Digital lllumination

Dr Alun Moon

July 19, 2003

-TUG 2003~

Celtic artwork

e From about the 7 century BC through to the 7 century AD
e Metalwork

o Jewelry

e stone carving

e llluminated manuscripts

— Lindesfarne Gospels
— Book of Kells

-TUG 2003-

Example by hand

Compare a scan of one of my pieces with a sketch from the Lindesfarne
Gospels.

-TUG 2003- 2

-TUG 2003-

Main elements

e Knotwork e a highly developed artistic style, with very
fine intricate detail

o Keypatterns
e high degree of geometry and geometrical
e Spirals construction in their work

-TUG 2003-

Knotwork

e one of the most recognisable elements of Celtic artwork.

e once paths are defined

— find all intersection points

— sort into order

— draw curves

— draw crossings, path goes over first crossing then alternates

-TUG 2003-

Getting global intersection time

Problems with intersectiontimes operator

e points are found on successive subpaths starting just beyond last point.

e length of subpaths is always integer.

— path zg..21..22 has length 2
— subpath [.75,1.25] has length 2

e how to get intersection-time on original path

-TUG 2003~

Algorithm

For subpath starting at time t5; on original path. Intersection time on
subpath is ¢

telts, [ts]] tr <1
t:{t;+_tsj !

o if t; < 1 use ts to interpolate between the beginning of the subpath (a)
and the next point on the curve (ceiling of a).

o if t, >=1 then add it to the last point on the curve before the subpath
(floor a)

-TUG 2003~ 7

crossings

vardef crossings@#(text others) =
save lastpt, tmp;
p@#t [0] :=0;
pO#t#:=0;
forsuffixes $=others:
numeric lastpt;
lastpt := epsilon;
forever:
numeric tmp;
(tmp,whatever)=
subpath (lastpt,length(p@#)-epsilon)
of pO#
intersectiontimes p$;
exitif (tmp<=0);
p@#t [incr p@#t#] := if (tmp<1):
tmp[lastpt,ceil(lastpt)]
else:
floor(lastpt)+tmp
fi;
lastpt := pQ@#t [pO#t#]+epsilon;

Trefoil — intersections

-TUG 2003-

Trefoll

Some people claim it
symbolises the Holy
Trinity, or wholeness
(I like it because it is
the motif used for my
wedding).

-TUG 2003~

10

Keypatterns

Keypatterns are often based on a tessellating square spiral (straight lines
and rectangles). George Bain uses a simple notation to characterise the
spiral, a sequence of “arc” lengths.

-TUG 2003- 11

S-spiral macro

def keySspiral(text tail) :=
begingroup
save direct,lastpoint,maxlength;
pair direct,lastpoint;
direct := up rotated -90;
lastpoint := origin;
maxlength := 0;
origin
for p=tail: --
begingroup
direct := direct
rotated if (maxlength<=p):
begingroup maxlength := p;
90 endgroup
else:
-90
fi;
lastpoint := lastpoint + direct*p;
lastlength := p;
lastpoint

Keypattern — tessellating

sequence of (1,2,3,4,8,4,3,2,1) &/

-TUG 2003~

Interlocking

sequence (1,2,3,4,9,4,3,2,1)

ROV

-TUG 2003~ 14

Spirals

Given an initial point, a pair of centres, and a number of turns, the
spiral macro is very simple recursive function (figure ??). Although it
could be just as simple with a loop, swaping the centres over is easier to do

with the recursive call.

def spiral(expr a,b,$) (expr turns) =
$
.. $ rotatedaround(a, 90)
.. $ rotatedaround(a, 180)
if (turns>1):
& spiral(b,a,
$ rotatedaround(a, 180))
(turns-1)
fi
enddef ;

-TUG 2003~ 15

Spirals — cartouche

1in—1cm—1pt!

-TUG 2003~

16

Spiral developments

e links between spirals should start and end on tangents

— Need a macro to find common tangent and tangent points to paths
e geometry rapidly becomes complex

e often need sets of parallel curves.

-TUG 2003~

17

