
MathML Formatting
(with TEX Rules and TEX Fonts)

Luca Padovani

Department of Computer Science

University of Bologna

Member of

HELM Project http://helm.cs.unibo.it

MoWGLI Project IST-2001-33562 http://mowgli.cs.unibo.it

W3C Math Working Group http://www.w3.org/Math

http://helm.cs.unibo.it
http://mowgli.cs.unibo.it
http://www.w3.org/Math

Summary

• MathML

• Definition of the problem

• Architecture of the formatting engine

• Area model for MathML

• MathML formatting rules

• Conclusion

MathML Presentation: example

MathML Presentation: example

<math xmlns="http://www.w3.org/1998/Math/MathML">

</math>

lim
x→0

sin x

x
= 25

MathML Presentation: example

<math xmlns="http://www.w3.org/1998/Math/MathML">

<mrow>

</mrow>

</math>

lim
x→0

sin x

x
= 25

MathML Presentation: example

<math xmlns="http://www.w3.org/1998/Math/MathML">

<mrow>

<mrow>

</mrow>

<mo> = </mo>

<mn> 25 </mn>

</mrow>

</math>

lim
x→0

sin x

x
= 25

MathML Presentation: example

<math xmlns="http://www.w3.org/1998/Math/MathML">

<mrow>

<mrow>

<munder>

<mo> lim </mo>

<mrow>

</mrow>

</munder>

<mfrac>

<mrow>

</mrow>

<mi> x </mi>

</mfrac>

</mrow>

<mo> = </mo>

<mn> 25 </mn>

</mrow>

</math>

lim
x→0

sin x

x
= 25

MathML Presentation: example

<math xmlns="http://www.w3.org/1998/Math/MathML">

<mrow>

<mrow>

<munder>

<mo> lim </mo>

<mrow>

<mi> x </mi>

<mo> → </mo>

<mn> 0 </mn>

</mrow>

</munder>

<mfrac>

<mrow>

<mi> sin </mi>

<mo> ⁡ </mo>

<mi> x </mi>

</mrow>

<mi> x </mi>

</mfrac>

</mrow>

<mo> = </mo>

<mn> 25 </mn>

</mrow>

</math>

lim
x→0

sin x

x
= 25

MathML Presentation: example

<math xmlns="http://www.w3.org/1998/Math/MathML">

<mrow>

<mrow>

<munder>

<mo> lim </mo>

<mrow>

<mi> x </mi>

<mo> → </mo>

<mn> 0 </mn>

</mrow>

</munder>

<mfrac>

<mrow>

<mi> sin </mi>

<mo> ⁡ </mo>

<mi> x </mi>

</mrow>

<mi> x </mi>

</mfrac>

</mrow>

<mo> = </mo>

<mn> 25 </mn>

</mrow>

</math>

lim
x→0

sin x

x
= 25

MathML Presentation

• About 30 MathML presentation elements which

accept about 50 attributes

MathML Presentation

• About 30 MathML presentation elements which

accept about 50 attributes

Most elements represent templates or patterns for

laying out subexpressions. For example, there is an

mfrac element for fractions, and an msqrt element for

square roots

MathML Presentation

• About 30 MathML presentation elements which

accept about 50 attributes

Most elements represent templates or patterns for

laying out subexpressions. For example, there is an

mfrac element for fractions, and an msqrt element for

square roots

Attributes generally specify additional optional

information about the element layout. For example,

the mfrac element has an attribute called linethickness

MathML Presentation

• About 30 MathML presentation elements which

accept about 50 attributes

Most elements represent templates or patterns for

laying out subexpressions. For example, there is an

mfrac element for fractions, and an msqrt element for

square roots

Attributes generally specify additional optional

information about the element layout. For example,

the mfrac element has an attribute called linethickness

• Using presentation markup, it’s possible to

specify how an expression will look when

displayed

MathML Presentation Summary

• tokens (mi, mo, mn)

• general layout schemata (mfrac, msqrt)

• scripts and limits (msub, msup, munder, mover)

• tables and alignment (mtable, mtr, mtd)

• style and attribute inheritance (mstyle)

• “live” expressions (maction)

There is a fair amount of semantics even in presentation

elements:

• refine formatting, higher quality

• “meaningful” presentation (conversions)

TEX Formatting Rules: Appendix G

TEX Formatting Rules: Appendix G

About fractions:

If C > T , set u← σ8 and v ← σ11. Otherwise set u← σ9 or σ10,

according as θ 6= 0 or θ = 0, and set v ← σ12. . .

TEX Formatting Rules: Appendix G

About fractions:

If C > T , set u← σ8 and v ← σ11. Otherwise set u← σ9 or σ10,

according as θ 6= 0 or θ = 0, and set v ← σ12. . .

About scripts:

If the translation of the nucleus is a character box, possibly

followed by a kern, set u and v equal to zero; otherwise set

u← h− q and v ← d + r, where h and d are the height and depth

of the translated nucleus, and where q and r are the values of

σ18 and σ19 in the font corresponding to styles C↑ and C↓. . .

MathML Formatting

Two contrasting objectives:

• we want to design a MathML formatting engine

which is capable of using TEX fonts (hence TEX

formatting rules, see Appendix G)

• we don’t want to tie the engine to TEX fonts,

as we recognize that a significant part of the

formatting process is independent of the

environment

Plan

Deeper analysis of the formatting process:

• understand and separate the modules of the

architecture that depend on the environment

from those that don’t

• define a common interface for the loss-less

communication of information among the

modules

• exploit the semantically rich MathML markup

for refining the outcome automatically

Formatting functions

We can express the formatting function for MathML

recursively on the structure of the tree

Formatting functions

We can express the formatting function for MathML

recursively on the structure of the tree
[[<t> c1 · · · cn </t>]] = ft(c1 · · · cn)

[[<t> X1 · · ·Xm </t>]] = ft([[X1]] , . . . , [[Xm]])

Formatting functions

We can express the formatting function for MathML

recursively on the structure of the tree

[[<t> c1 · · · cn </t>]]C = ft(C ′,c1 · · · cn)

[[<t> X1 · · ·Xm </t>]]C = ft(C ′,[[X1]]C1 , . . . , [[Xm]]Cm)

Formatting functions

We can express the formatting function for MathML

recursively on the structure of the tree

[[<t> c1 · · · cn </t>]]C = ft(C ′,c1 · · · cn)

[[<t> X1 · · ·Xm </t>]]C = ft(C ′,[[X1]]C1 , . . . , [[Xm]]Cm)

We seek for a decomposition of the ft functions such

that

• ft ≈ gt ◦ ht

• the gt are independent of the environment

• neither of { gt } and { ht } is trivial

Criteria for decomposition

We have to format an element of type t along with

its components:

• any operation that depends only on the “size”

(the bounding box) of the components is part

of the gt

Criteria for decomposition

We have to format an element of type t along with

its components:

• any operation that depends only on the “size”

(the bounding box) of the components is part

of the gt

Example: context update, table layout, line breaking,

alignment. . .

Criteria for decomposition

We have to format an element of type t along with

its components:

• any operation that depends only on the “size”

(the bounding box) of the components is part

of the gt

Example: context update, table layout, line breaking,

alignment. . .

• any operation thay may depend on the “shape”

(the content) of the components is part of the

ht

Criteria for decomposition

We have to format an element of type t along with

its components:

• any operation that depends only on the “size”

(the bounding box) of the components is part

of the gt

Example: context update, table layout, line breaking,

alignment. . .

• any operation thay may depend on the “shape”

(the content) of the components is part of the

ht

Example: Unicode strings, scripts, accents, fractions. . .

Areas

Formatting functions return areas that describe glyphs and their

geometrical relationship

[[·]] : MathML Element× Formatting Context→ Area

Areas

Formatting functions return areas that describe glyphs and their

geometrical relationship

[[·]] : MathML Element× Formatting Context→ Area

Areas are passed back and forth between the formatting engine

and the graphic device for mathematics. They are complex

objects that implement a loss-less communication mechanism

Areas

Formatting functions return areas that describe glyphs and their

geometrical relationship

[[·]] : MathML Element× Formatting Context→ Area

Areas are passed back and forth between the formatting engine

and the graphic device for mathematics. They are complex

objects that implement a loss-less communication mechanism

Areas are opaque to the formatting engine: the formatting

engine can ask areas for a (very limited) set of properties, but

doesn’t know anything about their type

Areas

Formatting functions return areas that describe glyphs and their

geometrical relationship

[[·]] : MathML Element× Formatting Context→ Area

Areas are passed back and forth between the formatting engine

and the graphic device for mathematics. They are complex

objects that implement a loss-less communication mechanism

Areas are opaque to the formatting engine: the formatting

engine can ask areas for a (very limited) set of properties, but

doesn’t know anything about their type

Areas are transparent to the graphic device for math: the device

can do different things depending on the type and the content

of areas

Example

<mfrac>

N

D

</mfrac>

-
1 [[·]]C

�
6

gmfrac

-4

�
5

hmfrac

fmfrac

�
�
�� 2

[[N]]C′ , [[D]]C′

C
C
CO

3

MathML Document Formatting Engine Math Graphic Device

Areas

Requirements of the area model:

• language that we can use to express the layout of a

mathematical formula in a concise and unambiguous way

• language that can be extended such that new types of

entities can be introduced by an implementation (e.g.

selection, back-pointers,. . .)

Areas

Requirements of the area model:

• language that we can use to express the layout of a

mathematical formula in a concise and unambiguous way

• language that can be extended such that new types of

entities can be introduced by an implementation (e.g.

selection, back-pointers,. . .)

An area describes a rectangular portion of the output medium

as a tree structure. Each node in the tree (an area node) is

identified by:

• a type

• a possibly empty set of properties

• a possibly empty, ordered list of child areas

Areas as TEX boxes

Area TEX Description

G[·] Glyph

Kn \kern Kern with value n. The kern

is horizontal or vertical

depending on the container

it is in

F \hfill \vfill Filler area

Rn \hrule \vrule Filler rule of thickness n

Sn[α] \raisebox

\lowerbox

Shift α’s baseline by n

H[α1, . . . , αn] \hbox Horizontal group of areas

α1,. . . ,αn

Vk[α1, . . . , αn] \vbox Vertical group of areas

α1,. . . ,αn, where αk is the

reference area that

determines the baseline

[[<mfrac> N D </mfrac>]]C

Formatting context update:

C′ = C [element ← this]

C′′ = C′[if C′.displayStyle = true then

displayStyle ← false

else

scriptLevel ← C′.scriptLevel + 1;

aSize ← C′.aSize × C′.sizeMult ;

size ← max{C′.minSize, C′.aSize × C′.sizeMult}]

[[<mfrac> N D </mfrac>]]C

Formatting context update:

C′ = C [element ← this]

C′′ = C′[if C′.displayStyle = true then

displayStyle ← false

else

scriptLevel ← C′.scriptLevel + 1;

aSize ← C′.aSize × C′.sizeMult ;

size ← max{C′.minSize, C′.aSize × C′.sizeMult}]

Fraction formatting:

[[<mfrac> N D </mfrac>]]C

= hmfrac(C′, H[F, [[N]]C′′ , F], H[F, [[D]]C′′ , F]) Rules 15-15d

= Sa[V3[H[F, [[D]]C′′ , F], Kd, Rh, Kn, H[F, [[N]]C′′ , F]]]

[[<msubsup> A B C </msubsup>]]C

Formatting context update:

C′ = C [element ← this]

C′′ = C′[displayStyle ← false;

scriptLevel ← C′.scriptLevel + 1;

aSize ← C′.aSize × C′.sizeMult ;

size ← max{C′.minSize, C′.aSize × C′.sizeMult}]

[[<msubsup> A B C </msubsup>]]C

Formatting context update:

C′ = C [element ← this]

C′′ = C′[displayStyle ← false;

scriptLevel ← C′.scriptLevel + 1;

aSize ← C′.aSize × C′.sizeMult ;

size ← max{C′.minSize, C′.aSize × C′.sizeMult}]

Script formatting:

[[<msubsup> A B C </msubsup>]]C

= hscript(C′, [[A]]C′ , [[B]]C′′ , [[C]]C′′) Rules 18-18f

= H[[[A]]C′ , S−b[V1[H[K−d1 , [[B]]C′′], Ks, H[Kd2 , [[C]]C′′]]]]

More on scripts

Mere knowledge of the base element’s bounding box isn’t

always enough for placing scripts correctly:

• weird font metrics the formatting engine cannot count on∫

More on scripts

Mere knowledge of the base element’s bounding box isn’t

always enough for placing scripts correctly:

• weird font metrics the formatting engine cannot count on∫

More on scripts

Mere knowledge of the base element’s bounding box isn’t

always enough for placing scripts correctly:

• weird font metrics the formatting engine cannot count on

• structure concealing actual shape

More on scripts

Mere knowledge of the base element’s bounding box isn’t

always enough for placing scripts correctly:

• weird font metrics the formatting engine cannot count on

• structure concealing actual shape

|
1 +

1

x

2 +
1

x

|

More on scripts

Mere knowledge of the base element’s bounding box isn’t

always enough for placing scripts correctly:

• weird font metrics the formatting engine cannot count on

• structure concealing actual shape

|
1 +

1

x

2 +
1

x

| |
1 +

1

x

2 +
1

x

|

2

More on scripts

Mere knowledge of the base element’s bounding box isn’t

always enough for placing scripts correctly:

• weird font metrics the formatting engine cannot count on

• structure concealing actual shape

|
1 +

1

x

2 +
1

x

| |
1 +

1

x

2 +
1

x

|

2

It is fundamental to communicate information on the type and

content of areas when these must be combined together

Tricky TEX (I)

TEX is able to work things out with little effort. . .

|
1 +

1

x

2 +
1

x

|2

Tricky TEX (I)

TEX is able to work things out with little effort. . .

|
1 +

1

x

2 +
1

x

|2

. . . because there is little concern about structure:

|\frac{\displaystyle1+\frac{1}{x}}

{\displaystyle2+\frac{1}{x}}|^2

Tricky TEX (II)

\sin x sin x \sin(x) sin(x)

Tricky TEX (II)

\sin x sin x \sin(x) sin(x)

TEX solves this problem by defining the sin macro as

\def\sin{\mathop{\rm sin}}

Tricky TEX (II)

\sin x sin x \sin(x) sin(x)

TEX solves this problem by defining the sin macro as

\def\sin{\mathop{\rm sin}}

and then applying the rules

Op + Ord ⇒ thin space

Op + Open ⇒ no space

Tricky TEX (II)

\sin x sin x \sin(x) sin(x)

TEX solves this problem by defining the sin macro as

\def\sin{\mathop{\rm sin}}

and then applying the rules

Op + Ord ⇒ thin space

Op + Open ⇒ no space

A MathML formatter can address the problem more generally:

<mrow>

<mi> sin </mi>

<mo> ⁡ </mo>

<mi> x </mi>

</mrow>

<mrow>

<mi> sin </mi>

<mo> ⁡ </mo>

<mrow>

<mo> (</mo>

<mi> x </mi>

<mo>) </mo>

</mrow>

</mrow>

Implementation(s)

Two implementations:

• PocketMath

(Maple)

• GtkMathView

(GPL, http://helm.cs.unibo.it/mml-widget/)

http://helm.cs.unibo.it/mml-widget/

MathML in hand-held devices

(with Stephen M. Watt, Ontario Research Centre for Computer Algebra)

MathML in hand-held devices

(with Stephen M. Watt, Ontario Research Centre for Computer Algebra)

Wiley encyclopedias and textbooks

(with John Pedersen, John Wiley & Sons, Inc.)

• Burger’s Medicinal Chemistry and Drug Delivery (Abraham)

• Encyclopedia of Catalysis (Horvath)

• Encyclopedia of Smart Materials (Schwartz)

• Encyclopedia of Software Engineering (Marciniak)

• Encyclopedia of Polymer Science and Technology

• Handbook of Chemicals and Gases for the Semiconductor Industry (Misra)

• Occupational Toxicants and MAK Values (Deutsche Forschungsgemeinschaft)

• Stevens’ Handbook of Experimental Psychology (Pashler)

• Textbook of Biochemistry (Devlin)

• Ullmann’s Encyclopedia of Industrial Chemistry (German branch of Wiley)

Also

• a number of Higher Ed/College textbooks being processed

Math in TEX + TEX fonts

• TEX is a single-minded system that does a very

good job in a fixed environment: quality printing

on paper with TEX’s fonts

• TEXfonts have built-in “intelligence”

• any other system that uses TEXfonts will have

to understand that “intelligence” and handle it

correctly (see Mozilla)

• because TEX has a “standard” implementation,

tweaks in TEX markup are harmless

MathML

• MathML can be formatted using TEX

formatting rules and also TEX fonts

• it is possible to design the formatter so that it

can be adapted very easily for different

environments

• because of the semantically rich markup, a

smart MathML formatter can handle

automatically cases that need author’s

assistance in TEX (tweaks, line-breaking)

