
TUGboat, Volume 6 (1985), No. 3

Another goodie that's in this release is the proc

document-style option. It produces double-column

conference proceedings format on 8112 x 11 paper.

(Instead of sending in your camera-ready copy on

those large sheets that they reduce by 25%, you can

produce it on a high-quality output device and send

it to them at its actual size.)

It has come to my attention that some installers

have modified the standard document styles. THIS
IS STRICTLY FORBIDDEN. The only changes

to these styles that should be made are those

necessitated by the use of different fonts. If you

don't have a font that's called for in the standard

style, do the best you can. If this produces

noticeably different results, mention the difference

in the Local Guide. Users expect the standard styles

to produce the same output at different sites. If you

must create local styles, give them different names

and describe them in the Local Guide. The new

manual describes what happens when SAMPLE. TEX

is run with some modifications. Users will be

unhappy if changes to the document style produce

different results than is claimed in the book.

Speaking of document styles. . . before creating

a document style for anyone else to use, talk to a

typographic designer. People with no training in

design who do their own formatting invariably do a

rotten job. This is discussed in the new manual.

Enjoy.

A Solution to the

Tower of Hanoi Problem

Using

Bruce Leban

Here is a solution to the classic Tower of Hanoi

problem using m. This solution actually produces

a printed solution to the problem illustrating the

states of the stacks at each stage. Examination of

this program may be instructive in understanding

the operations of m ' s macro packages.

Move from 1 to 3:

Move from 1 to 2:

Move from 3 to 2:

Move from 1 to 3:

Move from 2 to 1:

Move from 2 to 3:

Move from 1 to 3:

@ 1984, 1985 Bruce Leban.

TUGboat, Volume 6 (1985), No. 3

0 0 0 0 0 0 0 1 0 . 0 0 0 0 0 0 0 0 # 0 0 0 0 0 0 0 # 0 0 0 0 0 0 # # 0 # 0 0 # # # 0 0 0 # 0 0 0 0 0 0 0 0 0 0 # 0 0

LLL

%
% \hanoi
%
% The basic macro that solves the Tower of Hanoi problem is called \hanoi.
% The first argument is the number of disks and the second is a list of disks.
% Each disk is identified by a single digit from 2 to 9 denoting its size.

\vf ill\e j ect

3

% \solve#1#2#3 : : move from #1 to #3 using #2

% \move #1#2 : : Move from #1 to #2

\def \move#l#2(%

\lineC\bf Move from #I to #2: \hf ill)

\messageCMove from #I to #2.)

\firstC#l) \appendC.)(#23 \gstore(#2)

\rest(#i) \gstore(#lI

\showtowersl23%

3

TUGboat, Volume 6 (1985), No. 3 153

0 ~ 8 0 0 0 0 0 0 0 0 0 0 ~

LLLALLLLL

%
% Lisp like functions for TeX.

%
% In order to implement the tower of hanoi, we implement a small list
% processing system in TeX. Lists are implemented as strings of characters
% (tokens) stored in a macro. Each variable is stored in a macro of the

% corresponding name. For example, the variable 'x' is stored in the macro

% '\x'. Since it is convenient to pass around values directly, each function

% puts its result into the special variable ' . ' i e , \ For example, the

% Lisp code:

% (setq a (append (first b) (rest c))
% would be coded as:
% \f irst{b) ' . ' is now (first b)

% \store{x) 'x' is now (first b)

% \rest{c) 1 ' . is now (rest c)

% \append{x)C. ' . ' is now (append (first b) (rest c))

% \store{a) 'a' is now (append (first b) (rest c))
% The functions only support single-level lists (of tokens) and the function
% \first which produces the first element really produces the list of the first
% element, since these have the same representation.

% \value x : : \let\.=\x

% \Value x : : \let\:=\x % We can use this to avoid clobbering \ .
% \store x : : \let\x=\.

% \gstore x : : \global\let\x=\.

% \append #1#2 : : \ <== (append #I #2)

% \first #I : : \ <== (list (first #I))

% \rest #I : : \ <== (rest #I)

154 TUGboat, Volume 6 (1985), No. 3

% These functions are what actually display the towers

\def \showname#l#2<

\hbox to \hsize(%

\hskip #2%

\hbox to \towerwide(%

\hfill (\bf #l)\hfill)%

\hf ill))

\def \showdisk#l#2C%

\hbox to \hsize(%

\hskip #2%

\hbox to \towerwide<%

\hf ill

\vbox C\hrule height \diskhigh width #l\diskwide)%

\hf ill)%

\hf ill)%

\vskip\diskvskip)

\def \showtower#l/#2#3(%

(\vbox to \towerhigh(%

\vf ill

\showdisks#l/.C#3)

\shownameC#2H#3))))

\def \showtowers#l#2#3{%

\medskip

\value(#l)

\expandafter\showtower\./A(0pt)%

\nointerlineskip

\nobreak\vskip -l\towerhigh

\valueC#2>

\expandafter\showtower\./B~I.05\towerwide)%

\noint erlineskip

\nobreak\vskip - l\towerhigh
\valueC#3)

\expandaf ter\showtower\. /CC2.1\towerwide)%

\bigskip\goodbreak)

\baselineskip=Opt

\newdimen\diskwide\diskwide=9pt

\newdimen\diskhigh\diskhigh=5pt

\newdimen\diskvskip\liskvskip=3pt % Vertical spacing between disks.
\newdimen\towerwide\towerwide=5\diskwide % This is >= largest disk number.
\newdimen\towerhigh\towerhigh=5\diskhigh % This is > number of disks.

\advance\towerhigh 5\diskvskip

