
TUGboat, Volume 2, No. 1

- On an IBM 370/3033 with Pascd/VS at
Stanford CIT (Eagle Berm).

- On a VAX (VMS) at Oregon Software (Barry
Smith).

- On an IBM 370/3022 (W-CMS) with SLAG
Pacrcal at the University of Pisa (Gianfranco
Prini). They printed the DVI ffles on a Versatec.

- On a Univac 1100/82 at the University of
Wisconsin (Ralph Stromquiat). Output is to a
Compugraphic 8600. (See report, p. 51.)

Rom the information sent to Stanf'ord, we gather
that the Pascal compilers being employed in the
installations of 'QX are:

IBM 370: Pascal-VS, SLAC-Pascal, Pascal-8000
UNIVAC: U. of Wisconsin Pascal, Pascal-8000
PDP-10: Hamburg Pascal
VAX: (See report by Janet Incerpi, p. 49.)

Note: Charles Lawson (Jet Propulsion Lab.-
Cdtech) has produced two short reports that can
help in reprogramming the SYSDEP module of '&$-
Pascal. (Both are reprinted in this issue, pp. 20 and
32.)

l)gX FONT METBIC PILES

- or -
What happens when you say l f o n t A=CYR1Om

David Fuchs

When you tell that you will be using a par-
ticular font, it has to find out information about that
font. It gets this information from what are known
as .TFM ffles. For instance, when you say \font
AEQlRlO to Ter((\:A=CWlO in the old 'QX lingo),
'I)ijX loolcs around for a ffle called CMRlO.TFM, and
reads it in. If CMR1O.TFM is not to be found, 'QX
will give you the error message "Lookap fa i led on
f 110 CWIO. TFHB, and you will be out of luck as far
M using CMRlO is concerned.

What does QJC want with the TFM files?
Generally speaking, a font's TFM flle contains in-
formation about the height, width and depth of all
the characters in the font, plus kerning and ligature
information. So, CMR1O.TFM might say that the
lower-case 'dm in CMRlO is 5.55 points wide, 6.94
points high, etc. This is the information that '&$
uses to make its lowest-level boxes-those around
characters. See the 'IkYC manual (p. 41) for in-
formation about what = does with thew boxes.
Note that TFM ffles do NOT contain any device-
dependent description of the font (such as the raster

description of the characters at a certain re~lution).
Remember that the program '&It does not deal with

pixels. Only device-drivers that read W s DVI out-
put files use that sort of information.

Where do .TFM files come from? The beat way
to get a TFM file is with METAFONT. Font desig-
ners should include the METAFONT instructions
that specify the width, height, etc. of each charac-
ter they design. The METAFONT manual contains
details and examples of how to do this-see the in-
dex entries for chsrrrd, charht, chudp, etc. If this
is done, then when METAFONT is run on CMR10,
it produces CMR1O.TFM. (Depending on what
'mode" it is run in, it also makes CMRlO.FNT,
CMRlO.ANT, CMRlO.VNT, or CMR1O.OC. These
are all different formats for fles containing the raster
description of the font. Drivers for various devices
require one or another of these illes.)

Whatever happened to the TFX format that the
7)ijX and METAFONT manuals actually refer to? Is
this just a misprint for TFM? N-TFM ffles take
the place of TFX ffles. The differences are concep
tually small; they both contain more or less the same
information. The main reason for changing 7)ijX and
METAFONT from using/making TFX ffles to TFM
ffles is that TFX ffles were based on *bit words.
This proved to be a real problem for people running
Pascal 'QX, especially on 32-bit machines. The for-
mat of TFM ffles assumes &bit bytes, pecked four
to a 32- or *bit word. They are readily adapted
for use on 1Bbit machines, too, While the format
was being changed, a few new bits of information
were added, too.

What if I have fonts that I want to know
about that were not made with METAFONT?
Don'tdespair-we ham two programs, TFTOPL
and PLTOTF, that convert TFM ffles to readable,
editable format, and back again. For instanm,
if we run TFTOPL .on CMRlO.TFM, it makes
CMRlO.PL, an excerpt of which follows ("R" means
a floating-point number is coming up (all dimensions
given in this form are in terms of the DEsIGHSIZE);
'C" means that a character is next; '0" means an
octal d u e for a character that isn't an ASCIJ print-
ing character is next):

(FAHILY CW)
(DEB IGHS IZE R 10.0000000)
(CODIIIGSCHEYE TW T X I)
(TWIWFO

(SPACE R .3333330)
(STRETCH R .16666?0)
(SBRIIIK R .1111167)
W I G H T R .4444UT)
(QUAD R 1.0000000)
(-PACE R . l l l l l~)
3

TUGbo at, Volume 2, No. 1

(LIGTABLE

(LABEL c f)
(LIG C 1 0 174
(LIG C f 0 179)
(LIG C 1 0 175)
(LXG C t 0 44)
(STOP)
(LABEL c 0)

(K W C o R -0277777)
&RN C x R - . 0 2 ? W)
(STOP)
1

(CHARACTER C d

(CBARII) R . S8SS65S)
(CHARIT R .6944447)

CCaARPP R .0000000)

1
Which says: This font is in the CMR family, its
sixe is 10.0 points, and it's a regular 'QjX font for
text. When '&X uses this font, it should know that
the glue between words should be 3.33pt plus 1.66pt
minus 1.llpt. TEX will also know that the x-height
of CMRlO is 4.44 pt, a 'quad" of space is 10 pt,
and the extra amount of space at the end of a sen-
tence is 1.1 1 pt. (see the METAFONT (Appendix F)
and 'QjX (everywhere) manuals for more on these
parameters). Also, 'lPr[should recognire that when-
ever 'Y" is followed by "is, Y", T, or "t", that it's
time for a ligature: an occurrence of 'I la should be
replaced by the character in octal position 174 in
CMRlO ('0"; see the Appendix of the 'QjX manual
that shows font tables to verify this), etc. Whenever
'0" is next to another "ow, they should be moved
apart by 277 pt more then they would otherwise
be (based on their widths), but an "ow should be
moved .277 pt closer to a following "x". Finally,
the characser "da has width 5.55 pt, height 6.94 pt,
and depth 0 pt. The full CMR1O.PL ftle has lots
more in its LIGTAELE and many more CHARACTER
descriptions, of course.

Jf we changed the line

(CHARTD R .5555553)

to
(CHARID R .700)

and ran PLTOTF, making a new CMRlO.TFM,
'QX would now think that 'dm had width 7 pt in
cMR10.

So, if yon have your own fonts that you'd lilpe '&X
to know about, just make PL files for them, and
then run PLTOTF to make TFM ftles. With luck,
your fonts wil l be in some computer readable form
such that the PL ffles can be made with a fairly
simple program. Note that it is perfectly legal to
have a TFM (or PL) ftle that specifies no bm or
ligatures.

In fact, TFM files m v contain a fair amount
more information a b u t a font than just the heights,
widths, depths, kerns and ligatures. Most of these
extra paramaters only come up in the special math
fonts. The METAFONT (Appendix F again) and
'&X mmuals talk about these parameters in more
detail. Belaw is a complete but scary description
of d l the bits in TFM ftles. This description was
actually excerpted from a comment in the SAIL-
language version of 'QjX

This dehition of TFM files is due to Lyle
Ramshaw.

Each font used by TkX has an associated font
information ffle. The name of this file is obtained
by appending the extension code ".TFMW to the font
ftle name. For example, the 'QjX font metrics for the
font CMRlO appear on the ftle CMR1O.TFM. These
.TFM ftles are written with 32 bits in each word, to
facilitate their transportability. When they sit in
the ale systems of 36-bit machines, these 32 data
bits will be left-justified in the 36-bit word, leaving
the rightmost four bits sero.

The fist 6 words of the .TFM ftle contain twelve
1Bbit integers that give the lengths of the various
portions of the ale, packed two to a 32-bit word.
These twelve integers are, in order:

length of entire ftle in words,
length of header data,
first character code in font,
last character code in font,
number of words in width table,
number of words in height table,
number of words in depth table,
number of words in italic correction table,
number of words of lig/kern program,
number of words in kern table,
number of words in extensible character
table,
number of font parsmeters.

In .TFM format, the subflelds of a word are always
allocated in left-bright (BigEndian) order. Thus,
the f is t two integers in this list, l f and lh, are
packed into the f is t word of the .TFM file with If
on the lett and lh on the right.

These lengths are not ail independent: they mwt
obey the relation
lf =6+lh+ (ec-bc+i) +nw+nh+nd+ni+nlr+nl+n@+np.

The rest of the .TFM fUe is a sequence oft& data
srrays as specifled below:

HEADER= ARRAY [O: lh-11 of Stuff
FmO= ARRAY Cbc : crc] of FInfoEhtry
WIDTH= ARRAY CO :nw-11 of FIX
HEIGHT= ARRAY C0:nh-11 of FIX
DEPTH= ARRAY [O:nd-I] of FIX
CHARIC= ARRAY CO : nl-11 of FIX
LIG/KWIO= ARRAYC0:nl-11 of LigKornStep
KERN= ARRAYC0:nt-11 of FIX
Em= ARRAY C0:ne-11 of ExtReclpe
PARAMS= ARRAY C l : npl of FIX.

A FIX is a one-word representation of a real num-
ber in a flxed-point fashion. FIXes are used in .TFM
format to enhance transportability. A FIX is a
signed quantity, with the two's complement of the
entire FIX used to represent negation. Of the 32 bits
in the word, 12 are to the left and 20 are to the right
of the binary point. This means that a FIX has 1
bit of sign, 11 bits of integer, and 20 bits of fraction.
Note that this limits the sire of real numbers that a
FIX can represent: the largest FIX is roughly 2000.

The fist data array is a block of header informa-
tion, general information about the font. Currently,
the header contains 18 words, allocated as described
below. In the future, new flelds might be added at
the end of the header block.
HEADER=

I
ChcrckSu: 1 word
DesignSlzo: FIX (1 word)
CharacterCodlng8chemo : 10 words
P ~ c F o n t I d e n t l ~ i e r : 5 mrds
R a n d u a word (=Header 1171

is broken up as follrwr:)=

SevenBitSaie: 1 bit
u n ~ o d s p c o : 23 bits
ParcFaceByto: 8 bits
1

I
The ChackSum field is used to hold a unique

identifler of some sort that describes this version of
fbe font. This unique ID is put by METAFONT
into both the rasters and metrics. 7)ijX 5 d s it in
the metrics, and stores it in the .DVI ffle. Thus, a
npooler can check the unique ID in the .DW with the
unique ID in its rasters, to provide a guarantee that

was working with metric data for the current
rasters. METAFONT computes this checksum from
the metric information in the .TFM ffle.

The DeelgnSlzr of the font is the size that the
font was intended to look good at, or, to put it
another way, the nominal size of the font when it is
printed at a m-ation of 1.0. For unusual fonts

TUGboat, Volume 2, No. 1

such as CMDUNE and CMATHX, the DeslpSfze
is moreor-less arbitrary. The Derrlgn8ize is stored
as a FIX with the units 'points*.

The CbsracterCodingScheme field is supposed to
specify what the character code to symbol transla-
tion scheme is in this font. The coding scheme is
stored in 10 mrds=4O bytes of the .TFM fiJe, as a
string. The first byte gives the length of the string,
the next n bytes are the characters, and the last
(39 - n) bytes are reros (where %stw and %extw
imply working from left-to-right). Some common
coding scheme names are:

CharacterCodlng8chme~:
TM TEXT

TEX IYPEURITW TEXI

'IW MATHIT

TEY MATHSY
TM MATHEX

UHSPECIFIED - default, means no information
GRAPHIC - special purpose code, non-

alphabetic
ALPHABETIC - means alphabet agrees with

ASCII at least
ASCII - means exactly ASCII
PARC TEXT - Times Roman and Helvetica,

for example
SUAI
CYU

H I T

Fonts are unimrsally referred to by their Ne
names: for example 'CMR10" for Computer
Modem Roman 10 point, 'CMTT" for Computer
Modem Typewriter Type 10 point, etc. The
user specifies the font by giving this string name,
the '&X output module 5 d s the metric iUe by using
this name with the extension .TFM, and the various
printers store the rasters as ffles with this name and
some other extension.

can only handle character codes that are
seven bits in length. But the .TFM format always
allows a full eight 'bits for a character code, so the
high-order bit of all characters specifled must be
zero.

The HEADER data is followed by the FIlQFO table,
which is an array of FInfoEntrya. This array is
indexed from bc to crc, and hence contains (ec -
bc + 1) entries. Each FInfoEntry is one word in
length. An FInfoEntry is a compacted structure
with the follcrwing format (fields allocated from left
to right once sgain):

TUGboat, Volume 2, No. 1

FInfoEntry:

1
8idthIndex: 8 bits
HeightIndex: 4 bits
DepthIndex: 4 bits
CharIcIndex: 6 bits
TagFleld: 2 bits
Remaiader : 8 bits

1
The flelds in the FInfoEntry do not give the

character width, height, etc. directly, they are in-
dices into secondary tables. Thus, up to 256 different
widths may appear among the 256 characters of
a single font, and up to 16 Merent heights, 16

merent depths, and 64 different italic corrections.
The actual widths, heights, depths and italic correc-
tions are stored in the .TFM file as arrays of FIXes
with 'em" as their units. QjX reads in these FIXes,
converts them to floating point form, scales them by
multiplying by the desired font siae (in points), and
stores them into internal character metric arrays.

The CharIc field is nsed both for the italic cor-
rection of ordinary characters and for mathop kerns.
In particular, for mathops such as summation and
integral signs, the CharIc fleld points to a 'kern"
which, if nonzero, means that limits are normally set
to the right and the lower limit is shifted left by this
kern value. If the kern is 0, limits in display style
will be centered above and below the operator. (To
change between centering and attachmg at the right,
one writes '\limitsvitch" a f k the operator.)

A note on non-existent characters: all character
codes outside of the range Cbc . ecl represent charac-
ters that do not exist in the font. Any codes in the
rsnge Cbc , ecl that represent non-existent charac-
tera will have their FInfoEntrys identically equal
to 0. The TIDTH, HEIGHT, DEPTH, and CharIc ar-
rays will each be guaranteed to have a FIX of 0.0
in their O'th position. Thus, failing to notice that
a character is non-existent won't lead a program to
use irrelevant metric data for that character code.
Furthermore, any characters that really do exist in
the font will be guaranteed to have a Tidthfndex
that is nonzero. Thus, a character is non-existent
iff its TidthIndex is aero, and also iff its entire
FInioEntry is zero. If there are any actual charac-
ters in the font whose width just happens to be
precisely sero, the TIDTH array will contain two sero
FIXes: one at index 0, which is nsed for all of the
non-existent characters, and one somewhere else.

The remaining portion of the FInfoEntry is used
for several different purposes, depending upon the
value of the tag field. The TagField portion of the
FInfoEntry has one of four values:

this is a vanilla character, Bernlnder is
unused.

character has a ligature-kerning program:
the Remainder fieid is the index in the
LIG/KERI array of the first step of the p r b

Pam-
character is part of a chain of charac-
ters of ascending sizes ('charlist"): the
Remainder field gives the character code
of the next larger character in the chain.
character code represents an extensibIe
character, one that is built up out of
smaller pieces and can be made arbitrarily
large: the Remainder fleld is an index into
the WT array. The ErtRecipe at that
position in the WT array describes what
the pieces are.

(The t a g l i s t and tagmu options are usually used
only in math extension fonts.)

The LIG/KWN array is a program in a simple
programming language that gives instructions about
what to do for special letter pairs. Each step in this
program occupies one word:

LIflern8tep :

I
Stopsit: 1 bit

meam this is a W program step
unusedspace : 7 bits
1extChor: 8 bits

if this is the next character, then ...
rageit: 1 bit
unusedspace: 7 bits
Remainder: 8 bits

I
If the TagBit is 0, this step in the program

describes a ligature. In that case, the Rewinder
consists of the character code of the ligature that
should be substituted for the current character pair.
If the TagBit is 1, this step describes a kern, and
the Remainder field is an index into the KEBH may.
The KERN array is simply an array of FIXes, pure
numbers that should be scaled to give distanm in
the same way as the elements of the WIDTH, IEIGHT,

DEPTH, and CharIc arrays.

An ExtRecipe is a one-word quantitp that should
be viewed as four bytes (allocated left-bright, of

course):
ExtRecipe:

I
top: byte
mid: byte
bot : byte
ext : byte

I

TUGbort, Volume 2, No. 1

The height and width 11elL in the FIPioEntry
of the extensible character give the metric8 of the
component, not of the bniltup p b o l itself, since
the built-up symbol will have variable size. If top,
middle, or bottom portiona are rero, the extension
component rnns all the way through that portion
of the symbol, otherwise it directly abuts them por-
tions. The built-up symbol is formed by includ-
ing an integral number of extansion components. If
there is a middle, the same numbr of extension
components will appear above and below. For ex-
ample, a left brace has all four components specW,
while a double 11 (the cardinality or norm symbol)
has only an extension part. The floor and ceiling
brackeh are like regular brackets, but without top
or bottom, respectively. The width of the extension
component is assumed to be the width of the entire
built-up 8ymbol. If any byte is 0, it indicates that
the corresponding piece of the extensible character
does not exist. Otherwise, the contents of the byte
is the character code of the piece: top, middle, bot-
tom, or extender respectively.

The rest of the .TFM flle is the PARAY8 array,
a table of font parameters that are used by m,
stored as FIXes. All of these parameters are diti
tances except for the &st one, 'slant": hence all
except for 'klant" should be acaled by the font
sire by 'Q$ when being read in from the .TFM
ffle. Since s lan t is a pure number, it should not be
scaled. [The following table of parameters is printed
in clearer form on pages 98-100 of the METAFONT
manual.]

s l an t the amount of italic slant [e.g. #hut= . 25
means that when going up one unit, go .25
units to the right-this is used in placing
accents over characters)

.prcr a real number that says how wide blank
spaces are (Note that doesn't uae
character number '40 for spaces, that
character can be non-blank in the font)

rprcer trr tch
the atretch component of the glue for

sp=ing
rprcerbrinlr

the shrink component of the glue for

bftcine
might the height of lowercare Y' (default

positioning for accents)

quad the width of one "em"
r a r u p r c e

the amount added to space after periods
(and in generd when the rpaceflrctor it - 2)

M.thematicr fonts & as b t b r y and b t h o x
contain important dditionrl parameter informa-
tion. fn a b t h q font, the extra parameters dart
right aiter 'quadw, that is, there is no 'utraapacew
parameter. The bthsy parametera are

nth .prce
if noowo, the amount of space that will
be wd for dl nonrero space in math for-
mulw (for --width output)

nual . nuB2 . nun3
amount to raise bi.aline of numerators in
display or nondisplay or nondisplay-atop
styles, respectively

denonl.denam2
amount to lower hrutine of denominaton

mpi , sllp2. sup3
amount to raise bueline of superscripk if
1) display style
2) nondisplw nonvariant rffle
3) variant style

sub1 . sub2
amoant to lower baselh of mbrcriptr if
mpemript is
1) absent
2) preaemt

m w m -0P
amount below top or bottom of large box
to place barsline if the box Jias a super-
rcript or sabrvipt in this sire

dellmi, d e l m
she of \ c a b delimitem in

1) *play
2) nondisplw style

ui8hright
height of fraction lines above the b&
(this is mid- betuwn the tm b u s of =
den)

A b t h e x font includes the ht aman rkndud
parantatem (including atampace), and then hu
six parameters used to govern formula setting

def atr l t rulethichess
the t h i c k of \ o n r and \orrrlim
bars

bippqrc*(l) , (2)
the minimum glm space above and below
a large displqed operator, rapactively

b 1 ~ r c ~ (3) . (41
the minim- dintance betwwn a limit's
bamli i and a larae displayed operator,
when the limit ir a b m , below

bIgqmp.ciq(5)
the&rrglwpIacedahmdboIowdi,
p l w limits

