Digital Illumination

Dr Alun Moon
July 19, 2003

-TUG 2003-

Celtic artwork

- From about the 7 century BC through to the 7 century AD
- Metalwork
- Jewelry
- stone carving
- Illuminated manuscripts
- Lindesfarne Gospels
- Book of Kells

Example by hand

Compare a scan of one of my pieces with a sketch from the Lindesfarne Gospels.

Main elements

- Knotwork
- Keypatterns
- Spirals
- a highly developed artistic style, with very fine intricate detail
- high degree of geometry and geometrical construction in their work

Knotwork

- one of the most recognisable elements of Celtic artwork.
- once paths are defined
- find all intersection points
- sort into order
- draw curves
- draw crossings, path goes over first crossing then alternates

Getting global intersection time

Problems with intersectiontimes operator

- points are found on successive subpaths starting just beyond last point.
- length of subpaths is always integer.
- path $z_{0} . . z_{1} . . z_{2}$ has length 2
- subpath $[.75,1.25]$ has length 2
- how to get intersection-time on original path

Algorithm

For subpath starting at time t_{s} on original path. Intersection time on subpath is t_{f}

$$
t=\left\{\begin{array}{l}
t_{f}\left[t_{s},\left\lceil t_{s}\right\rceil\right] \quad t_{f}<1 \\
t_{f}+\left\lfloor t_{s}\right\rfloor
\end{array}\right.
$$

- if $t_{s}<1$ use t_{s} to interpolate between the beginning of the subpath (a) and the next point on the curve (ceiling of a).
- if $t_{s}>=1$ then add it to the last point on the curve before the subpath (floor a)

crossings

```
vardef crossings@#(text others) =
    save lastpt, tmp;
    p@#t[0]:=0;
    p@#t#:=0;
    forsuffixes $=others:
        numeric lastpt;
        lastpt := epsilon;
        forever:
            numeric tmp;
            (tmp,whatever)=
                subpath (lastpt,length(p@#)-epsilon)
                of p@#
            intersectiontimes p$;
            exitif (tmp<=0);
            p@#t[incr p@#t#] := if(tmp<1):
                tmp[lastpt,ceil(lastpt)]
            else:
                floor(lastpt)+tmp
            fi;
            lastpt := p@#t[p@#t#]+epsilon;
```

Trefoil - intersections

Trefoil

Some people claim it symbolises the Holy Trinity, or wholeness (I like it because it is the motif used for my wedding).

Keypatterns

Keypatterns are often based on a tessellating square spiral (straight lines and rectangles). George Bain uses a simple notation to characterise the spiral, a sequence of "arc" lengths.

S-spiral macro

```
def keySspiral(text tail) :=
    begingroup
        save direct,lastpoint,maxlength;
        pair direct,lastpoint;
        direct := up rotated -90;
        lastpoint := origin;
        maxlength := 0;
        origin
        for p=tail: --
            begingroup
            direct := direct
                    rotated if (maxlength<=p):
                    begingroup maxlength := p;
                    90 endgroup
                    else:
                            -90
                    fi;
            lastpoint := lastpoint + direct*p;
            lastlength := p;
            lastpoint
```


Keypattern - tessellating

sequence of (1,2,3,4,8,4,3,2,1)

Interlocking

sequence ($1,2,3,4,9,4,3,2,1$)

\square

Spirals

Given an initial point, a pair of centres, and a number of turns, the spiral macro is very simple recursive function (figure ??). Although it could be just as simple with a loop, swaping the centres over is easier to do with the recursive call.

```
def spiral(expr a,b,$)(expr turns) =
    $
        .. $ rotatedaround(a, 90)
        .. $ rotatedaround(a, 180)
    if( turns>1 ):
        & spiral(b,a,
        $ rotatedaround(a, 180))
                            (turns-1)
    fi
enddef;
```


Spirals - cartouche

1in@-1cm - 1 pt !

Spiral developments

- links between spirals should start and end on tangents
- Need a macro to find common tangent and tangent points to paths
- geometry rapidly becomes complex
- often need sets of parallel curves.

