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Celtic artwork

• From about the 7 century BC through to the 7 century AD

• Metalwork

• Jewelry

• stone carving

• Illuminated manuscripts

– Lindesfarne Gospels
– Book of Kells
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Example by hand

Compare a scan of one of my pieces with a sketch from the Lindesfarne
Gospels.
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Main elements

• Knotwork

• Keypatterns

• Spirals

• a highly developed artistic style, with very
fine intricate detail

• high degree of geometry and geometrical
construction in their work
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Knotwork

• one of the most recognisable elements of Celtic artwork.

• once paths are defined

– find all intersection points
– sort into order
– draw curves
– draw crossings, path goes over first crossing then alternates
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Getting global intersection time

Problems with intersectiontimes operator

• points are found on successive subpaths starting just beyond last point.

• length of subpaths is always integer.

– path z0..z1..z2 has length 2
– subpath [.75, 1.25] has length 2

• how to get intersection-time on original path
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Algorithm

For subpath starting at time ts on original path. Intersection time on
subpath is tf

t =
{

tf [ts, dtse] tf < 1
tf + btsc

• if ts < 1 use ts to interpolate between the beginning of the subpath (a)
and the next point on the curve (ceiling of a).

• if ts >= 1 then add it to the last point on the curve before the subpath
(floor a)
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crossings

vardef crossings@#(text others) =
save lastpt, tmp;
p@#t[0]:=0;
p@#t#:=0;
forsuffixes $=others:
numeric lastpt;
lastpt := epsilon;
forever:
numeric tmp;
(tmp,whatever)=
subpath (lastpt,length(p@#)-epsilon)
of p@#

intersectiontimes p$;
exitif (tmp<=0);
p@#t[incr p@#t#] := if(tmp<1):
tmp[lastpt,ceil(lastpt)]

else:
floor(lastpt)+tmp

fi;
lastpt := p@#t[p@#t#]+epsilon;

endfor
endfor;
sort.p@#t;

enddef;
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Trefoil – intersections

–TUG 2003– 9



Trefoil

Some people claim it
symbolises the Holy
Trinity, or wholeness
(I like it because it is
the motif used for my
wedding).
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Keypatterns

Keypatterns are often based on a tessellating square spiral (straight lines
and rectangles). George Bain uses a simple notation to characterise the
spiral, a sequence of “arc” lengths.
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S-spiral macro

def keySspiral(text tail) :=
begingroup
save direct,lastpoint,maxlength;
pair direct,lastpoint;
direct := up rotated -90;
lastpoint := origin;
maxlength := 0;
origin
for p=tail: --
begingroup
direct := direct

rotated if (maxlength<=p):
begingroup maxlength := p;
90 endgroup

else:
-90

fi;
lastpoint := lastpoint + direct*p;
lastlength := p;
lastpoint

endgroup
endfor

endgroup
enddef;
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Keypattern – tessellating

sequence of (1,2,3,4,8,4,3,2,1)
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Interlocking

sequence (1,2,3,4,9,4,3,2,1)
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Spirals

Given an initial point, a pair of centres, and a number of turns, the
spiral macro is very simple recursive function (figure ??). Although it
could be just as simple with a loop, swaping the centres over is easier to do
with the recursive call.

def spiral(expr a,b,$)(expr turns) =
$
.. $ rotatedaround(a, 90)
.. $ rotatedaround(a, 180)

if( turns>1 ):
& spiral(b,a,

$ rotatedaround(a, 180))
(turns-1)

fi
enddef;
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Spirals – cartouche

1in – 1cm – 1pt !
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Spiral developments

• links between spirals should start and end on tangents

– Need a macro to find common tangent and tangent points to paths

• geometry rapidly becomes complex

• often need sets of parallel curves.
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