LuaTgX

Taco Hoekwater
http://luatex.org

Abstract

LuaTgX is an extended version of TEX that uses Lua as an embedded scripting
language. The main objective of the LuaTEX project is to provide an open and
configurable variant of TEX while at the same time offering downward compati-
bility. This paper gives a broad overview of the project.

1 Introduction

The LuaTgX source code of course includes Lua and
the latest versions of pdfTEX and Aleph, but it also
contains a few other more or less distinguishable
parts:

Some specialized TEX extensions

A set of Lua module libraries

The font reading code from FontForge

Some of the font writing code from xdvipdfmx
C source code to glue all of this together

If \pdfoutput is not set, LuaTEX is a lot like
Aleph with additional support for the microtypog-
raphy pdfTEX is known for. And if \pdfoutput is
set, then it is like pdfTEX with the much better di-
rectionality support provided by Aleph.

If needed, Lua code is used to apply input re-
encoding, instead of I/O translation OTPs (Aleph)
or tex files (pdfTEX). Also, some experimental fea-
tures of both programs were removed since the orig-
inal problems can be better dealt with using Lua.

2 Time-line

The first informal start of LuaTEX was around TUG
2005. After an initial period of playing around and
experimenting, the project gained momentum in the
spring of 2006, when funding from Colorado State
University and TUG (via the Oriental TEX Project)
was acquired.

Soon after that, a public repository was set up
and a mailing list and website were started. After a
year of continuous work, the first beta was released
at the TUG 2007 conference in San Diego, USA. The
offered functionality is not completely finalized yet,
so the interfaces are likely to change a bit still. A
stable release is planned for the next TUG confer-
ence, in Cork, Ireland, 2008.

3 Features

The new functionality of LuaTgX falls into a few
broad categories that are explained briefly in the
next paragraphs.

3.1 Unicode support

LuaTEX uses UTF-8 encoded Unicode throughout
the system. That means input and output files are
Unicode, and also that the hyphenation patterns are
expected to express hyphenation points of Unicode
characters (instead of the traditional font glyphs).
Commands like \char and \catcode are ex-
tended to accept the full Unicode range, and used
fonts can (but do not have to) be Unicode encoded.

3.2 TEX extensions

In the process of extending TEX for Unicode support
and the cleanup required for interfacing to Lua code,
some other extensions were also added. Here we
briefly describe the most interesting of these.

The startup processing is altered to allow the
document (via a Lua script) to have access to the
command line.

A new feature called ‘\catcode tables’ allows
switching of all category codes in a single statement.

A new set of registers called attribute is added.
Attributes can be used as extra counter values, but
their usefulness comes mostly from the fact that all
the ‘set’ attributes are automatically attached to all
typesetting nodes created within their active scope.
These node attributes can then be queried from any
Lua code that deals with node processing.

The single internal memory heap that tradi-
tional TEX uses for tokens and nodes is split into two
separate arrays, and each of these will grow dynam-
ically when needed. The same is true for the input
line buffer and the string pool size. All font memory
is allocated on a per-font basis. Some less important
arrays are still statically allocated, but eventually all
memory allocation will become dynamic.

There is no separate pool file any more; all
strings from that file are embedded during the final
phase of the compilation of the luatex executable.

The format files are passed through zlib, allow-
ing them to shrink to roughly half of the size they
would have had in uncompressed form.

312 TUGboat, Volume 28 (2007), No. 3— Proceedings of the 2007 Annual Meeting



3.3 Extended font subsystem

The font system of LuaTgX is totally configurable
through optional Lua code. If you do nothing, Lua-
TEX handles both TEX (TFM) and Omega (OFM)
fonts as well as the related virtual font formats.

With some user-supplied Lua code, LuaTEX can
also happily use OpenType and TrueType fonts. In
addition, it is possible to build up encodings and
virtual fonts totally in-memory.

The handling of ‘virtualness’ takes place at a
different level in LuaTEX, meaning every single char-
acter can be either virtual or real, instead of this be-
ing handled at the font level. Inside a virtual char-
acter, it is possible to use arbitrary typeset data as
‘character contents’.

3.4 Lua execution

Execution of Lua code within a document is handled
by two new primitives: the expandable \directlua
command, and the non-expandable \latelua com-
mand. The latter creates a node with Lua code that
will be executed inside the \output routine, just like
the traditional \write.

There can be more than one Lua interpreter
state active at the same time. Some modules that
are normally external to Lua are statically linked in
with LuaTgEX, because they offer useful functional-
ity. This is one of the areas where future change is
likely, but at the moment the list comprises:

e slnunicode, from the Selene libraries,
luaforge.net/projects/sln (v1.1)

e |uazip, from the kepler project,
www.keplerproject.org/luazip/ (v1.2.1)

o |uafilesystem, also from the kepler project, www.
keplerproject.org/luafilesystem/ (v1.2)

e Ipeg, by Roberto lerusalimschy, www.inf.
puc-rio.br/"roberto/lpeg.html (v0.6)

e Izlib, by Tiago Dionizio, mega.ist.utl.pt/
“tngd/lua/ (v0.2)

e md5, by Roberto lerusalimschy, www.inf .
puc-rio.br/“roberto/md5/md5-5/md5. html

e fontforge, a partial binding to the FontForge
font editor by George Williams,
fontforge.sf.net

It is also possible to make LuaTEX behave like
the standalone Lua interpreter or the Lua bytecode
compiler.

3.5 Lua interface libraries

LuaTgX would not be very useful if the Lua code
did not have a way to communicate with the TEX

LuaTgX

internals. For this purpose, a set of Lua modules is
defined:

tex (general TEX access)

pdf (routines related to pdf output)
lua (lua bytecode registers)

texio (writing to the log and terminal)
font (accessing font internals)

status (LuaTEX status information)
kpse (file searching)

callback (setting up callback hooks)
token (handling TEX tokens)

node (handling typeset nodes)

3.6 Callbacks

A callback is a hook into the internal processing of
LuaTgX. Using callbacks, you can make LuaTgX
run a Lua function you have defined instead of (or
on top of) a bit of the core functionality.

It is easiest to think of it this way: callbacks
offer a way to define something equivalent to com-
piled executable code. They have no connection to
the TEX input language at all. Because of this they
are very different from the argument to \directlua.

There are a few dozen callback hooks already
defined, with many more to come later. There are
callbacks for a wide variety of tasks, for instance:
finding files, reading and preprocessing textual in-
put, defining fonts, token creation, node list han-
dling, and information display.

Here is a short example of defining a callback:

\directluaO{
function read_tfm (name)
archive = zip.open(’texmf-fonts.zip’)
if archive then
tfmfile = archive:open(name ..
if tfmfile then
data = tfmfile:read(’*all’)
return true, data, \string#data
end
end
return false, nil, O
end
callback.register(’read_font_file’,read_tfm)

}

4 Contact

>.tfm’)

The LuaTgX project is currently run by:

e Hans Hagen (general overview and website)
e Hartmut Henkel (pdf backend)
e Taco Hoekwater (coding and manual)

With help from:

e Arthur Reutenauer (binaries and testing)
e Martin Schréder (release support)

TUGboat, Volume 28 (2007), No. 3— Proceedings of the 2007 Annual Meeting 313



