already been taken by our other commands, which
means that only the values from sixteen up are
available to us for long run counts. Thus, we simply
normalize our long run counts, by subtracting
(13 - dyn-f) * 16 + dyn-f + 1 and adding 16, and

then representing the result according to the scheme
above.

10. The final algorithm for decoding the run

counts based on the above scheme might look like
this, assuming a procedure called pk-nyb is available
to get the next nybble from the file, and assuming
that the global repeat-count indicates whether a
row needs to be repeated. Note that this routine
is recursive, but since a repeat count can never

directly follow another repeat, count, it can only be
recursive to one level.

function pk-packed-num: integer ;
var i , j , k: integer;
begin i c get-nyb;
if i = 0 t hen

begin repea t j +- get-nyb; incr(i);
until j # 0;
while i > 0 d o

begin j +-- j * 16 + get-nyb; decr(i);

end;
pk-packed-num + j-15+(13-dyn-f)*16+dyn-f ;
end

else if i 5 dyn-f t hen pk-packed-num c i
else if i < 14 then pk-packed-num +-

(i - dyn-f - 1) * 16+ get-nyb + dyn-f + 1

else begin if repeat-count # 0 then
abort (' E ~ t r k r e p e a t ~ c o u n t ! ');

if i = 14 then
repeat-count +- pk-packed-num

else repeat-count t 1;

send-out (true, repeat-count);
pk-packed-num c pk-packed-num;

end;
end;

11. For low resolution fonts, or characters with
'gray' areas, run encoding can often make the
character many times larger. Therefore, for those

characters that cannot be encoded efficiently with
run counts, the PK format allows bit-mapping of the
characters. This is indicated by a dyn-f value of
14. The bits are packed tightly, by concatenating

all of the horizontal raster rows into one long string,
and then packing this string eight bits to a byte.
The number of bytes required can be calculated by
(width * height + 7) div 8. This format should only
be used when packing the character by run counts
takes more bytes than this, although, of course, it
is legal for any character. Any extra bits in the last
byte should be set to zero.

12. At this point, we are ready to introduce the
format for a character descriptor. It consists of

TUGboat, Volume 6 (1985), No: 3

three parts: a flag byte, a character preamble, and
the raster data. The most significant four nybbles
of the flag byte yield the dyn-f value for that
character. (Notice that only values of 0 through 14
are legal for dyn-f, with 14 indicating a bit mapped
character; thus, the flag bytes do not conflict with
the command bytes, whose upper nybble is always
15.) The next bit (with weight 16) indicates whether
the first run count is a black count or a white count,
with a one indicating a black count. For bit-mapped

characters, this bit should be set to a zero. The
next bit (with weight 8) indicates whether certain
later parameters (referred to as size parameters) are
given in one-byte or two-byte quantities, with a one
indicating that they are in two-byte quantities. The
last two bits are concatenated on to the beginning
of the length parameter in the character preamble,
which will be explained below.

However, if the last three bits of the flag
byte are all set (normally indicating that the size
parameters are two-byte values and that a 3 should
be prepended to the length parameter), then a long
format of the character preamble should be used
instead of one of the short forms.

Therefore, there are three formats for the
character preamble, and which one is used depends
on the least significant three bits of the flag byte.
If the least significant three bits are in the range
zero through three, the short format is used. If
they are in the range four through six, the extended
short format is used. Otherwise, if the least
significant bits are all set, then the long form of the
character preamble is used. The preamble formats

are explained below.

Short form: flag[l] pl[l] cc[l] tfm[3] dm[l] w[l]
h[l] hoff[+l] voff [+l]. If this format of
the character preamble is used, the above
parameters must all fit in the indicated number
of bytes, signed or unsigned as indicated.
Almost all of the standard 7.)$ font characters
fit; the few exceptions are huge fonts such as
aminch.

Extended short form: flag [1] p1[2] cc [1] tfm [3] dm [2]
w[2] h[2] hoff [+2] voff [+2]. Larger characters
use this extended format.

Long form: flag [I] p1[4] cc [4] tfrn [4] dx [4] dy [4] w [4]
h[4] hoff[4] voff [4]. This is the general format
which allows all of the parameters of the GF file
format, including vertical escapement.

respect to the beginning of the tfm width parameter.
This is given so a PK reading program can, once it
has read the flag byte, packet length, and character
code (cc), skip over the character by simply reading
this many more bytes. For the two short forms
of the character preamble, the last two bits of

the flag byte should be considered the two most-
significant bits of the packet length. For the short
format, the true packet length might be calculated

as (flag mod 4) * 256 + pl; for the extended format,
it might be calculated as (flag mod 4) * 65536 + pl.

The w parameter is the width and the h
parameter is the height in pixels of the minimum
bounding box. The dx and dy parameters are the
horizontal and vertical escapements, respectively.
In the short formats, dy is assumed to be zero and
dm is dy but in pixels; in the long format, dx and
dy are both in pixels multiplied by 216. The hoff
is the horizontal offset from the upper left pixel to
the reference pixel; the voff is the vertical offset.
They are both given in pixels, with right and down
being positive. The reference pixel is the pixel
which occupies the unit square in METAFONT; the
METAFONT reference point is the lower left hand
corner of this pixel. (See the example below.)

13. requires that all characters which have
the same character codes modulo 256 also have the
same tfm widths, and escapement values. The PK

format does not itself make this a requirement, but
in order for the font to work correctly with the
7.)$ software, this constraint should be observed.
The current version of 7.)$ (1.5) cannot output
character codes greater than 255 anyway.

Following the character preamble is the raster
information for the character, packed by run counts
or by bits, as indicated by the flag byte. If the

character is packed by run counts and the required
number of nybbles is odd, then the last byte of the
raster description should have a zero for its least
significant nybble.

14. As an illustration of the PK format, the
character E from the font amrlO at 300 dots per
inch will be encoded. This character was chosen

because it illustrates some of the borderline cases.
The raster for the character looks like this (the row
numbers are chosen for convenience, and are not
METAFONT'S row numbers.)

The flag parameter is the flag byte. The

parameter pl (packet length) contains the offset of
the byte following this character descriptor, with

MMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMMMMMM

MM MM

MM MM

MM MM

MM MM

MM MM

MM MM

MMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMM

MM MM

MM MM

MM MM

MMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMMMMMMMMMMM

The width of the minimum bounding box for
this character is 20; its height is 29. The '*'
represents the reference pixel; notice how it lies
outside the minimum bounding box. The hoff
value is -2, and the voff is 28.

The first task is to calculate the run counts and
repeat counts. The repeat counts are placed at the
first transition (black to white or white to black) in

a row, and are enclosed in brackets. White counts
are enclosed in parentheses. It is relatively easy to
generate the counts list:

Note that any duplicated rows that are not all
white or all black are removed before the repeat

counts are calculated. The rows thus removed are
rows 5, 6, 10, 11, 13, 14, 15, 17, 18, 23, and 24.

15. The next step in the encoding of this character

is to calculate the optimal value of d y n - f . The
details of how this calculation is done are not
important here; suffice it to say that there is a
simple algorithm which in one pass over the count

list can determine the best value of d y n - f . For
this character, the optimal value turns out to be 8
(atypically low). Thus, all count values less than
or equal to 8 are packed in one nybble; those from

TUGboat, Volume 6 (1985)) No. 3

nine to (13 - 8) * 16 + 8 or 88 are packed in two
nybbles. The run encoded values now become (in

hex, separated according to the above list):

which comes to 36 nybbles, or 18 bytes. This is

shorter than the 73 bytes required for the bit map,
so we use the run count packing.

16. The short form of the character preamble

is used because all of the parameters fit in their
respective lengths. The packet length is therefore
18 bytes for the raster, plus eight bytes for
the character preamble parameters following the
character code, or 26. The t f m width for this
character is 640796, or 9C71C in hexadecimal. The
horizontal escapement is 25 pixels. The flag byte

is 88 hex, indicating the short preamble, the black
first count, and the dyn- f value of 8. The final total
character packet, in hexadecimal, is:

Flag byte
Packet length

Character code
tfm width

Horizontal escapement (pixels)
Width of bit map
Height of bit map

Horizontal offset (signed)
Vertical offset

Raster data

Tomas Rokicki
RokickiQSU-Score.Arpa
Department of Computer Science
Stanford University
Stanford, CA 94305

