
Plots in LATEX: Gnuplot, Octave, make

Boris Veytsman ∗ Leyla Akhmadeeva†

TUG2013

∗Systems Biology School & Computational Materials Science Center, MS
6A2, George Mason University, Fairfax, VA, 22030, USA

†Bashkir State Medical University, 3 Lenina Str., Ufa, 450000, Russia

1. Goals

This is the Unix philosophy: Write programs that do
one thing and do it well. Write programs to work
together. Write programs to handle text streams,
because that is a universal interface.

Doug McIlroy

1. We do not want to held computer’s arm. Computer should
know what to do and when!

2. Harmony between the text and the plots. Same fonts, same
style.

3. We want TEX labels on the plots.

4. We want to use external programs well designed to handle
graphics.

1. Goals

This is the Unix philosophy: Write programs that do
one thing and do it well. Write programs to work
together. Write programs to handle text streams,
because that is a universal interface.

Doug McIlroy

1. We do not want to held computer’s arm. Computer should
know what to do and when!

2. Harmony between the text and the plots. Same fonts, same
style.

3. We want TEX labels on the plots.

4. We want to use external programs well designed to handle
graphics.

1. Goals

This is the Unix philosophy: Write programs that do
one thing and do it well. Write programs to work
together. Write programs to handle text streams,
because that is a universal interface.

Doug McIlroy

1. We do not want to held computer’s arm. Computer should
know what to do and when!

2. Harmony between the text and the plots. Same fonts, same
style.

3. We want TEX labels on the plots.

4. We want to use external programs well designed to handle
graphics.

1. Goals

This is the Unix philosophy: Write programs that do
one thing and do it well. Write programs to work
together. Write programs to handle text streams,
because that is a universal interface.

Doug McIlroy

1. We do not want to held computer’s arm. Computer should
know what to do and when!

2. Harmony between the text and the plots. Same fonts, same
style.

3. We want TEX labels on the plots.

4. We want to use external programs well designed to handle
graphics.

1. Goals

This is the Unix philosophy: Write programs that do
one thing and do it well. Write programs to work
together. Write programs to handle text streams,
because that is a universal interface.

Doug McIlroy

1. We do not want to held computer’s arm. Computer should
know what to do and when!

2. Harmony between the text and the plots. Same fonts, same
style.

3. We want TEX labels on the plots.

4. We want to use external programs well designed to handle
graphics.

2. Makefiles

Final document

2. Makefiles

Final document

TEX file

2. Makefiles

Final document

TEX file Figure

2. Makefiles

Final document

TEX file Figure

Program

2. Makefiles

Final document

TEX file Figure

Program Data

2. Makefiles

Final document

TEX file Figure

Program Data

Dependencies:

1. If TEX file or figure change, we want to recompile the
document.

2. If data or program change, we want to recompile the figure.

2. Makefiles

Final document

TEX file Figure

Program Data

Dependencies:

1. If TEX file or figure change, we want to recompile the
document.

2. If data or program change, we want to recompile the figure.

2. Makefiles

Final document

TEX file Figure

Program Data

Dependencies:

1. If TEX file or figure change, we want to recompile the
document.

2. If data or program change, we want to recompile the figure.

Makefile & dependencies:

document.pdf: document.tex

document.pdf: figure-fig.tex

figure-fig.tex: data.dat

figure-fig.tex: figure.gp

A more complex case:

Final document

TEX fileFigure 1 Figure 2

Program 1Data 1 Data 2 Program 2

A more complex case:

Final document

TEX fileFigure 1 Figure 2

Program 1Data 1 Data 2 Program 2

document.pdf: document.tex figure1-fig.tex figure2-fig.tex

figure1-fig.tex: data1.dat figure1.gp

figure2-fig.tex: data1.dat data2.dat figure2.gp

Rules. How to make a PDF?

Rules. How to make a PDF?

%.pdf: %.tex
pdflatex $*
pdflatex $*
pdflatex $*

Rules. How to make a PDF?

%.pdf: %.tex
pdflatex $*
pdflatex $*
pdflatex $*

A smarter rule:

%.pdf: %.tex
pdflatex $*
while (grep -q \

'^LaTeX Warning: Label(s) may have changed' $*.log); \
do pdflatex $*; \

done
pdflatex $*

3. TEX-compatible Graphics

1. A graphics program should generate a TEX file for textual
material. . .

2. And a graphics file (EPS or PDF) to be included.

3. TEX-compatible Graphics

1. A graphics program should generate a TEX file for textual
material. . .

2. And a graphics file (EPS or PDF) to be included.

3. TEX-compatible Graphics

1. A graphics program should generate a TEX file for textual
material. . .

2. And a graphics file (EPS or PDF) to be included.

3. TEX-compatible Graphics

1. A graphics program should generate a TEX file for textual
material. . .

2. And a graphics file (EPS or PDF) to be included.

In main TEX file:

\input{figure-fig}

3. TEX-compatible Graphics

1. A graphics program should generate a TEX file for textual
material. . .

2. And a graphics file (EPS or PDF) to be included.

In main TEX file:

\input{figure-fig}

In Makefile

document.pdf: figure1-fig.tex figure2-fig.tex ...

%-fig.tex: DEPENDENCIES
RULES

4. Gnuplot

Skeleton Program:

set terminal epslatex
set output "FILE-fig.tex"
COMMANDS
set output

4. Gnuplot

Skeleton Program:

set terminal epslatex
set output "FILE-fig.tex"
COMMANDS
set output

Makefile:

%-fig.tex: %.gp
gnuplot $<

Example:

-1.5 -1 -0.5 0 0.5 1 1.5-1.5
-1

-0.5
0

0.5
1

1.5
0

0.2
0.4
0.6
0.8

1

ƒ (x) = exp
�

−|x|2
�

mx
x∈R2

ƒ (x)

0

0.2

0.4

0.6

0.8

1

set terminal epslatex color
set output "function-fig.tex"
set pm3d # Colored surface
unset surface # We do not want to plot the mesh lines
set isosamples 100, 100 # Smooth surface
set ztics 0.2 # Increment for z tick marks
set cbtics 0.2 # Increment for colored box
set xrange [-1.5:1.5]
set yrange [-1.5:1.5]
set label 1 \
'$f(\mathbf{x})=\exp\left(-\lvert\mathbf{x}\rvert^2\right)$' \
at -1.5,-1,1.2

set label 2 \
'$\displaystyle\max_{\mathbf{x}\in \mathbb{R}^2} f(\mathbf{x})$' \
at 1,1,1.3

set arrow 1 from 1,1,1.3 to 0,0,1 front
splot exp(-x**2-y**2) title ""
set output

Another example:

1

10

100

1 10 100

S
to

p
p
in

g
d
is

ta
n
ce

,
fe

e
t

Speed, mph

y
=
0.
48
· 
1.
6

set terminal epslatex color
set output "cars-fig.tex"
set logscale xy
set xrange [1:100]
set yrange [1:500]
set xlab 'Speed, mph'
set ylab 'Stopping distance, feet'
set label 1 \

'\rotatebox{41}{$y=0.48\cdot x^{1.6}$}' \
at 1.4, 3

plot "cars.dat" with points pointtype 4 title "", \
exp(-0.73+1.6*log(x)) \
linecolor 2 linewidth 5 title ""

set output

5. Octave

Skeleton program:

figure('visible','off');
COMMANDS
print -depslatex "-SX,Y" "figure-fig.tex"

5. Octave

Skeleton program:

figure('visible','off');
COMMANDS
print -depslatex "-SX,Y" "figure-fig.tex"

Makefile:

%-fig.tex: %.m
octave $<

Example:

-1.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4

b
e
r 1
ρ
−
b
e
i 1
ρ

ρ

ρ0

3.77

figure('visible','off');
ber1 = @(x) -real(besselj(1,x*exp(pi*1i/4)));
bei1 = @(x) imag(besselj(1,x*exp(1i*pi/4)));
delta = @(x) ber1(x)-bei1(x);
rho0 = fsolve(delta,4);
x=0:0.1:4;
plot(x,delta(x),'linewidth',2);
hold on;
plot([rho0], [0], 'o', 'linewidth', 10);
text(rho0, 0.15, '\colorbox{white}{ρ_0}', \

'horizontalalignment', 'center');
text(rho0, -0.2, \

sprintf("\\colorbox{white}{$%.2f$}", rho0), \
'horizontalalignment', 'center');

title (""); legend ("off"); grid();
xlabel('ρ');
ylabel('$\ber_1\rho-\bei_1\rho$');
print -depslatex "-S600,400" "kelvin-fig.tex"

figure('visible','off');
ber1 = @(x) -real(besselj(1,x*exp(pi*1i/4)));
bei1 = @(x) imag(besselj(1,x*exp(1i*pi/4)));
delta = @(x) ber1(x)-bei1(x);
rho0 = fsolve(delta,4);
x=0:0.1:4;
plot(x,delta(x),'linewidth',2);
hold on;
plot([rho0], [0], 'o', 'linewidth', 10);
text(rho0, 0.15, '\colorbox{white}{ρ_0}', \

'horizontalalignment', 'center');
text(rho0, -0.2, \

sprintf("\\colorbox{white}{$%.2f$}", rho0), \
'horizontalalignment', 'center');

title (""); legend ("off"); grid();
xlabel('ρ');
ylabel('$\ber_1\rho-\bei_1\rho$');
print -depslatex "-S600,400" "kelvin-fig.tex"

Why this file would cause TEX errors?

Two macros: \bei and \ber. Need to define them (amsmath):

\DeclareMathOperator{\ber}{ber}
\DeclareMathOperator{\bei}{bei}

Two macros: \bei and \ber. Need to define them (amsmath):

\DeclareMathOperator{\ber}{ber}
\DeclareMathOperator{\bei}{bei}

Our generated TEX file uses fonts and macros from the main one!

6. Questions and Answers

Question: Gnuplot and Octave use EPS, but we use pdflatex.
How does it work?

Answer: Modern TEX translates EPS graphics to PDF on the
fly—and uses timestamps like make!

6. Questions and Answers

Question: Gnuplot and Octave use EPS, but we use pdflatex.
How does it work?

Answer: Modern TEX translates EPS graphics to PDF on the
fly—and uses timestamps like make!

6. Questions and Answers

Question: Gnuplot and Octave use EPS, but we use pdflatex.
How does it work?

Answer: Modern TEX translates EPS graphics to PDF on the
fly—and uses timestamps like make!

Question: It is too boring to write all these dependencies:
document.pdf: figure1-fig.tex figure2-fig.tex ... Can
computer do this for us?

Answer: Just use a script makefigdepend.pl and add to Makefile

6. Questions and Answers

Question: Gnuplot and Octave use EPS, but we use pdflatex.
How does it work?

Answer: Modern TEX translates EPS graphics to PDF on the
fly—and uses timestamps like make!

Question: It is too boring to write all these dependencies:
document.pdf: figure1-fig.tex figure2-fig.tex ... Can
computer do this for us?

Answer: Just use a script makefigdepend.pl and add to Makefile

6. Questions and Answers

Question: Gnuplot and Octave use EPS, but we use pdflatex.
How does it work?

Answer: Modern TEX translates EPS graphics to PDF on the
fly—and uses timestamps like make!

Question: It is too boring to write all these dependencies:
document.pdf: figure1-fig.tex figure2-fig.tex ... Can
computer do this for us?

Answer: Just use a script makefigdepend.pl and add to Makefile

depend: ${TEXFILES}
perl makefigdepend.pl \
${TEXFILES} > depend

-include depend

Question: What about cleaning the intermediate files?

Answer: Use clean goal:

Question: What about cleaning the intermediate files?

Answer: Use clean goal:

Question: What about cleaning the intermediate files?

Answer: Use clean goal:

clean:
$(RM) *.aux *.bbl *.dvi *.log *.nav *.snm \
*.out *.toc *.blg *.lof *.lot \
*.eps *-pics.* *-fig* depend

distclean: clean
$(RM) ${PDFS}

7. Conclusions

1. You can make a good scientific & engineering graphics with
tools like Gnuplot and Octave

2. You can automate boring parts of your work with Makefiles

7. Conclusions

1. You can make a good scientific & engineering graphics with
tools like Gnuplot and Octave

2. You can automate boring parts of your work with Makefiles

Machines should work. People should think
An old IBM phrase

A. Makefile for This Talk

TEXFILES = \
gnuplotmk.tex

PDFS = ${TEXFILES:%.tex=%.pdf}

all: ${PDFS}

%.pdf: %.tex
$(RM) $*.toc
pdflatex $*
- bibtex $*
$(RM) $*.toc
pdflatex $*
- while (grep -q '^LaTeX Warning: Label(s) may have changed' $*.log); \
do pdflatex $*; done
pdflatex $*

%-fig.tex: %.gp
gnuplot $<

%-fig.tex: %.m
octave $<

figure-fig.tex:
touch $@

cars-fig.tex: cars.dat

clean:
$(RM) *.aux *.bbl *.dvi *.log *.nav *.snm \
*.out *.toc *.blg *.lof *.lot \
*.eps *-pics.* *-fig* depend

distclean: clean
$(RM) ${PDFS}

depend: ${TEXFILES}
perl makefigdepend.pl \
${TEXFILES} > depend

-include depend

B. Makefigdepend Script

#!/usr/bin/perl

#
Extract information from input statements in TeX file
#
Usage:
makefigdepend FILE FILE FILE ... > depend
#

foreach my $file (@ARGV) {
open FILE, $file;
$file =~ s/\.tex$/.pdf/;
while (<FILE>) {

while (/\\input(?:\[[^\]]+\])*\{([^\}]+)\}/g) {
print "$file: $1.tex\n";

}
}
close FILE;

}
exit 0;

	Goals
	Makefiles
	TeX-compatible Graphics
	Gnuplot
	Octave
	Questions and Answers
	Conclusions
	Makefile for This Talk
	Makefigdepend Script

