
Introduction

Donald Knuth created the WEB system of literate
programming when he wrote the TEX typesetting
system a second time (see “The WEB system
of structured documentation”, 1983; “Literate
programming”, 1984; TEX: The Program, 1986;
and METAFONT: The Program). The WEB system
can be described as the merging of documentation,
code, and presenting the listings in a typeset format
with aids of table of contents, cross-referencing, and
indices.

I have used Knuth’s original WEB system and
several descendants for a number of years. It is
my opinion that the training necessary to learn how
to program in a literate style is relatively small. I
believe the benefits of literate programming make
it worthwhile. The benefits are better and more
maintainable code (it can be argued that this is not
proven.)

In this paper I will also report on available
literate programming systems, some of my successes
and failures as a literate programmer, creation of
some tools to aid the literate programmer, the
community of literate programmers that I have
been able to identify, alternatives to the WEB system,
and suggested directions for use and research in
literate programming.

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 261

Literate Programming, A Practioner’s View

Bart Childs
Texas A&M University

Department of Computer Science

College Station, TX 77843-3112

Phone (409) 845-5470; FAX (409) 847-8578

Internet: bart@cs.tamu.edu

Abstract

I have been using the WEB style of Literate Programming since my first efforts
to port TEX to the Data General AOS system. When I looked back at those
efforts, the work in porting drivers that were not written in WEB and the writing
of drivers in WEB (based upon DVITYPE, of course), the value of this method of
programming became evident.

I have concentrated my research (and some teaching) efforts upon this
style of programming. I will relate my insights and opinions of the following:
some quantitative and qualitative measures of the value of WEB programming;
a description of some tools that are part of an environment for writing and
maintaining literate programs; literate programming environments that are
alternatives to the WEB style; an annotated list of some literate programming
systems; and I will conclude with my perception of the future of literate
programming.

A Definition

I use the following list of requirements to imply a
definition of a literate program and the minimum
set of tools which are needed to prepare, use, and
study the resulting code.
• The high-level language code and the system
documentation of the program come from the
same set of source files.

• The documentation and high-level language
code are complementary and should address
the same elements of the algorithms being
written.

• The literate program should have logical
subdivisions. Knuth called these modules or
sections.

• The system should be presented in an order
based upon logical considerations rather than
syntactic constraints.

• The documentation should include an examina-
tion of alternative solutions and should suggest
future maintenance problems and extensions.

• The documentation should include a descrip-
tion of the problem and its solution. This
should include all aids such as mathematics
and graphics that enhance communication of
the problem statement and the understanding
of its challenge.



• Cross references, indices, and different fonts for
text, high-level language keywords, variable
names, and literals should be reasonably
automatic and obvious in the source and the
documentation.

These requirements have been adapted from
(Knuth, 1992), and (VanWyk, 1989 and 1990).
My adaptations of the list were affected by my
experience as a WEB user—first in a maintenance
mode, then as an author, and finally using
WEB in undergraduate and graduate education
environments. The last has involved the creation
of some tools to enhance the use of literate
programming in all environments.

Knuth posed this thought to introduce literate
programming: “Instead of imagining that our main
task is to instruct a computer what to do, let us
concentrate rather on explaining to human beings
what we want a computer to do” (Knuth, 1984).
His thesis was that it should be just as important to
communicate with the other persons who read the
program as it is to communicate with the computer
which executes it (Knuth, 1992). David Ness said
“it is the most important task.”

Knuth’s WEB System

When Don Knuth wrote TEX the second time,
he gave thought to making it portable to many
different systems. WEB was created as a superset of
TEX and Pascal.

WEB’s design encourages writing programs in
small chunks which Knuth called modules (he also
used the term sections). Modules have three parts:
documentation, definitions, and code. At least one
of these three parts must be non-null.

The documentation portion is often a verbal
description of the algorithm. It may be any
textual information that aids the understanding of
the problem. It is not uncommon for a WEB to
have a number of ‘documentation only’ modules.
These usually describe the problem independent
of the chosen language for implementation. For
example, a WEB for a subprogram that solves the
linear equation, Ax = b, could have discussion of
singularity, condition numbers, partial pivoting, the
banded nature of the expected coefficient matrices,
etc. It should be an unusual but not exceptional
case when a module contains no documentation.

The definition part of a module was often
used by Knuth to offset shortcomings of Pascal
when used in systems programming. (Wirth created
Pascal to be a language for pedagogy, not systems
programming.) This is rarely the language of choice

262 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Bart Childs

by today’s systems programmers but sometimes it is
a convenient way to represent certain ideas. (Knuth
used Pascal because “it was everybody’s second
best language” at the time (Knuth, TUGboat, 7(2),
1986). It was before C was widely available.)

Some of My Successes and Failures

My introduction to the WEB system of literate
programming was rather abrupt—I was porting
TEX82. I had not written a Pascal program or a
TEX document at the time. I had written a number
of systems programs in PL/1.

Version 0.6 of the TEX system was made
available to me in the fall semester of 1982.
Distribution tapes contained about 300 files. Most
of these had to do with the fonts in a binary form.
Binary files were written in a format of twenty bytes
per record. Each byte was converted to four ASCII
characters; for example, ‘�255’ for the byte with all
bits being one. Over a two or three week period I
ported the TANGLE processor and began work on the
WEAVE processor. I also had the ‘report version’ of
volume B of the C & T series (Knuth, 1986).

The end of the semester caused me to stop the
work and I did not resume until the spring with
version 0.9 of TEX. I spent some time reviewing the
changes in the necessary parts of the TEX system:
TANGLE, WEAVE, and TEX.

The WEB sources were usually complemented
with the change files for TOPS, VMS, and Unix
systems. These were valuable, but I recall the
feeling that the “system dependencies” entries in
the index were even more valuable. It helped to
see what was changed for other systems, but often
those changes were in terms of “system calls” whose
documentation I did not have.

The necessary codes are approximately 2,700,
7,000, and 25,000 lines of Pascal each of the
INITeX and TEX processors. I was able to port
approximately 60,000 lines of Pascal code to a
system on which only 2,700 lines had previously
been ported. I did this in three days (probably 15
hours of work). I regret that I did not keep a diary
or log errors like Don Knuth did, (Knuth, TUGboat,
7(2), 1986; and Knuth, chapters 10 and 11, 1992).

The experience of porting the system convinced
me that the literate programming style had
significant merit. Most of the programs I
subsequently wrote for the TEX system were WEBs.
The existence of dvitype as a model for drivers
helped this decision. I created a family of drivers for
the AOS system for QMS, HP, and Canon printers.
These used a common source and adaptations for



the different printers were accomplished by change
files.

This further experience led to the logical
conclusion that an “environment” could help
significantly. We created several environments
to automate the steps of creation of code and
documentation for the AOS system. The emergence
of Unix and availability of workstations has
relegated these early works to simply being a
pleasant memory that in some sense could be called
a failure.

Marcus Brown built part of an “Interactive
Environment for Literate Programming” as part of
his dissertation under my direction (Brown, 1988
and 1990). This was essentially the output side of
an editor which also allowed the navigation of the
source with views of the typeset output, a graphical
tree structure of the module interconnections, and
other functionalities. It did not include a real
editor. The environment was tested by giving
senior computer science students the tasks of
identifying the changes to make a “big TEX”
and changing tangle to make code that is more
readable. (Knuth’s original WEB created code that
was to be “unfit for human consumption”.) These
students had been using WEB in processing system
performance logs.

The positive results of this work were that the
subjects performed well in identifying the necessary
changes using the typeset listings of the codes and
in the on-line form using the environment.

The environment was dependent upon SUN
graphics and did not lend itself to incorporation
with public domain editors. A later environment
was based upon GNU Emacs.

Other WEB Systems

There have been a number of WEB and WEB-like
systems developed. They can be divided into
several categories.
• WEB systems that have the same set of tools that
are adapted to a different high-level language.
The high-level languages supported include:
C (Guntermann and Schrod, 1986 and Levy,
1987), Fortran (Krommes, 1989), Modula-2
(Sewell, 1987), LISP dialects, and Reduce. In
the references I also indicate the sites where
the ‘definitive’ sources are available.
There are some differences in functionality in
many of these such as support of multiple
change files (Guntermann) and several high
level languages (Krommes).

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 263

Literate Programming, A Practioner’s View

• WEB systems that have been adapted to a
different high-level language by pre-processors
and/or post-processors. These include support
for Fortran, and the first WEB for Reduce.

• WEB systems that have a different basis for
their creation but generally follow the same WEB

concepts. Ramsey’s Spider enables reasonably
easy creation of WEBs for several different
languages (Ramsey, 1989). His example include
WEBs for Ada, C, awk, and SPL. Gragert and
Roelofs created the second WEB for Reduce with
Spider (Gragert, 1991). They are now creating
a WEB for Maple (Gragert, 1992).

• WEB systems using a different language or
formatting system. Three will be mentioned.
Thimbelby did his CWEB with the Unix
standards of C and troff (Thimbelby, 1986).
The limitations of troff caused problems.
I have had personal communication about
another literate programming system that
used a Macintosh wysiwyg editor and the
C language. All the documentation was done
in German. David Ness created a CWEB-like
system at TV Guide, which was not published
or distributed.

• A NOWEB system that relaxed significant WEB

requirements. Ramsey characterized his NOWEB

as a “low-tech” literate programming system
(Ramsey, 1991). It does not indent the source
but passes it through.

• Jim Fox created c-web, which gives a nice
listing of the source and some organization
of the code. It can be argued that this is
not a literate programming system because its
indexing is minimal and the order of the code
is dictated by C syntax. The c-web package
assumes that the C comments are written in
TEX. The only other assumptions are that two
C comments of a specific format appear near
the start and end of the program, otherwise it
is ordinary C with pretty output. The user
simply TEX’s the C source.

What is a Good WEB?

This is a question which still needs to be answered.
It probably can’t be answered today because there
is not a large enough body of programs written in
a literate style that are available for study. Later
I will show one graph that appears to be a good
indicator of characteristics of WEBs. I think several
graphs of this type could be an effective indicator
of quality.



The TEX system and the work reported
in (Ramsey and Marceau, 1991) are the most
significant examples from which we can begin to
search for answers. Ramsey’s work is based on a
project in which there was not a single programmer
(as in Knuth’s work). More studies like this are
needed.

Many of the characteristics I think of in using
for evaluative purposes relate to the module. A
module should be a ‘sensible chunk.’ In most cases,
I interpret this to mean most modules should not
be more than one screen of source, in spite of
varying screen sizes of up to 40 lines. This is not an
absolute rule, just a guideline. Some modules will
be documentation only and may be several pages in
length. In some cases, it is convenient to make each
paragraph a module of its own. Further, there are
modules that seem to be best presented when the
documentation and code are each about a screen.

I can’t yet answer the question as to what
are the characteristics of a good web, but I
think that studying with figures like Figure 1 and
some statistics will begin to give us some ‘normal
characteristics.’ These kinds of graphics make
it easy to spot inconsistencies in documentation,
modularity, and other causes of maintenance
problems.

I do not doubt that there will be more than just
one description of a good literate program. However,
I think that most will have consistent “patterns”
when analyzed in similar graphical manners using
the “right statistics.”

40

20

0
0% 25% 50% 75% 100%

Figure 1. Percent modules vs. number of lines
of code per module in PS Quasi.web.

Mamoun Babiker wrote the tool to extract the
data and create the TEX code for drawing the figure.
Figures like this are better when they are done with
a graphics package rather than relying on TEX’s
rules, for portability.

264 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Bart Childs

Some of the elements of a good essay will apply.
Programming practices must change significantly
for the spelling requirement to apply. Many codes
and their documentation are full of acronyms and
mnemonics. It can be argued that with today’s
systems and compilers accepting long variable
names, there should be some change in this.

Tools for the Literate Programmer

I admit to believing in the value of literate
programming even when I only had the usual
editors and hardcopy (TEXed) output with the
indices and cross-references. This was obviously not
the preferred literate programming environment.

The editor is the most important “tool”. It
will be discussed briefly and most of the web-mode
commands will be listed in a table. Other tools will
be discussed without further introduction.

Editing environment. Mark Motl created the
web-mode for GNU Emacs (Motl, 1990). It makes
the editor sensitive to the rules of WEB, TEX, and
some aspects of the high-level language. The table
of contents, index, and index of modules that are
helpful in studying WEBs are on-line. The user
can select a variable while viewing the index and
then with two keystrokes proceed to view each of
the modules where the variable is referenced, in
succession. All lists (module names, extra index
entries like ‘system dependencies’, etc.) are kept
on-line and the user only has to select from the list
rather than retype them.

Details of web-mode are beyond the scope of
this paper. A list of the functions that have been
added to GNU Emacs to create a web-mode is shown
in the appendix. We know it is used by a number
of literate programmers on several types of Unix
systems and on MS-DOS machines and it certainly
seems to be effective.

Counters. These are used for calculating the
basic statistics and metrics that can be used to
“measure” a web. We are using variants of these
to build statistical summaries of WEBs, which we
hope will lead to ‘proven’ statements describing the
characteristics of good WEBs. The earlier figure was
prepared by using one of these.

Table 1 was created by wst (a WEB statistics tool
written by Mark Gaither) and is a count of the WEB

commands in tex.web, while Table 2 is a count of
the TEX commands. This data was extracted from
version 3.14 of TEX which has 24,863 lines in its
source and 523 of those lines have at least one WEB

command. The complete Table 2 would be too long



for this paper. However, the header is informative.
I have left in only the eight most-used TEX control
sequences. On the other hand, 69 TEX control
sequences were used once and another 38 were used
twice.

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 265

Literate Programming, A Practioner’s View

Table 1. WEB control sequences in tex.web.
Unique control sequences = 27
Occurrences of control sequences = 11609
Words in file = 127592

Unique control sequences/words = 0.0002
Control sequences/words = 0.0910

Control Seq. Count
@ 1325
@! 1655
@" 3
@# 28
@$ 3
@& 5
@’ 260
@* 55
@+ 227
@, 8
@. 259
@/ 685
@: 407
@; 90
@< 1774
@> 2868
@? 29
@@ 16
@\ 2
@^ 259
@d 1216
@f 12
@p 178
@t 169
@{ 5
@| 66
@} 5

Table 2. TEX control sequences in tex.web.
Unique control sequences = 202
Occurrences of control sequences = 6186
Words in file = 127592

Unique control sequences/words = 0.0016
Control sequences/words = 0.0485

Control Seq. Count
\� 381
\. 1728

\PASCAL 86
\TeX 477
\\ 1431

\cr 125
\hang 166
\yskip 142



A recent scientific code of mine has 3,900 lines
of WEB, 0.0072 unique control sequences per word,
and 0.0431 control sequences per word— I think
that this was expected. I consider this data to show
an upper bound of the amount of TEX that might
be included in a WEB. This is evidence that it is not
necessary to be a TEXpert to use WEB.

Change file analyzer. Change files are analyzed
in detail by this code (written by Mark Gaither).
The Unix diff utility is used to show exactly what
changed in the change file for each module. Each
module is flagged if it is only part of the lines of the
module. The reason for this is that the GNU Emacs
web-mode assumes that change files always contain
complete modules. Also, since a module should be
the minimum part of a code that can stand alone,
it seems wrong to have only a part of it. If code is
changed, documentation should also be changed.

A WEB structure viewer. Web-view (written by
Kevin Borden) gives a high-level view of the
structure of a WEB in a manner much like the
browsing of the directory structure in a NeXT
computer. This design was selected because the
previous graphics representation of a WEB did not
have sufficient screen to show enough of a module
name to always be indicative of the purpose of the
module. This tool is based upon X.

TeXbraces. This is a simple WEB (written by David
Ness) that is used to flag those problem places where
the dread braces get out of balance. I use this in the
obvious fashion on both TEX and WEB sources. This
functionality is present in web-mode and tex-mode.

Integration of RCS. Configuration management
tools are a significant part of the toolbox on most
code developers. RCS is a reasonably popular
system that aids in keeping up with the changes
from one version to the next. William Needels has
recently finished a project on the integration of RCS
and imake to automatically produce Makefiles for
the generation of executables and documentation
for systems created with WEBs. It shall be released
shortly after packaging and another round of
proofing.

The sources of all the tools that we support are avail-
able for anonymous ftp from: ftp.cs.tamu.edu.
We are attempting to support all except the
original environment of Marcus Brown. An-
other source for literate programming tools is
ftp.th-darmstadt.de, the pub/tex/src/webware
directory.

266 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Bart Childs

Community of Literate
Programmers

Van Wyk indicated that only the creators of literate
programming systems use them (Van Wyk, 1990).
There is a significant international ‘community of
literate programmers.’ I think the number of users
is surprising since, to my knowledge, there has not
been a conference or major portion of a conference
dedicated to the exposition of the use of literate
programming or the many unanswered questions on
literate programming and environments.

It is difficult to accurately estimate the number
of programmers using WEBs. I think the number is
probably on the order of 1,000 or more because:
• Each semester several students contact me to
show me some of their work or ask for help.
These are not “my” students. They ‘discover’
WEB by scanning TEX directories.

• The distribution list for announcements about
John Krommes’ FWEB has several dozen ad-
dresses. I estimate that it does not include half
the sites that really use it and most addresses
probably represent several to many users.

• I know of three sites in Australia that are
extensively using FWEB and which are not on
the distribution list.

• A large multinational company is using CWEB as
their methodology for code development.

• I have been politely chastised for not placing
web-mode in the GNU or Archie archives. (It
will be there soon.)

• There are at least two journals and four uni-
versities I know of listing literate programming
as a viable/current research area. The subject
literature contains about 100 papers, reports,
and monographs from about 60 authors.

• I know of several professionals (such as David
Ness) who are active literate programmers.

• Apparently a significant portion of the DANTE
contributions to the TEX systems is being done
in WEBs. I have seen the sources of BM2FONT
and I know that Joachim Schrod and associates
continue to use their CWEB.

• A discussion list for literate programming
LitProg@SHSU.edu was started in July 1992
and generated many subscribers and more than
300k-bytes of messages in one month.
I intend to formalize the above list and seek

permission to distribute the names and addresses of
those I know. I believe that literate programming
will be aided greatly by the publication of Don



Knuth’s new book, Literate Programming (Knuth,
1992).

Conclusions and Recommendations

I have no reservations in recommending the use of
Knuth’s original WEB, Levy’s CWEB, or Krommes’ FWEB.
Our primary WEB system is Krommes’ FWEB because it
supports Fortran, Fortran90, Ratfor, C, and
C++. We also find it to be the best-documented of
the WEBs. It was created by extending Levy’s CWEB.

I believe that the use of web-mode has made
literate programming easier to introduce to my
students. A similar tool (but not as complete)
should soon be available for VMS systems based
upon lsedit.

Ramsey’s Spider system is a good tool for
creating new WEBs and his noweb is certainly
worthy of study.

Future Work

The questions related to determining the quality of
a literate program are still not answered. I believe
that we are beginning to have tools and examples
that will help answer these questions or at least give
us some general ideas. We need a significant body of
WEBs written by teams and a range of programmers
for study.

I believe that we need literate programming
systems whose output can be tailored to personal
tastes. For example, a Pascal code could have <=
instead of ≤, braces instead of begin-end, and
physical things like page size, etc.

Generic WEBs should be available for other styles
of languages such as VAX DCL files, Unix scripts,
hand-held calculator code, etc. Norman Ramsey’s
noweb may be a good vehicle for this since it does
not reformat the code. One of the most underused
features of FWEB is that it allows the creation of
literate style files for TEX macro writing. This
is an obvious improvement over the .doc to .sty
contribution in Leslie Lamport’s original LATEX.

Much of today’s computing is no longer
considered to be a single-language environment.
Scientific computing is often a mix of high-level
languages. FWEB allows the mixture of Fortran, C,
etc. The inclusion of MATLAB, GNUPLOT, etc., should
be included in a literate form.

A comment

In the interest of brevity I have omitted many
references that should be a part of the complete

TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 267

Literate Programming, A Practioner’s View

paper. I point to Nelson Beebe’s bibliography
on literate programming which is available by
anonymous ftp from science.utah.edu for a
complete list of many relevant citations.

Acknowledgements

TUG’s anonymous reviewer made many comments
that contributed to this paper. The thoroughness
of that review is appreciated.

David Ness and I have had many conversations
about literate programming and his vision has
certainly helped my views and understanding about
literate programming and several other aspects of
the computing professions.

References

Brown, Marcus E. “An Interactive Environment
for Literate Programming”. Ph.D. thesis, Texas
A&M University, College Station, TX, August
1988.

Brown, Marcus E. and Bart Childs. “An interactive
environment for literate programming”. Journal
of Structured Programming, 11(1), pages 11 – 25,
1990.

Fox, Jim. “Webless literate programming”. TUG-
boat, 11(4), pages 511 – 513, November 1990.
u.washington.edu

Gragert, Peter, and Marcel Roelofs. Reduce WEB

version 3.4. utmfu0.math.utwente.nl
Gragert, Peter. Personal communication.
Guntermann, Klaus, and Joachim Schrod. “WEB
adapted to C”. TUGboat, 7(3), pages 134 –
137, October 1986. This WEB is no longer
supported. They recommend the Levy/Knuth CWEB.
schrod@iti.informatik.th-darmstadt.de

Knuth, Donald E. “The WEB system of structured
documentation”. Stanford Computer Science
Report CS980, Stanford University, Stanford, CA,
September, 1983. labrea.stanford.edu

Knuth, Donald E. “Literate programming”. The
Computer Journal, 27(2), pages 97 – 111, May
1984. Also appears as chapter 4 in “Literate
Programming”.

Knuth, Donald E. TEX: The Program, volume B
of Computers & Typesetting. Reading, MA:
Addison-Wesley, 1986. ISBN 0-201-13437-3.

Knuth, Donald E. METAFONT: The Program,
volume D of Computers & Typesetting. Reading,
MA: Addison-Wesley, 1986. ISBN 0-201-13438-1.



Knuth, Donald E. “Remarks to celebrate the pub-
lication of Computers & Typesetting” TUGboat,
7(2), pages 95 – 98, June 1986.

Knuth, Donald E. Literate Programming. Center for
the Study of Language and Information, Stanford
University, CA: Distributed by Univ. of Chicago
Press, ISBN 0-937073-80-6, 1992.

Krommes, John A. The FWEB System. Princeton
University. 1989. lyman.pppl.princeton.edu

Levy, Silvio. “WEB adapted to C, another approach”.
TUGboat, 8(1), pages 12 – 13, April 1987.
princeton.edu and labrea.stanford.edu

Motl, Mark B. “A Literate Programming Environ-
ment Based on an Extensible Editor”. Ph.D. the-
sis, Texas A&M University, College Station, TX,
December, 1990. csseq.cs.tamu.edu

Ramsey, Norman. “Weaving a language-independent
WEB”. Communications of the ACM, 32(9), pages
1051 – 1055, September 1989. princeton.edu

Ramsey, Norman , and Carla Marceau. “Literate
programming on a team project”. Software—
Practice & Experience, 21(7), pages 677 – 683,
July 1991.

Ramsey, Norman. “Literate programming tools need
not be complex”. Submitted for publication, 1991.

Sewell, E. Wayne. “How to MANGLE your software:
the WEB system for Modula-2”. TUGboat, 8(2),
pages 118 – 122, July 1987.

Sewell, E. Wayne. Weaving a Program: Literate
Programming in WEB. New York, NY: Van
Nostrand Reinhold, 1989. ISBN 0-442-31946-0.

Thimbleby, Harold. “Experiences of ‘literate pro-
gramming’ using cweb (a variant of Knuth’s
WEB)”. The Computer Journal, 29(3), pages 201 –
211, June 1986.

Van Wyk, Christopher J. “Literate Programming:
Moderator’s Introduction”. Communications of
the ACM, 32(6), page 740, June 1989.

Van Wyk, Christopher J. “Literate programming—
an assessment”. Communications of the ACM,
33(3), pages 361 and 365, March 1990.

268 TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting

Bart Childs



TUGboat, Volume 13 (1992), No. 3—Proceedings of the 1992 Annual Meeting 269

Literate Programming, A Practioner’s View

Appendix

Listing of WEB-MODE Commands by Functionality

Functionality Command Key Binding

Movement Among
Buffers (Files)

web-goto-buffer-by-name C-c b n
web-goto-buffer-change-file C-c b c
web-goto-buffer-include-file C-c b i
web-goto-buffer-web-file C-c b w

Movement Among
Modules

web-goto-module C-c g m
web-next-module C-c n m
web-previous-module C-c p m

Interactive Access to
and Movement
Among Sections

web-goto-section C-c g s
web-next-section C-c n s
web-previous-section C-c p s
web-view-section-names-list C-c v s

Interactive Access to
Index

web-next-index C-c n i
web-previous-index C-c p i
web-view-index C-c v i
web-next-define C-c n d

Interactive Access
to Modules

web-next-use C-c n u
web-previous-define C-c p d
web-previous-use C-c p u
web-view-module-names-list C-c v m
web-edit-module C-c e m

Change File
Editing and Movement

web-goto-change-corresponding-to-module C-c g c
web-next-change C-c n c
web-previous-change C-c p c
web-delimiter-match-check C-c d m

Web
Structure

Information

web-determine-characteristics C-c d c
web-view-changed-modules-list C-c v c
web-what-change C-c w c
web-what-module C-c w m
web-what-section C-c w s
web-insert-index-entry C-c i i

Miscellaneous web-mode-save-buffers-kill-emacs C-x C-c
web-rename-module C-c r m


