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Abstract 

This paper describes the implementation of an object-oriented programming sys- 
tem in TEX. The system separates formatting procedures from the document 
markup. It offers design programmers the benefits of object-oriented program- 
ming techniques. 

The inspiration for these macros comes from extensive book-production 
experience with W&X. 

This paper is a companion to Arthur Ogawa's "Object-Oriented Programming, 
Descriptive Markup, and TEX". 

The macros presented here constitute the fruit of a 
struggle to produce sophisticated books in a com- 
mercial environment. They run under either plain 
TEX or LATEX, but owe their primary inspiration to 
LATEX, especially in the separation of logical and vi- 
sual design. The author hopes that future TEX-based 
document production systems such as  LATEX^ and 
NTS will incorporate these techques  and the expe- 
rience they represent. 

Throughout this paper we refer to book produc- 
tion with W X .  Many of the comments apply equally 
well to other TEX-based document processing envi- 
ronments. 

Design and Production Perspectives 

Certain problems routinely crop up during book pro- 
duction with LATEX. The majority fall into two general 
categories: those related to the peculiarities of a par- 
ticular job and those regarding the basic capabilities 
of the production system. 

Peculiar documents. Strange, and sometimes even 
bizarre, element variants often occur within a single 
document. Without extremely thorough manuscript 
analysis these surprise everybody during composi- 
tion, after the schedules have been set. The author 
received the following queries during production of 
a single book: 

1. What is the proper way to set Theorem 2.1' after 
Theorem 2.1? 

2. Small icons indicating the field of application 
accompany certain exercise items. How do we 
accommodate these variations? 

3. Ths book contains step lists numbered Step 1, 
Step 2, . . . , and other lists numbered Rhubarb 1, 
Rhubarb 2, . . . How do we code these? 

Each variation requires the ability to override the de- 
fault behavior of the element in question, or to create 

a new element. This is not difficult to accomplish ad 
hoc. The design programmer can implement prefur 
commands modifying the default behavior of a sub- 
sequent command or environment, add additional 
optional arguments, or create new commands and 
environments. But these solutions demand irnmedi- 
ate intervention by the design programmer and also 
require that the user learn how to handle the special 
cases. 

A markup scheme in which optional attributes 
accompany elements provides a simple, consistent, 
and extensible mechanism to handle t h s  type of pro- 
duction difficulty. Instead of the standard LATEX en- 
vironment markup 

\begi n{theorem} [OOPS, A Theorem] 
. . .  
\end{theorem) 

we write 

\open\theorem{ 
\ t i  tl e{OOPS, A Theorem) 

1 
. . . 
\cl ose\theorem 

Each attribute consists of a key-value pair, where the 
key is a single control sequence and the value is a 
group of tokens. The pair resemble a token register 
assignment or a simple deb t ion .  

The \open macro parses the attributes and 
makes them avdable to the procedures that actu- 
ally typeset the element. Thus any element instan- 
tiated with \open. . . \close allows attributes. Fur- 
thermore, any such element may ignore (or simply 
complain about) attributes it doesn't understand. 
For example, if an exercise item coded as an element 
requires both application and difficulty attributes, it 
can be coded like this: 
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\d i f f icul ty(3 .4} 
I 
. . . 
\cl ose\i tem 

Production can proceed, with the new attribute in 
place but unused. At some later time the design 
programmer can modify the procedures that actually 
typeset the element to make use of the new attribute. 

In the case of the rhubarb list, we can use an 
attribute of the list element to modify the name of 
the items: 

Basic capabilities. Complex designs require macro 
packages far more capable than those of standard 
E Q X .  The designs require color separation, large 
numbers of typefaces, letterspacing, complicated 
page layouts, backdrop screens and changebars, in- 
teraction of neighboring elements, and other "inter- 
esting" aspects of design. A production system must 
address all of these aspects of design in order to re- 
main viable in a commercial setting. And it must do 
so in a cost effective manner. 

In their desire to reduce the total and initial 
costs of a formatting package, production houses 
ask: 

1. How do we use these macros with another man- 
uscript that employs different markup, say, 
SGML? 

2. When will we be able to write our own macro 
packages? 

The first question has a relatively simple answer. 
We define a generic markup scheme (very simdar to 
\open. . .\close). Design programmers implement 
their formatting procedures assuming that all doc- 
uments use this markup. A separate layer of pars- 
ing macros translates the markup that actually ap- 
pears in the document into the generic markup. We 
call the generic markup scheme the OOPS markup. 
A design implemented behind the OOPS markup is 
a formatter. The markup scheme that actually ap- 
pears in the document is the document markup. A 
set of macros that translate from a particular docu- 
ment markup into OOPS markup is a face. 

The OOPS markup constitutes an interface be- 
tween formatter and face, whlle the face bridges the 
gap between document markup and OOPS markup. 
The same formatter can be used with a hfferent face, 
and the same face with a different formatter. This 
newfound ability to reuse a formatter code makes 
TEX far more attractive to commercial typesetters. 

The second question poses a far greater puzzle. 
At present, implementing a complex book design in 

TEX or IN$X requires too much skill for most produc- 
tion houses to maintain. The macros described in 
the remainder of t h s  paper address t h s  deficiency 
through the application of object-oriented program- 
ming techniques to the problem of design implemen- 
tation. 

The OOPS approach 

Before delving too far into the actual workings of the 
system we deliver the propaganda. 

The object-oriented programming paradigm fits 
the needs of document production extremely well. 
A document element is an object, and its type is a 
class. Thus a theorem element is an object of class 
theorem. Deriving one element type from another 
and overriding some behavior of the new element 
is a subclassing operation. For example, a lettered 
list class may be derived from a numbered list class. 
Attributes correspond to instance variables. The use 
of the t i  t l  e attribute in the theorem example above 
demonstrates thls. The W&X notion of a document 
style resembles a class library. 

After defining the OOPS markup, the remainder 
of this section describes a generic class library. A de- 
sign programmer implements a particular document 
design using this standard set of element classes, 
possibly adding new classes as needed. The reader 
should consider a class library as an alternative to a 
UTEX'S document style or document class. 

OOPS markup. The OOPS markup for this system 
works somewhat like the \open and \close markup 
scheme presented above. The \@i nstanti  a t e  com- 
mand creates an element of a particular class. It 
takes two arguments: the name of the class (or par- 
ent class) and the list of instance attributes. The com- 
mand \@anni h i  1 a t e  destroys an element. It takes 
the element class to destroy as its single argument. 
So, reiterating the theorem example from above, the 
design programmer assumes the following style of 
markup: 

\@i nstantiate\theorem{ 
\ti t l  e{OOPS, A Theorem} 
\number{2.1'3 

1 
. . . 
\@anni hilate\theorem 

This sample code instantiates an element of class 
theorem, overriding the t i t l e  and number at- 
tributes. After some other processing it then de- 
stroys the the theorem instance. 

We pause here to provide some clues to the 
reader about how TEX sees commands, elements, 
classes, and attributes. A command is a control se- 
quence destined for execution by TEX. In contrast, 
a class, element, or attribute is a string conveniently 
represented as a control sequence name. The OOPS 

332 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting 



An Object-Oriented Programming System in TEX 

system neither defines nor executes these control se- 
quence names. Instead, it derives a command name 
from an element : a t t r i  bute or c l a ss :  a t t r i  bute 
pair. One can think of attribute as a shorthand 
for command derived from the cl  ass  : a t t  r i  bute 
or el ement : a t t  r i  bute pair. Thus the phrase exe- 
cute an attribute means execute the command derived 
from an a t t r i  bute:element or a t t r i  bute:class 
pair. 

Returning to the example, the \@i nstanti  a t e  
command creates an element of class theorem. It 
copies each attribute of the theorem class for the ex- 
clusive use of this particular element and overrides 
the meaning of the t i t l e  and number attributes. Af- 
ter instantiation the hidden control sequence corre- 
sponding to the element : t i  t l  e attribute expands 
to "OOPS, A Theorem". 

Adopting the OOPS markup as the interface be- 
tween formatting procedures and document pars- 
ing routines is not terribly significant. But combin- 
ing it with object-oriented programming techniques 
results in a powerful and flexible system for creat- 
ing new element classes. Inheritance plays the key 
role. If one element class functions with the stan- 
dard markup then new elements derived from it in- 
herit this ability. 

Subclassing. The @element class is the common 
ancestor of all classes giving rise to document ele- 
ments. Thls class supports the OOPS markup de- 
scribed above. It also supports subclassing oper- 
ations, allowing the design programmer to derive 
from it new element classes that support OOPS 
markup. 

The \@class command derives one element 
class from another. In the following example we de- 
rive the rhubarb list from the steplist. 

\@class\rhubarbl i s t \ s t ep l  i st{ 
\name{Rhubarb} 

1 
The arguments to \@class are the new class name 
(or chdd class), the name of the parent class, and the 
list of attributes that override or supplement those 
of the parent. The \@class command parses its ar- 
guments, stores them in standard places, and then 
executes the @cl ass  attribute from the parent class. 
The pseudo-code defimtion of the attribute @class 
in the @el ement class is: 

@element :@cl ass= 
<execute parent :@preclass> 
<create new class> 
<execute chi 1 d : @subcl ass> 

The \@new command carries out the low-level pro- 
cessing for subclassing. It takes the new class 
name, parent class name, and attribute list parsed 
by \@class out of storage and constructs the new 
class from them. Every @class attribute must exe- 

cute \@new at some point, but can carry out other 
processing before and after executing \@new. The 
@precl ass  and @subcl ass attributes are subclass- 
ing hooks used, for example, to set up a default num- 
bering scheme or allocate a class counter. 

In the example above, \@class first clones the 
s t e p l i s t  class as rhubarblist.  If the name at- 
tribute exists in the rhubarb1 i s t  class then it is al- 
tered, otherwise it is added. 

The \@cl ass and \@new commands actually al- 
low multiple inheritance. The parent argument to 
\@class may consist of one or more class names. 
The @class attribute is always executed from the 
head parent, the first parent in the list. With multiple 
inheritance two parents may contain conflicting def- 
initions of the same attribute. Attributes are passed 
from parent to child on a first-come-frrst-served ba- 
sis. The child inherits the meaning of an attribute 
from the first parent class containing that attribute. 

The defmtion of the @class attribute in most 
classes is identical to that of @element because it is 
inherited without overriding. But this system per- 
mits overriding the @class attribute just like any 
other. 

The design programmer uses \@cl ass to create 
a class for each element. During document process- 
ing these classes are instantiated as document ele- 
ments. 

Instantiation. To instantiate an element the com- 
mand \Qi nstanti  a t e  parses the OOPS markup and 
squirrels away its arguments in special locations. 
It then executes the @i nstanti  a t e  attribute from 
the class (from theorem in the above example). A 
pseudo-code defmtion of the @i nstanti  a t e  at- 
tribute in the @element class is: 

@element :@i nstanti  a te= 
<execute parent:@preinstantiate> 
<create new element instance> 
<execute child:@ini t i a l i z e >  
<execute child:@startgroup> 
<execute chi ld :@star t>  

The @prei ns tan t i a t e  attribute is analogous to 
the @preclass attribute. It carries out process- 
ing that must precede the creation of the new el- 
ement. The @i n i  ti a1 i ze attribute performs pro- 
cessing required by the newly-created element. The 
@startgroup attribute determines whether the ele- 
ment is subject to TEX'S grouping mechanism. It usu- 
ally expands to \begingroup, but may also be left 
empty, resulting in an ungrouped element (like the 
J6&X document environment). The @ s t a r t  attribute 
performs start processing for the particular element, 
in rough correspondence to the second required ar- 
gument to the LATEX command \newenvi ronment. 

As with subclassing, the \@new command per- 
forms the low-level instantiation function. It con- 
structs the new element from the material stored 
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away by \@i nstanti  ate.  This brings to light one ba- 
sic implementation decision: a class is simply an ob- 
ject created with \@cl ass, while an element is an ob- 
ject instantiated with \@instantiate.  

The \@anni h i  1 a t e  command parses class name 
and stores it in a standard location. It then executes 
the @anni h i  1 a t e  attribute from the most recent in- 
stantiation of that element. A pseudo-code defmtion 
of @anni h i  1 a t e  in the @element class is: 

@element : @anni hi 1 ate= 
<execute element:@end> 
<execute element:@endgroup> 
<destroy element i nstance> 

The @end attribute corresponds to the third required 
argument to the LATEX \newenvi ronment command 
and carries out end processing. The @endgroup at- 
tribute matches es ta r tg  roup, and usually expands 
to \endgroup. Like @startgroup it can also be given 
an empty expansion to eliminate grouping. 

The \@free command provides the low-level 
mechanism for destroying an element instance, com- 
plementing \@new. It operates on the element name 
parsed by \@anni hi 1 a te ,  cleaning up the remains of 
the now-defunct object. At some point eanni hi 1 a t e  
must execute \@free, but other processing may pre- 
cede or follow such execution. 

In conclusion, the @el ement class contains the 
following attributes: @cl ass, @precl ass, @subcl ass,  
@instant ia te ,  @prei nstanti  ate,  @i ni t i  a1 ize,  
@startgroup, @sta r t ,  @anni hi 1 ate,  @endgroup, 
and @end. The \@class command derives new el- 
ement classes from old. The \@instant ia te  com- 
mand creates a new instance of a class as a document 
element, whlle \@anni h i  1 a t e  destroys an element. 
Both \@cl a s s  and \@i ns t an t i  a t e  share an under- 
lying mechanism. 

The class library. What good is the ability to derive 
one element class from another? It forms the basis 
for a class library that can replace a LATEX document 
style. We now describe one such class library. 

This class library is founded on the @element 
class described above. All classes are ultimately de- 
rived from @el ement using \@cl ass to add new at- 
tributes as needed. We describe block elements, 
paragraphs, counting elements, listing elements, sec- 
tion elements, and independent elements. 

A block element contributes to the vertical con- 
struction of the page. Examples include sections, 
theorems, tables, figures, display equations, and 
paragraphs. We interpret the common features of 
block elements as attributes in the class @block. 

Vertical space separates each block from its 
surroundings. During book production, final page 
makeup inevitably requires manual adjustment of 
the space around certain blocks. Strictly speak- 
ing, this violates the principle of purely descriptive 
markup, but the need is inescapable. The difficulty 

of properly adjusting the vertical space around I&&X 
environments routinely provokes severe consterna- 
tion in production managers who care about quality. 

The @block class unifies the various mech- 
anisms for inserting space above and below any 
block element with four attributes: @abovespace, 
@be1 owspace, abovespace, and be1 owspace. The 
first two are for the design programmer, and consti- 
tute the default space above and below the element. 
The latter two are deviations added to the first two 
in the obvious fashion. They are for the convenience 
of the final page makeup artist. 

Each block element class uses these attributes 
in the appropriate manner. An ordnary block ele- 
ment, such as a paragraph, may insert space above 
and below using \addvspace. But a display math el- 
ement would instead use \abovedi spl ayski p and 
\be1 owdi spl ayski p. In either case the user is al- 
ways presented with the same mechanism for ad- 
justing this space: the attributes abovespace and 
be1 owspace. Furthermore, a class library can in- 
clude the code to handle the most common block el- 
ements. Therefore the design programmer can work 
exclusively with the @abovespace and @be1 owspace 
attributes in the majority of cases. 

A block element may also insert penalties into 
a vertical list above and below its content. It car- 
ries attributes @abovepenal ty,  @be1 owpenal ty,  
abovepenal ty, and be1 owpenal t y  that serve as 
penalty analogues to the above and below space at- 
tributes. 

Block elements often require different margins 
than their surroundings. For example, a design may 
call for theorems, lemmas, and proofs to indent at 
each side. Furthermore, the justification may change 
from block to block. Block elements carry the at- 
tributes l e f t i  ndent, r iqht i  ndent, l e f t j u s t i f y ,  
and r ight  j usti  fy.  hel left and right indentatidn 
settings measure the relative offset from the pre- 
vailing margins, whereas the justification is an ab- 
solute setting. Again, each block element makes ap- 
propriate use of these attributes. Typically these at- 
tributes contribute to the values of \ l  e f t sk i  p and 
\ r ightski  p, with the fixed portion of the glue corn- 
ing from the "indent" attribute and the stretch and 
shrink coming from the "justify" attribute. In t h s  
way they effectively decompose these \ l  e f t sk i  p 
and \ r i  ghtski p, demonstrating that we are not tied 
directly to the model that TEX provides. 

Paragraphs are block elements. In the author's 
class library they are ungrouped in order to avoid 
placing unnecessary burdens on the underlying TEX 
system, and the save stack in particular. Thls class 
library also uses explicit paragraph instantiation as 
the p element, in its most radical departure from 

Q X .  With this approach we can disable TEX'S au- 
tomatic insertion of \par at every blank line. This 
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permits greater liberty in the form of text in the 
source file. For example, using the \open. . . \close 
markup one can write 

\open\p{} 
This i s  a paragraph. 

And t h i s  i s  another sentence 
i n  the same paragraph. 
\cl ose\p 

Explicit paragraph markup also eliminates subtleties 
that plague LATEX neophytes everywhere, for example, 
the significance of a blank line following an environ- 
ment. 

Many elements count their own occurrences in 
a document. Sections, theorems, figures, and equa- 
tions are common examples. We call these count- 
ing elements. These elements carry attributes that 
allow them to maintain and present the count. The 
author's class library accomplishes t h s  by allocat- 
ing count registers for such elements as part of the 
@subclass attribute processing, assigning the count 
register to the @count attribute in the new class. 
This type of register allocation is appropriate for el- 
ements, such as document sections, whose context 
is not restricted (unlike an item element, which al- 
ways appears within a list). Each counting element 
also carries a number attribute to present the prop- 
erly formatted element count in the document. 

A listing element forms the context for i tern el- 
ements, and an i tem never appears outside of a list. 
The i tern functions somewhat like a counting ele- 
ment. It employs number and @count attributes to 
present its count in the document, but the count reg- 
ister for the i tem element is allocated when the con- 
taining list is instantiated. The count register is deal- 
located when the 1 i s t  element is destroyed. This dy- 
namic allocation mechanism avoids placing any con- 
straint (other than the number of available count reg- 
isters) on the nesting depth of lists. 

A section element is a counting block element. 
We leave it ungrouped, in deference to TEX'S save 
stack. A generic section element could be created as 
follows: 

\@cl ass\@secti on{\@bl ock\@counti ng} { 
\@startg roup{} 
\@endgroup{} 
<a t t r ibu te  overriding and addition> 

1 
The new attributes would include a @head attribute 
for typesetting the section head. This could imme- 
diately typeset a stand-alone head, or defer a run-in 
head to the subsequent paragraph. 

The format of certain elements is independent 
of their immediate context. Footnotes are the classic 
example, but in K&X there are others: floating envi- 
ronments We figure and table, parboxes, minipage, 
and paragraph cells w i t h  the tabular environment. 

We call these independent elements. How does an in- 
dependent element separate itself from its context? 

Multiple hierarchies. The \@parboxres tore  com- 
mand constitutes the WX mechanism for separat- 
ing an element from its context in the document. 
It establishes "ground state" values for a set of TEX 
parameters, including \ lef tski  p and \rightskip, 
\par, \everypar, and so on, from which further 
changes are made. The author's class library mod- 
ifies t h s  approach, offering the ability to created 
named "blockstates" consisting of settings for all 
block element parameters. Such a state may be es- 
tablished at any time, such as at the beginning of an 
independent element. A paragraph cell within a table 
would likely use one such blockstate and a floating 
figure another. 

The problem of \everypar is more interest- 
ing. It typically carries out processing that one el- 
ement defers to another. The information must be 
passed globally since the element deferring it may 
be grouped. The current W&X implementation sub- 
jects \everypar to horrible abuse, dramatically re- 
ducing its utility. The author's class library rectifies 
this with "parstates", analogous to blockstates but 
global in nature. These consist of parameters that 
hold information deferred to \everypar, including 
any pending run-in heads, flags indcating special in- 
dentation or suppression of the space above the next 
paragraph block, and the llke. A parstate is an ob- 
ject whose attributes contain the parameter values. 
A corresponding stack tracks parstate nesting. 

The definition of \everypar never changes dur- 
ing document processing. It always executes the at- 
tribute of its own name from the parstate object on 
top of the parstate stack. This attribute refers to its 
sibling attributes for any required parstate informa- 
tion. Push and pop operations on the stack effect 
"grouping" for parstates. 

Perhaps this section should have been marked 
with a dangerous bend, for it opens a Pandora's box. 
The author has concluded that TEX'S save stack pro- 
vides insufficient flexibility. The \everypar treat- 
ment just described amounts to a separate "save 
stack" for parstates. We can replace sole reliance on 
TEX'S save stack with different grouping mechanisms 
for different sets of parameters. 

A hierarchy consists of objects and a stack to 
track their nesting apart from other hierarches. Each 
object, either class or instance, is part of a single hi- 
erarchy. The @element herarchy contains all ele- 
ment classes and instances, and the @element class 
forms its root, from which all other elements are ul- 
timately derived. The author has implemented four 
different hierarches for the class library: @element, 
@bl ockstate, @parstate, @rowstate. The last per- 
tains to rows in tabular material. Rowstates make it 
easy to specify different default behavior for table 
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column heads and table body entries within the same 
column. 

An independent element can push and pop the 
parstate at its own boundaries to insure that it does 
not pick up any stray material from its "parstate con- 
text". Or an element can, as part of its end pro- 
cessing, push the parstate to defer special treatment 
of the subsequent paragraph. After performing the 
necessary processing to start the paragraph, that 
parstate can pop itself from the parstate stack. This 
requires no cooperation from the other parstate ob- 
jects on the stack, and therefore does not limit what 
one can accomplish within the \everypar process- 
ing. 

Associating objects with hierarches has another 
important function. Two or more instances of a 
particular element class can appear simultaneously 
within a single document, for example in a nested 
enumerated list. The user would see something like 
this: 

\open\enumerate{} 
\open\enumerate{} 

\open\i tern{} 
. . .  
\ c l  ose\ i  tem 

\close\enumerate 
\ c l  ose\enurnerate 

In this example \enumerate and \i tem are the par- 
ent class names. What objects should be created? 
Where should the attribute values be hidden? The 
\@new derives a name for the new object from its hi- 
erarchy and stores the new attribute values under 
this name. To match this, \@free annihilates the 
most-recently-created object in the given hierarchy. 
For example, with the definitions 

\def\open{\@i n s t a n t i  a te }  
\def \c l  ose{\@anni h i  1 a te }  

the first invocation of \open will create an ob- 
ject named @element0 and the next will create 
@el ementl. Any invocation of  \c lose wdl annh- 
late the last such object. This convention suffices be- 
cause objects within each hierarchy are well nested. 

Implementing a Class Library 

No single class library can anticipate the multifari- 
ous requirements of book publishing. When the in- 
evitable occurs, and a new design moves beyond the 
capabilities of the available class libraries, the class 
library writer must extend the system for the design 
programmer. This section briefly describes the OOPS 
facilities for writing a class library. 

We call one command that defines another 
a defining word. The commands \newcommand 

and \newenvi ronment are &X defining words. 
The \@cl  ass and \@i n s t a n t i  a te  commands from 
above are defining words in the author's class library. 

A set of low-level defining words in the OOPS pack- 
age form the basis for class library creation. Other 
macros assist in accessing the information stored in 
the attributes of classes and objects. We now present 
these programming facilities. 

The construction of a new class library begins 
with the creation of a new hierarchy. The defmmg 
word \@hi erarchy takes a hierarchy name and a list 
of attributes as its two arguments. It creates the 
hierarchy and a class of the same name, endowing 
the class with the attributes in the second argument. 
For example, the @element hierarchy described in 
the last section was created as follows: 

\@hi erarchy\@elernent{ 

\@class{% 
\expandafter\@i nher i  t 
\next@headparent\@preclass 
\g lobal  \l e t \ t h i  see1 ement\next@object 

\@new 
\expandafter\@ nher i  t 

\ t h i  see1 ement\@subcl ass 

1 
\@precl ass{} 
\@subclass{} 
\@ins tan t ia te {% 

\expandafter\@ nher i  t 

\next@headparent\@preinstant iate 
\@new 
\@current\@elernent\@i n i  t i a l  i z e  
\@current\@element\@startgroup 

\@current\@element\@start  

1 
\@prei n s t a n t i  a te{}  
\@i n i  t i  a1 i ze{} 
\@startgroup{\begi ngroup} 
\@s ta r t { }  
\@anni h i  1 a te {  

\@current\@el ernent\@end 
\@current\@el ement\@endgroup 

\@free 

1 
\@end{} 
\@endgroup{\endgroup} 

1 
This creates the @element hierarchy and the base 
class @element w i t h  that hierarchy. 

Any hierarchy is assumed to support the three 
basic object manipulation commands \@class, 
\@ins tan t ia te ,  and \@anni h i  1 ate. To t h s  end, 
the \@hierarchy defining word provides functional 
default values for the corresponding attributes, thus 
insuring that they are always defined. 

The definition of the @element :@cl  ass ex- 
poses the control sequences \next@headparent 
and \next@object as storage places for material 
parsed by \@cl ass for use by \@new. The list of stor- 
age locations is: \next@object for the new object 
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name, \next@parents for the list of parent classes, 
\next@hi erarchy for the hierarchy of the new ob- 
ject, and \next@opti ons for the attribute additions 
and overriding. The @cl a s s  demonstrates a simple 
use of these data. 

The \@inher i t  command takes an objec t :  
a t t r i b u t e  pair as arguments and executes the cor- 
responding command. The \ t h i  see1 ement macro 
is here purely for the sake of convenience. It could 
be replaced with a set of \expandafter commands. 

The command \@current takes as arguments 
a h i e ra rchy :a t t r i  bute pair and executes the in- 
dicated attribute from the "current" (most recently 
created) instance within the hierarchy. 

Several accessories complete the class library 
writer's toolkit. These allow setting the value of 
an attribute as with \gdef, \xdef, or \global \l e t .  
These are \ s e t @ a t t  r i  bute, \compi 1 e @ a t t  r i  bute, 
and \1 e t @ a t t  r i  bute. For example, the following in- 
vocation defines the bar attribute of the foo object: 

\set@attribute\foo\bar{Call me foobar.} 

The "current" analogues to these commands take 
a hierarchy name in place of the object name. 
They are \set@current ,  \compi 1 eecurrent ,  and 
\l e tecurrent .  

The \ac toneat t r ibute  command looks for- 
ward past a single command, constructs the control 
sequence that represents an attribute, and then exe- 
cutes the command. In the example below, the com- 
mand \nonsense uses as a first argument the con- 
trol sequence representing the bar attribute in the 
foo object: 

The command \expandafter@attr i  bute com- 
bines \expandafter with \ac ton@at t r i  bute. In 
the following example the \gi bbe r i  s h  command 
could look forward to see the first level expansion of 
the bar attribute in the foo object. 

\expandafter@attr i  bute\gi bberish\foo\bar 

Of course, the "current" analogues also exist: 
\acton@current,  \expandafter@current.l 

These few tools suffice to support the construc- 
tion of class libraries to handle a huge variety of el- 
ements. We still have not divulged how the informa- 
tion that constitutes an object appears to TEX. The 
class library writer need not know. 

l The imaginative reader will note that these last 
four control sequences reveal the storage mecha- 
nism used for object attributes. It is considered bad 
form to use such information. Moreover, doing so 
can cause macros to depend on the underlying im- 
plementation, and thereby break them when OOPS 
support primitives are added to TEX. 

Conclusions 

Compatibility with Plain TEX and UTEX. This entire 
OOPS package and the markup it employs is fully, but 
trivially, compatible with the current plain and LATEX 
macro packages. It does make use of a small number 
of low-level mX macros, but these can easily be pro- 
vided separately. Because the element instantiation 

\open\theorem{ 
\title{OOPS, There It  I s}  

1 
. . .  
\cl ose\theorem 

executes neither \theorem nor \endtheorem it can 
safely coexist with the standard WX invocation 

\begin{theorem} [OOPS, There It Is] 
. . . 
\end{theorem} 

The standard LATEX implementation makes 
\everypar particularly difficult to use. The mech- 
anism of \@parboxrestore can interfere with the 
@pars ta te  mechanism in the author's class library. 
Even the meaning of \par is not constant in LATEX. 
A class library written with these constraints in 
mind can work around them. Alternatively, the E Q X  
macros can be redefined to avoid the interference. 

Marking each paragraph as an element consti- 
tutes the greatest departure from present-day W X .  
It is possible to create a somewhat less capable sys- 
tem allowing implicit paragraph instantiation. In the 
author's opinion, hiding verbose markup behind an 
authoring tool is preferable to dealing with markup 
ambiguity. 

Shortcomings. This system's Achilles heel is its exe- 
cution speed. Comparisons with ordinary LATEX mean 
little, however, since the functionality is so diver- 
gent. Perhaps the ongoing PC price wars will pro- 
vide inexpensive relief. A more blasphemous solu- 
tion consists of adding OOPS support primitives to 
TEX. The author achieved a twenty percent speed in- 
crease through the addition of a single primitive to 
TEX. 

People familiar with standard LATEX do not al- 
ways easily accept the advantage of a different 
markup scheme. Document authoring tools that en- 
force complete markup while hding the details be- 
hmd a convenient user interface promise to remove 
this obstacle. Design programmers who work with 
LATEX only reluctantly change their approach to pro- 
gramming. Questions like "Will this be compatible 
with Q X 3 "  cannot yet be answered. 

Experiences in production. This new system has 
seen use in book production with encouraging re- 
sults. The author has used the OOPS approach to 
typeset tabular material with a colored background 
screen spanning the column heads, to handle bizarre 
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numbering schemes for theorems described above, 
and also to handle cases of neighboring elements 
interacting (successive definitions sharing a single 
backdrop screen). The verbose markup caused some 
initial concern to users, but automatic formatting of 
the element was ultimately considered more irnpor- 
tant. 

Futures. The combination of authoring tools, de- 
sign editors, and object-oriented macros constitutes 
a complete, powerful, and cost-effective document 
production system. Authoring tools can hide the 
verbose OOPS markup, making it simple for users to 
work with. Rich markup in turn allows the automa- 
tion of most design element features. Design editing 
tools can manipulate classes derived from a partic- 
ular class library, or even create new class libraries, 
thus reducing the time and skill presently required 
to implement a design. 

In a commercial book production setting, where 
tens of thousands of pages are processed in a sin- 
gle year, the prospect of a twenty percent increase 
in OOPS code execution speed compels the addition 
of a single primitive. Extensions supporting complex 
design features are also appropriate, as are more ca- 
pable class libraries. An author may not require an 
extended TEX or a sophisticated class library to pro- 
duce a magnum opus. Adherence to systematic de- 
scriptive markup, supported by the OOPS package, 
allows a production bureau to apply their more ca- 
pable system to final production without destroying 
an author's ability to work with the same source fdes. 

Future TEX-based typesetting systems and au- 
thoring tools can benefit from the techmques pre- 
sented here. The advantages the OOPS approach of- 
fers are too great to ignore. Everybody should enjoy 
them. 
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