
Digital Illumination

Dr Alun Moon

July 19, 2003

–TUG 2003–

Celtic artwork

• From about the 7 century BC through to the 7 century AD

• Metalwork

• Jewelry

• stone carving

• Illuminated manuscripts

– Lindesfarne Gospels
– Book of Kells

–TUG 2003– 1

Example by hand

Compare a scan of one of my pieces with a sketch from the Lindesfarne
Gospels.

–TUG 2003– 2

–TUG 2003– 3

Main elements

• Knotwork

• Keypatterns

• Spirals

• a highly developed artistic style, with very
fine intricate detail

• high degree of geometry and geometrical
construction in their work

–TUG 2003– 4

Knotwork

• one of the most recognisable elements of Celtic artwork.

• once paths are defined

– find all intersection points
– sort into order
– draw curves
– draw crossings, path goes over first crossing then alternates

–TUG 2003– 5

Getting global intersection time

Problems with intersectiontimes operator

• points are found on successive subpaths starting just beyond last point.

• length of subpaths is always integer.

– path z0..z1..z2 has length 2
– subpath [.75, 1.25] has length 2

• how to get intersection-time on original path

–TUG 2003– 6

Algorithm

For subpath starting at time ts on original path. Intersection time on
subpath is tf

t =
{

tf [ts, dtse] tf < 1
tf + btsc

• if ts < 1 use ts to interpolate between the beginning of the subpath (a)
and the next point on the curve (ceiling of a).

• if ts >= 1 then add it to the last point on the curve before the subpath
(floor a)

–TUG 2003– 7

crossings

vardef crossings@#(text others) =
save lastpt, tmp;
p@#t[0]:=0;
p@#t#:=0;
forsuffixes $=others:
numeric lastpt;
lastpt := epsilon;
forever:
numeric tmp;
(tmp,whatever)=
subpath (lastpt,length(p@#)-epsilon)
of p@#

intersectiontimes p$;
exitif (tmp<=0);
p@#t[incr p@#t#] := if(tmp<1):
tmp[lastpt,ceil(lastpt)]

else:
floor(lastpt)+tmp

fi;
lastpt := p@#t[p@#t#]+epsilon;

endfor
endfor;
sort.p@#t;

enddef;

–TUG 2003– 8

Trefoil – intersections

–TUG 2003– 9

Trefoil

Some people claim it
symbolises the Holy
Trinity, or wholeness
(I like it because it is
the motif used for my
wedding).

–TUG 2003– 10

Keypatterns

Keypatterns are often based on a tessellating square spiral (straight lines
and rectangles). George Bain uses a simple notation to characterise the
spiral, a sequence of “arc” lengths.

–TUG 2003– 11

S-spiral macro

def keySspiral(text tail) :=
begingroup
save direct,lastpoint,maxlength;
pair direct,lastpoint;
direct := up rotated -90;
lastpoint := origin;
maxlength := 0;
origin
for p=tail: --
begingroup
direct := direct

rotated if (maxlength<=p):
begingroup maxlength := p;
90 endgroup

else:
-90

fi;
lastpoint := lastpoint + direct*p;
lastlength := p;
lastpoint

endgroup
endfor

endgroup
enddef;

–TUG 2003– 12

Keypattern – tessellating

sequence of (1,2,3,4,8,4,3,2,1)

–TUG 2003– 13

Interlocking

sequence (1,2,3,4,9,4,3,2,1)

–TUG 2003– 14

Spirals

Given an initial point, a pair of centres, and a number of turns, the
spiral macro is very simple recursive function (figure ??). Although it
could be just as simple with a loop, swaping the centres over is easier to do
with the recursive call.

def spiral(expr a,b,$)(expr turns) =
$
.. $ rotatedaround(a, 90)
.. $ rotatedaround(a, 180)

if(turns>1):
& spiral(b,a,

$ rotatedaround(a, 180))
(turns-1)

fi
enddef;

–TUG 2003– 15

Spirals – cartouche

1in – 1cm – 1pt !

–TUG 2003– 16

Spiral developments

• links between spirals should start and end on tangents

– Need a macro to find common tangent and tangent points to paths

• geometry rapidly becomes complex

• often need sets of parallel curves.

–TUG 2003– 17

