Abstract

This package makes it easier to write articles where proofs and other material are deferred to the appendix. The appendix material is written in the \LaTeX code along with the main text which it naturally complements, and it is automatically deferred. The package can automatically send proofs to the appendix, can repeat in the appendix the theorem environments stated in the main text, can section the appendix automatically based on the sectioning of the main text, and supports a separate bibliography for the appendix material.

1 Usage

The apxproof package is intended to simplify the writing of articles where some of the content needs to be deferred to an appendix. This is in particular useful for the submission of scientific articles to conferences or journals that limit the number of pages in the main text but allow an extra appendix, where proofs of theorems and other material can be added.

1.1 Basics

To use apxproof, first load it in the header of your document:

\usepackage{apxproof}

On its own, this does not do anything and should not change the appearance of your document. To add an appendix with some material from your document, use the toappendix environment:

\begin{toappendix}
...
\end{toappendix}

The content will appear at the end of your document, in an automatically generated section that refers to the current section in the main text.
Example 1. Throughout this documentation, all examples produce content deferred to the appendix, at the very end of this document.

\begin{toappendix}
This content is in the appendix.
\end{toappendix}

When the content to put in appendix is an entire section, make sure that \section is the very first command that appears within the toappendix environment. It will disable the automatic production of a section heading.

1.2 Repeated Theorems and Proofs

In some scientific papers that include proofs, it is common to defer proofs to the appendix. This can easily be achieved using the \appendixproof environment:

\begin{appendixproof}
...\end{appendixproof}

This behaves like the toappendix environment, except that a proof environment is generated.

Example 2. We now send a proof to the appendix:

\begin{appendixproof}
This proof is in the appendix.
\end{appendixproof}

When deferring proofs to the appendix, an annoying problem is that the statement of the theorem remains in the main text; it is hard to read a proof that is far away from the statement it proves. apxproof solves this issue by allowing statements of theorems to be repeated: once in the main text, and once in the appendix before the proof of the statement. To use this feature, you can define a new repeated theorem environment using the \newtheoremrep command:

\newtheoremrep{⟨name⟩}{⟨counter⟩}{⟨title⟩}{⟨countersec⟩}

Usage is exactly the same as that of AMS \LaTeX’s \newtheorem macro:

- ⟨name⟩ (e.g., theorem) is the name of an environment that is created for this kind of theorem;
- ⟨counter⟩ (e.g., definition) is an optional counter describing from which kind of environment the numbering of these environments should be inherited;
- ⟨title⟩ (e.g., Theorem) is the title that will be used to display this theorem environment;
• \langle{countersec}\rangle (e.g., section) is an optional counter of a sectioning command indicating that counters for this theorem should be prefixed by this counter (and reset at each occurrence of the sectioning command).

\langle{counter}\rangle and \langle{countersec}\rangle should not be used together. What differs from \texttt{newtheorem} is that, when the following is written:

\texttt{\newtheoremrep{foobar}{Foobar}}

then two environments are defined: the \texttt{foobar} environment, which behaves as if \texttt{newtheorem} had been used, and the \texttt{foobarrep} environment, which results in the statement of this environment being repeated in the appendix.

One interesting feature of \texttt{apxproof} is that in most situations, there is no need to use the \texttt{appendixproof} environment. Indeed, the \texttt{proof} environment is redefined by \texttt{apxproof} to automatically put the proof either in the main text (if it follows a regular theorem) or in the appendix (if it follows a repeated theorem).

\textbf{Example 3.} Assume we have first defined a repeated theorem environment \texttt{foobar} as above. We can now use this theorem environment, first for a regular theorem in the main text, then for a theorem repeated in the main text and in the appendix:

\begin{verbatim}
\begin{foobar}
This foobar is a regular one, in the main text.
\end{foobar}
\begin{proof}
This is the proof of the regular foobar.
\end{proof}
\end{verbatim}

We obtain:

\textbf{Foobar 1.} This foobar is a regular one, in the main text.

\textit{Proof.} This is the proof of the regular foobar.

Now, if we use a repeated theorem:

\begin{verbatim}
\begin{foobarrep}
This foobar is repeated in the appendix.
\end{foobarrep}
\begin{proof}
This is the proof of the repeated foobar.
\end{proof}
\end{verbatim}

We now obtain:

\textbf{Foobar 2.} This foobar is repeated in the appendix.

\textit{Note that, since \texttt{hyperref} is loaded, there are hyperlinks created between the statements of the theorems in the main text and in the appendix.}
When the proof is deferred to the appendix, it is common practice to add a proof sketch in the main text. `apxproof` defines a simple `proofsketch` environment for this purpose:

```latex
\begin{proofsketch}
proofsketch...
\end{proofsketch}
```

The proof sketch is typeset similarly to a proof, but is always in the main text.

Similarly, an `inlineproof` environment is provided so as to be able to have both a proof in the appendix (using the regular `proof` environment, or alternatively the `appendixproof` environment) and a different proof in the main text (using the `inlineproof` environment).

Example 4. Here are simple examples of proof sketches and inline proofs:

```latex
\begin{proofsketch}
proofsketch...
\end{proofsketch}

Proof sketch. This is a proof sketch.
```

```latex
\begin{inlineproof}
inlineproof...
\end{inlineproof}

Proof. This is an inline proof.
```

1.3 Bibliography

By default, `apxproof` automatically adds a bibliography in the appendix with only the references cited in the appendix material. This allows for a clean separation of references used solely in the main text, and those used in the appendix.

Example 5. Assume we have citations both in the main text and in the appendix.

```latex
\begin{toappendix}
cite{lamport86}.
\begin{toappendix}
cite{proofsAreHard}.
\end{toappendix}
```

This is a citation in the main text \cite{lamport86}.

This is a citation in the appendix \cite{proofsAreHard}.

This is a citation in the main text [1].

The bibliography in the appendix can use a different style and heading than the bibliography in the main text (and, by default, it does). See Section 1.5 for how to configure the appearance of that bibliography.

In order to use a single appendix for the main text and the bibliography, one can specify the value `common` to the `bibliography` option when loading the package. (By default this option is set to `separate`.)
1.4 Mode

An optional \(mode\) can be specified when loading the package:

\usepackage[appendix=\{mode\}]{apxproof}

\(mode\) can take one of the following three values:

append This is the default. Appendix material gathered by \texttt{apxproof} is appended to the main text.

inline In this mode, \texttt{apxproof} simply inlines the content along with the main text.

strip This mode functions similarly to \texttt{append} except that the appendix is not appended at the end of the document. All appendix material is therefore removed.

1.5 Customization

\texttt{apxproof} provides a few macros that can be redefined (using \texttt{renewcommand}) to customize the appearance of the appendix:

\texttt{mainbodyrepeatedtheorem}\ is a macro that is executed at the beginning of the body of every repeated theorem. This can be used to notify the reader that the theorem is repeated in appendix in some way, e.g., with a margin note.

\texttt{appendixsectionformat} is a macro that indicates how to format the section titles in the Appendix, given the number and title of the section in the main text. By default, they appear as “Proofs for Section \(\langle number\rangle\) \(\langle title\rangle\)”.

\texttt{appendixrefname}\ contains the heading that is displayed before the bibliography. By default, this is “References for the Appendix”.

\texttt{appendixbibliographystyle}\ contains the .bst bibliography style that is used in the bibliography in appendix. By default, this is \texttt{alpha}.

\texttt{appendixbibliographyprelim}\ contains arbitrary code that is executed just before the production of the bibliography in appendix, which can be used to configure the way it is displayed.

\texttt{appendixprelim}\ contains arbitrary code that is executed just before the production of the appendix, which can be used to configure the way it is displayed. By default, this command contains \texttt{\clearpage\onecolumn} (the appendix is typeset on a new page in single-column mode) but redefining this option allows changing this behavior.

Another customization capability concerns \textit{numbered equations} that are present within repeated theorems. An optional \texttt{repeqn} option can be specified when loading the package, which controls whether equation numbers should be as in the main text (by setting this option to \texttt{same}, the default) or independently numbered (by
setting this option to independent). In the latter case, whenever a referenceable counter is set with \texttt{\label{\langle counter\rangle}}, \texttt{\ref{\langle counter\rangle}} references the counter in the main text, while \texttt{\ref{\langle counter\rangle-axp}} references the counter in the appendix (except in inline mode, where both have the same effect).

1.6 Advanced Features

We now describe a few advanced macros and environments, the usage of which is limited to special cases:

\texttt{nestedproof}\hspace{1em} \texttt{nestedproof} is an environment that can be used within a \texttt{proof} environment deferred in the appendix; this is required because, for technical reasons, no \texttt{proof} environment can be nested within a deferred \texttt{proof} environment.

\texttt{\noproofinappendix}\hspace{1em} \texttt{\noproofinappendix} can be used inside repeated theorems that are not followed by a \texttt{proof} or \texttt{appendixproof} environment; the point is to ensure that a further \texttt{proof} environment cannot be mistakenly understood as a proof of the repeated theorem. It should not be needed in most situations as \texttt{apxproof} tries figuring out when a proof follows a repeated theorem automatically, but may occasionally be needed in complex scenarios.

\texttt{\nosectionappendix}\hspace{1em} \texttt{\nosectionappendix} is to be used inside a section that does contain appendix material, but for which a section in the appendix should not be created. This should be rarely needed. When this command is present, appendix material is appended to the end of the previously created section.

2 Supported Document Classes

Because \texttt{apxproof} modifies sectioning commands, bibliographies, and proofs, it may not work straight away with arbitrary document classes. It has currently been tested with and is supported for the following document classes:

- \LaTeX{} standard document classes (e.g., \texttt{article.cls})
- KOMA-Script (e.g., \texttt{scrartcl.cls}, \texttt{scrbook.cls})
- ACM SIG Proceedings (e.g., \texttt{sig-alternate.cls}, \texttt{acmart.cls})
- Springer’s Lecture Notes in Computer Science (e.g., \texttt{llncs.cls})
- Schloß Dagstuhl’s Leibniz International Proceedings in Informatics (e.g., \texttt{lipics.cls}, \texttt{lipcs-v2016.cls})

Other classes may work out of the box. Adding support for specific classes is possible and can be requested from the author of this package.
3 Known Issues and Limitations

We report here some issues we are currently aware of:

- When using `hyperref`, the appendix in the bibliography is not hyperlinked. This is to avoid possible issues with multiply defined bibliography entries.

- `appendixproof`, `proof`, `toappendix` environments cannot be nested. This is a limitation of the `fancyvrb` package that `apxproof` relies on. Note the existence of the `nestedproof` environment for nested proofs.

- `apxproof` poorly interacts with SyncTeX: identifying which source line has produced which box does not work for appendix content managed by `apxproof` or repeated theorems. No obvious fix is known, though this issue will be investigated in the long term.

- Unless the `bibliography` option is set to `common`, the `bibunits` package is used to generate a second bibliography. This means any package, such as `biblatex`, that is incompatible with `bibunits` will not be compatible with `apxproof` unless `bibliography` is set to `common`.

Issues not listed here should be reported to the author.

4 License

Copyright © 2016–2019 by Pierre Senellart.

This work may be distributed and/or modified under the conditions of the \TeX Project Public License, either version 1.3 of this license or (at your option) any later version. The latest version of this license is in `http://www.latex-project.org/lppl.txt` and version 1.3 or later is part of all distributions of \TeX version 2005/12/01 or later.

5 Contact

- https://github.com/PierreSenellart/apxproof
- Pierre Senellart <pierre@senellart.com>

Bug reports and feature requests should preferably be submitted through the `Issues` feature of GitHub.

6 Acknowledgments

Thanks to Antoine Amarilli for feedback and proofreading. Thanks to K. D. Bauer for the implementation of the forward-linking mechanism, and for various bugfixes.
7 Implementation

We now describe the entire code of the package, in a literate programming fashion. Throughout the package, we use the \texttt{axp@} prefix to identify local macros and environment names, which are not meant to be used by the final user.

7.1 Dependencies

We first load a few package dependencies:

- \texttt{environ} to easily define the repeated theorem environments.

\begin{verbatim}
\RequirePackage{environ}
\end{verbatim}

- \texttt{etoolbox} to define simple toggles.

\begin{verbatim}
\RequirePackage{etoolbox}
\end{verbatim}

- \texttt{fancyvrb} for the bulk of the work of exporting appendix material in an auxiliary file.

\begin{verbatim}
\RequirePackage{fancyvrb}
\end{verbatim}

- \texttt{ifthen} for easier comparison of character strings.

\begin{verbatim}
\RequirePackage{ifthen}
\end{verbatim}

- \texttt{kvoptions} to manage options passed to the package.

\begin{verbatim}
\RequirePackage{kvoptions}
\end{verbatim}

- \texttt{amsthm} for its \texttt{\newtheorem} macro. Some document classes (e.g., lipics) preload \texttt{amsthm}: this is fine, \texttt{\RequirePackage{amsthm}} will simply have no effect. On the other hand, some other document classes (e.g., \texttt{lncs} or \texttt{sig-alternate}) define a \texttt{proof} environment that conflicts with \texttt{amsthm}, so we have to undefine this environment before loading \texttt{amsthm}. In that case, we reestablish the existing proof environments, in case they had been customized (e.g., \texttt{sig-alternate})

\begin{verbatim}
\@ifpackageloaded{amsthm}{
}{
 \let\apx@oldamsthmproof\proof
 \let\apx@oldamsthmendproof\endproof
 \let\proof\undefined
 \let\endproof\undefined
}\RequirePackage{amsthm}
\ifdefined\apx@oldamsthmproof
 \let\proof\apx@oldamsthmproof
 \let\endproof\apx@oldamsthmendproof
\fi
\end{verbatim}
7.2 Option Processing

Many names throughout the package use an arobase (@) to avoid name conflict with user-defined names. To simplify the compilation of the documentation, we simply make it a regular character in all the rest.

\makeatletter
We setup the processing of options using keyval facilities.

\SetupKeyvalOptions{
 family=axp,
 prefix=axp@
}

We declare the following options:

- appendix, with a default value of append (other possible values: strip, inline);
- bibliography, with a default value of separate (other possible value: common);
- repeqn, with a default value of same (other possible value: independent).

\axp@appendix
\DeclareStringOption[append]{appendix}
\axp@bibliography
\DeclareStringOption[separate]{bibliography}
\axp@repeqn
\DeclareStringOption[same]{repeqn}
\ProcessLocalKeyvalOptions*

We check that the value of the options are valid, and add a message to the compilation log.

\ifthenelse{\equal{\axp@appendix}{append}}{
 \message{apxproof: Appendix material appended to the document}
}{\ifthenelse{\equal{\axp@appendix}{strip}}{
 \message{apxproof: Appendix material stripped}
}{\ifthenelse{\equal{\axp@appendix}{inline}}{
 \message{apxproof: Appendix material inlined within the document}
}{\errmessage{Error: unsupported option appendix=\axp@appendix\ for package apxproof}}
}}
\ifthenelse{\equal{\axp@bibliography}{separate}}{
 The external bibunits package is used to add a second bibliography for the appendix material.
}{
\RequirePackage{bibunits}
7.3 Macros Common to All Compilation Modes

Common to all compilation modes, we define `\axp@newtheoremrep@definetheorem`. When called with first argument `foobar`, we first undefine the existing `foobar` environment (and its counter) if it has already been defined (e.g., by the document class), then invoke `\axp@newtheorem` for the regular version of the theorem `foobar`, saving and restoring any existing theorem counter unless the `\newtheoremdep` redefines the base counter.

We introduce an intermediate `\axp@newtheorem` command to define a new theorem, differently depending on whether there is a section counter or not. This will be useful, in particular to allow changing this definition depending on the document class. This command uses two intermediary commands, `\@axp@newtheorem` and `\@@axp@newtheorem`, for the non-starred and starred versions.
We define the high-level \newtheoremrep to have the same syntax as \texttt{amsthm}'s \newtheorem. For this purpose, we need a little trick to deal with the second and fourth optional arguments, which is what \@oparg and \axp@newtheoremreptmp are used for. \axp@newtheoremrep is defined differently depending on the compilation mode.

\begin{axp@oldproof}\[Proof sketch\]\end{axp@oldproof}

We save the definition of the existing proof environment.

\begin{axp@oldproof}\proof\end{axp@oldproof}

We define a utility macro that will be used to properly set the \texttt{label} command (and its \texttt{amsmath} counterpart, \texttt{\label@in@display}) for equations within repeated theorems, depending on the compilation mode.
\renewcommand\label[1]{\axp@oldlabel{##1}apx}
\renewcommand\label@in@display[1]{\axp@oldlabel@in@display{##1}apx}
\let\axp@oldlabel\label
\let\axp@oldlabel@in@display\label@in@display
\renewcommand\label[1]{\axp@oldlabel{##1-apx}}
\renewcommand\label@in@display[1]{\axp@oldlabel@in@display{##1-apx}}
}

\renewenvironment{proofsketch}{\begin{axp@oldproof}[sketch]}{\end{axp@oldproof}}

\ifdefined\spnewtheorem
\@axp@newtheorem
\@@axp@newtheorem
\Ifdefined\spnewtheorem instead of \newtheorem in Springer document classes to obtain standard formatting.
\def\@axp@newtheorem#1#2#3#4{\ifx\relax#4\relax\ifx\relax#2\relax\spnewtheorem{#1}{#3}{\bfseries}{\itshape}\else\spnewtheorem{#1}{#3}{#2}{\bfseries}{\itshape}\fi\else\spnewtheorem{#1}{#3}{#4}{\bfseries}{\itshape}\fi}
\def\@@axp@newtheorem#1#2{\spnewtheorem*{#1}{#2}{\upshape\bfseries}{\itshape}}
\fi

\proofsketch
We redefine the proofsketch environment, which is used differently in the base class.
\renewenvironment{proofsketch}{\begin{axp@oldproof}[sketch]}{\end{axp@oldproof}}

We have to redefine the macro \@thmcountersep for proper sectioned counters.
\def\@thmcountersep{.}
\fi

7.3.1 Class-Specific Behavior
Finally, some class-specific behavior common to all compilation modes.

\llncs and other Springer document classes
\ifdefined\spnewtheorem
\@axp@newtheorem
\@@axp@newtheorem
It is necessary to use \spnewtheorem instead of \newtheorem in Springer document classes to obtain standard formatting.
\def\@axp@newtheorem#1#2#3#4{\ifx\relax#4\relax\ifx\relax#2\relax\spnewtheorem{#1}{#3}{\bfseries}{\itshape}\else\spnewtheorem{#1}{#3}{#2}{\bfseries}{\itshape}\fi\else\spnewtheorem{#1}{#3}{#4}{\bfseries}{\itshape}\fi}
\def\@@axp@newtheorem#1#2{\spnewtheorem*{#1}{#2}{\upshape\bfseries}{\itshape}}
\fi

\proofsketch
We redefine the proofsketch environment, which is used differently in the base class.
\renewenvironment{proofsketch}{\begin{axp@oldproof}[sketch]}{\end{axp@oldproof}}

We have to redefine the macro \@thmcountersep for proper sectioned counters.
\def\@thmcountersep{.}
\fi
7.4 Inline Compilation Mode

In inline mode, \texttt{\axp@newtheoremrep} uses \texttt{\axp@newtheoremrep@definetheorem} to define the regular theorem environment and creates a repeated theorem environment that behaves exactly as the regular theorem environment, while calling \texttt{\axp@redefinelabels} to make sure that \texttt{-axp} variants of equation counters are defined.

\begin{verbatim}
\def\axp@newtheoremrep#1[#2]#3[#4]{%
 \axp@newtheoremrep@definetheorem{#1}{#2}{#3}{#4}%
 \NewEnviron{#1rep}[1][]{%
 \ifx\relax##1\relax
 \begin{#1}\axp@redefinelabels\BODY\end{#1}%
 \else
 \begin{#1}[##1]\axp@redefinelabels\BODY\end{#1}%
 \fi
 }
}
\end{verbatim}

In inline mode, these environments behave like the regular \texttt{proof} environment.

\begin{verbatim}
\let\inlineproof\proof
\let\endinlineproof\endproof
\let\nestedproof\proof
\let\endnestedproof\endproof
\let\appendixproof\proof
\let\endappendixproof\endproof
\end{verbatim}

We now deal with the case where \texttt{apxproof} really does something useful: either append the appendix material to the document, or strip it entirely.

7.5 Append or Strip Compilation Modes

We now deal with the case where \texttt{apxproof} really does something useful: either append the appendix material to the document, or strip it entirely.

7.5.1 Auxiliary File for the Appendix

We open a new auxiliary file, with extension .axp, where the appendix material will be dumped.

\begin{verbatim}
\AtBeginDocument{
 \newwrite\axp@proofsfile
 \immediate\openout\axp@proofsfile=\jobname.axp
 \}
\end{verbatim}
proof \section

At the beginning of this file, we make \@ a regular character (since it will be used in several places for internal names) and reestablish the original definition of the proof environment and the \section macro.

\AtBeginDocument{
 \immediate\write\axp@proofsfile{%
 \noexpand\makeatletter
 \noexpand\let\noexpand\proof\noexpand\axp@oldproof
 \noexpand\let\noexpand\endproof\noexpand\endaxp@oldproof
 \noexpand\let\noexpand\section\noexpand\axp@oldsection
 }
}

We need an auxiliary macro to disable active characters that have the high bit set when writing to the \axp file. See https://tex.stackexchange.com/a/145361/166858

\def\axp@unactivateeightbit{%
 \count@=128%
 \loop
 \catcode\count@=12%
 \ifnum\count@<255%
 \advance\count@@ne
 \repeat
}

Using the functionalities of the \fancyvrb package, we define a custom verbatim environment \axp@VerbatimOut that writes every line to the \axp@proofsfile. We also use the previous macro to disable active characters with the eighth bit set.

\DefineVerbatimEnvironment{axp@VerbatimOut}{axp@VerbatimOut}{}
\def\FVB@axp@VerbatimOut{\@bsphack
 \begingroup
 \axp@unactivateeightbit
 \FV@DefineWhiteSpace
 \def\FV@Space{\space}%
 \FV@DefineTabOut
 \def\FV@ProcessLine{\immediate\write\axp@proofsfile}%
 \let\FV@FontScanPrep\relax
 \let\@noligs\relax
 \FV@Scan
 \endgroup
}
\def\FVE@axp@VerbatimOut{\@esphack}

The entire content of this environment is put in appendix, starting a new appendix section beforehand if needed.

\newenvironment{toappendix}{\axp@writesection\axp@VerbatimOut}{\endaxp@VerbatimOut}

7.5.2 Definition of New Theorems

\axp@seenreptheorem

Used to indicate whether a repeated theorem was just typeset, without its proof.
191 \newtoggle{axp@seenreptheorem}

axp@rpcounter Sequentially incremented for every repeated theorem, used to create labels.

192 \newcounter{axp@rpcounter}

axp@equation Used to save the value of the equation counter, when repeqn is set to same.

axp@equationx

193 \newcounter{axp@equation}

194 \newcounter{axp@equationx}

axp@newtheoremrep With first argument foobar, we use \axp@newtheoremrep@definetheorem to define the regular version of the theorem foobar. We then patch \begin{foobar} so as not to expect a proof in the appendix and define an internal theorem axp@foobarrp that will be used in the appendix to restate the existing theorem.

195 \def\axp@newtheoremrep#1[#2]#3[#4]{%
196 \axp@newtheoremrep@definetheorem{#1}{#2}{#3}{#4}%
197 \expandafter\pretocmd\csname #1\endcsname{\noproofinappendix}{}{}%
198 \axp@newtheorem*{axp@#1rp}{#3}%
199 \axp@forward@setup{#1}{#2}{#3}{#4}%

We then define a foobarrep environment that increments the axp@rpcounter and typeset the regular foobar theorem with a label derived from the counter, along with a possible custom command to identify repeated theorems. We distinguish the case when the theorem argument has a note and when it does not. We save the equation counter before typesetting the theorem environment, to reset it to the same value in the repeated environment when repeqn is set to same.

200 \NewEnviron{#1rep}[1][]{%
201 \ifthenelse{\equal{\axp@repeqn}{same}}{%
202 \setcounter{axp@equation}{\value{equation}}%
203 }{%
204 \addtocounter{axp@rpcounter}{1}%
205 \ifx\relax#1\relax
206 \axp@with@forward{#1}{\begin{#1}}label{axp@r\roman{axp@rpcounter}}%
207 \else
208 \axp@with@forward{#1}{\begin{#1}[##1]}label{axp@r\roman{axp@rpcounter}}%
209 \fi
210 \mainbodyrepeatedtheorem
211 \BODY}\end{#1}%

We set the axp@seenreptheorem toggle to indicate that we are looking for the proof of the theorem, then store in a macro the content of the theorem's body.

212 \global\toggleture{axp@seenreptheorem}%
213 \global\expandafter\let\csname rplet\roman{axp@rpcounter}\endcsname
214 \endcsname
215 \BODY

Possibly after starting a new appendix section if needed, we typeset a repeated version of the theorem using the axp@foobarrp environment and a reference to the previously defined label. We use \axp@redefinelabels in this environment to avoid multiply defined labels. We have to deal in a careful way with theorem notes: we want to use a theorem note to display the number of the repeated theorem, but
theorem notes are usually typeset in a much different way (different font, parentheses) than theorem headings. In the case of the Springer document classes, we use the \texttt{\theopargself} macro to disable parentheses. For other document classes, we need to manually patch the \texttt{\thmhead} command at the right time. We also specially cover the case of the ACM document class where \texttt{\@acmplainnotefont} is used instead of \texttt{\thm@notefont}.

\begin{verbatim}
216 \axp@writesection
217 \ifthenelse{\equal{\axp@repeqn}{same}}{%
218 \immediate \write \axp@proofsfile{% 219 \noexpand \setcounter{axp@equationx}{\value{equation}}% 220 \noexpand \setcounter{equation}{\theaxp@equation}%
221 }% 222 \immediate \write \axp@proofsfile{% 224 \ifdefined \theopargself
225 \noexpand \theopargself 226 \else
227 \noexpand \pretocmd {\noexpand \@begintheorem}{% 228 \noexpand \patchcmd {\noexpand \@begintheorem}{\noexpand \@acmplainnotefont}{\{}\{}\{}% 229 \noexpand \patchcmd {\noexpand \@begintheorem}{\noexpand \the \noexpand \thm@notefont}{\{}\{}\}{% 230 \noexpand \patchcmd {\noexpand \@begintheorem}{\{}\}{}{}% 231 \noexpand \patchcmd {\noexpand \@begintheorem}{\}{}\{}% 232 }\{}\{}%
233 \fi
234 \noexpand \begin {axp@#1rp} [% 235 \noexpand \ref {\axp@rroman {\axp@rpcounter}}% 236 \iffnotempty{##1}{% 237 \ifdefined \theopargself
238 \else
239 \ifdefined \acmplainnotefont
240 \noexpand \acmplainnotefont
241 \else
242 \noexpand \acmplainnotefont
243 \else
244 \noexpand \the \noexpand \thm@notefont
245 \noexpand \fi
246 \fi
247 \{} \texttt{(unexpanded{##1})}% 248 \}%
249 \noexpand \axp@forward@target {\axp@fw@rroman {\axp@rpcounter}}{% 250 \noexpand \axp@rredefine@labels
251 \noexpand \expandafter \expandafter \csname rplet \roman {\axp@rpcounter} \endcsname
252 }% 253 \noexpand \end {axp@#1rp} 254 \ifthenelse{\equal{\axp@repeqn}{same}}{% 255 \noexpand \setcounter{axp@equationx}{\value{equation}}% 256 \noexpand \setcounter{equation}{\theaxp@equation}%
257 \immediate \write \axp@proofsfile{%
\end{verbatim}
7.5.3 Forward-Linking Mechanism

When hyperref is loaded, foobarrep environments in the main text have their number link to their repetition in the appendix.

\axp@with@forward

In order to make the number of the foobarrep theorem a link to its repeated version, we temporarily redefine the \thefoobar command, or, if we inherited the counter from a bazbar environment, the \thebazbar command. This seems to be the only robust way, to make the number a hyperlink, without adding extensive dependence on internals of amsthm, the builtin \newtheorem and possibly document-class specific definitions.

In order to allow users to redefine \thefoobar without breaking this feature, we redefine \thefoobar only for the duration of the \begin{foobar} form, resetting it to the old value as soon as possible.

Redefining \thefoobar has the side effect of changing \newlabel entries in the .aux file, so we need to be able to disable addition of the hyperlink, which is why we use an intermediate \axp@forward@link{⟨target⟩}{⟨text⟩} macro. We also redefine \theHfoobar which is used by hyperref but not defined if hyperref was loaded after \newtheoremrep was used, and \protect it to output it verbatim into the .aux file.

These hyperlinks are of course disabled in the strip compilation mode.

\newcommand{\axp@with@forward}[2]{%
 \ifthenelse{\equal{\axp@appendix}{strip}}{#2}{%
 \global\booltrue\axp@forward%
 \ifsundef{axp@old@the\csname axp@cn@#1\endcsname}{%
 \csletcs{axp@old@the\csname axp@cn@#1\endcsname}{the\csname axp@cn@#1\endcsname}%
 \csletcs{theH\csname axp@cn@#1\endcsname}{the\csname axp@cn@#1\endcsname}%
 \csdef{the\csname axp@cn@#1\endcsname}{%
 \protect\axp@forward@link{axp@fw@r\roman{axp@rpcounter}}{%
 \csname axp@old@the\csname axp@cn@#1\endcsname\endcsname}%
 }%
 }{}%
 #2%
 \ifsdef{axp@old@the\csname axp@cn@#1\endcsname}{%
 \csletcs{the\csname axp@cn@#1\endcsname}{axp@old@the\csname axp@cn@#1\endcsname}%
 }{%
 \global\boolfalse\axp@forward%
 }%
 }%
}%%

Dummy macro, for handling the unwanted change of the \newlabel entry in the .aux file caused by changing the definition of \thefoobar.

\axp@forward@link
\axp@forward
\newbool{axp@forward}
\newcommand{\axp@forward@link}[2]{{%
 \ifbool{axp@forward}{%
 \ifcsdef{hyperlink}{%
 \hyperlink{#1}{#2}%
 }{%
 #2%
 }%}
 }%
}}

\axp@forward@target
Provides the needed \hypertarget. Intended to be written to the .axp file.

\axp@forward@setup
In order to support counter inheritance with the first optional argument of \newtheoremrep, we need access to the name of the counter. For compliance with the behavior of \@axp@newtheorem, the first optional argument (#2) is ignored if the second optional argument (#4) is given.

7.5.4 Proof Environments
\noproofinappendix
Utility macro that toggles axp@seenreptheorem to false.

\appendixproof
We dump the content of this in appendix, within an original proof environment, possibly after creating a new appendix section.
proof

This environment either puts the proof in appendix, if we are after a repeated theorem without its proof, or inlines it otherwise.

\begin{proof}
\begin{axp@oldproof}
\iftoggle{axp@seenreptheorem}{\appendixproof}{\axp@oldproof}
\end{axp@oldproof}
\end{proof}

\renewenvironment{proof}
{\iftoggle{axp@seenreptheorem}{\appendixproof}{\axp@oldproof}}
{\iftoggle{axp@seenreptheorem}{\endappendixproof}{\endaxp@oldproof}}

\newenvironment{inlineproof}
{\let\inlineproof\axp@oldproof}
{\let\endinlineproof\endaxp@oldproof}

\newenvironment{nestedproof}
{\let\nestedproof\axp@oldproof}
{\let\endnestedproof\endaxp@oldproof}

These two environments are synonyms for the original \texttt{proof} environment.

7.5.5 Section Management

axp@seccounter

Sequentially incremented for every section, used to create labels.

\newcounter{axp@seccounter}

\axp@section

Saves the title of the last encountered section.

\def\axp@section{}

This command behaves similarly to \texttt{\axp@oldsection}, except that it first tests whether a \texttt{section} follows, and if so, does not produce anything. This is useful to avoid producing empty sections in the appendix. As usual, we have to process starred and unstarred versions separately.

\def\axp@section\{\@ifstar\axp@sssection\axp@section\}
\def\axp@sssection#1{\@ifnextchar\section{}{\axp@oldsection*{#1}}\%}
\def\axp@section#1{\@ifnextchar\section{}{\axp@oldsection{#1}}\%}
\def\axp@section#1{\@ifnextchar\section{}{\axp@oldsection{#1}}\%}

19
We redefine the `section` command to create a label based on `axp@seccounter` and to store its title in `axp@sectitle`. In order to support starred and unstarred versions, as well as the optional short-title argument, the intermediate macros `@section` and `@@section` are needed.

```latex
\let\axp@oldsection\section
\def\section{\@ifstar\@section\@@section}
\newcommand{\@section}[2][]{\relax}{\axp@@@section{\*}{#1}{#2}}%
\newcommand{\@@section}[2][]{\relax}{\axp@@@section{}{#1}{#2}}%
\newcommand{\axp@@@section}[3]{\global\def\axp@sectitle{#3}\ifx\relax#2\relax\axp@oldsection#1{#3}\else\axp@oldsection#1[\{#2]\{#3\}\fi\addtocounter{axp@seccounter}{1}\label{axp@s\roman{axp@seccounter}}}%
```

We remove the current section title, to indicate no section should be created in the appendix.

```latex
\newcommand{\nosectionappendix}{\global\def\axp@sectitle{\relax}}%
```

If `axp@sectitle` is not empty, we create a new section in the appendix, referring to the main text section.

Here, we wrap `\ref{axp@si}` into `\axp@protectref@i`, in order to protect the label name from wrongly being converted to uppercase, e.g., in `fancyhdr` with `\pagestyle{fancy}`.

This macro is defined both in the `.aux` file (in order to ensure availability when typesetting the `\tableofcontents`), and immediately before typesetting the appendix section (to ensure availability in the `section` command).

```latex
\newcommand{\axp@writesection}[]{\ifx\axp@sectitle\@empty\else\edef\axp@tmp{}\noexpand\global\noexpand\def\expandonce{\csname axp@protectref@\roman{axp@seccounter}\endcsname}{\noexpand\ref{axp@s\roman{axp@seccounter}}}\%\expandonce\axp@tmp\immediate\write\@auxout{\expandonce\axp@tmp}\immediate\write\axp@proofsfile{\expandonce\axp@tmp}\%\protect\appendixsectionformat\%\noexpand\axp@section{\protect\appendixsectionformat}}%
```

\nosectionappendix

We remove the current section title, to indicate no section should be created in the appendix.

```
\newcommand{\nosectionappendix}{\global\def\axp@sectitle{}%}
```

\axp@writesection

If `axp@sectitle` is not empty, we create a new section in the appendix, referring to the main text section.

Here, we wrap `\ref{axp@si}` into `\axp@protectref@i`, in order to protect the label name from wrongly being converted to uppercase, e.g., in `fancyhdr` with `\pagestyle{fancy}`.

This macro is defined both in the `.aux` file (in order to ensure availability when typesetting the `\tableofcontents`), and immediately before typesetting the appendix section (to ensure availability in the `section` command).

```
\newcommand{\axp@writesection}[]{\ifx\axp@sectitle\@empty\else\edef\axp@tmp{}\noexpand\global\noexpand\def\expandonce{\csname axp@protectref@\roman{axp@seccounter}\endcsname}{\noexpand\ref{axp@s\roman{axp@seccounter}}}\%\expandonce\axp@tmp\immediate\write\@auxout{\expandonce\axp@tmp}\immediate\write\axp@proofsfile{\expandonce\axp@tmp}\%\protect\appendixsectionformat\%\noexpand\axp@section{\protect\appendixsectionformat}}%
```

20
Finally, in a somewhat ad hoc manner, we disable the whole section management for `\tableofcontents`, which may be typeset using a section heading, but for which automatic section management does not make sense.

```
7.5.6 Append Compilation Mode
```

Unless the `bibliography` option is set to `common`, we need to set the appendix bibliography source to be the same as that of the main text, thanks to `bibunits`'s `\defaultbibliography` macro.

```
\AtEndDocument{
  \appendixprelim
  \appendix
  \ifthenelse{\equal{\axp@bibliography}{separate}}{
    \begin{bibunit}[^{\appendixbibliographystyle}]
  }{
    \immediate\closeout\axp@proofsfile
    \input{\jobname.axp}
    \ifdefined\refname
      \renewcommand{\refname}{\appendixrefname}
    \fi
  }
  \renewcommand{\refname}{\bibname}
}
```

After the end of the main text, we add the appendix (after the command `\appendixprelim` is issued) within a `bibunit` environment so as to typeset a separate bibliography for the appendix (unless the `bibliography` option is set to `common`). There is an extra test to ensure an empty bibliography environment is not produced. The name of the bibliography is changed to `\appendixrefname`; in most document classes, it is called `\refname` but it is occasionally (`scrartcl`, `scrreprt`) called `\bibname`.
7.5.7 Class-Specific Behavior

We conclude with some class-specific behavior.

ACM Document Classes (old versions, till 2017)

We first redefine the proofsketch environment, which is used differently in the base class.

We adjust the styling of theorems for the needs of apxproof.

The section title of the bibliography is in uppercase in these document classes. In addition, the \thebibliography macro hard-codes twice the section title, so we un-hardcode it so that it can be modified in the appendix.
The default bibliography in the lipics document class formatting is not compatible with the alpha bibliography style. We fix this here.

\renewcommand{\appendixbibliographyprelim}{%
\global\let\@oldbiblabel\@biblabel \def\@biblabel{\hspace*{-2em}\small\@oldbiblabel}%
} \fi

Change History

v1.0.0
General: Initial released version ... 1

v1.0.1
General: Prevent empty bibliography environment; fix typos ... 1

v1.0.2
axp@newtheoremrep: Fix display of repeated theorem counter in some document classes ... 16
Fix missing space between repeated theorem counter and theorem note ... 16

v1.0.3
\appendixbibliographyprelim: Support for lipics-v2016 ... 23
General: Note on entire sections in appendix ... 2
proofsketch: Ignore spaces after beginning of Proof sketch ... 11

v1.0.4
\appendixprelim: Configurable appendix style ... 11
axp@bibliography: bibliography option ... 9
General: More faithful theorem style for ACM templates ... 22
More robust coherent styling of proof sketches ... 22
Re-establish custom proof environments ... 8

Show options commented on in margin and index ... 1

v1.0.5
General: Ability to specify a sectioning counter in newtheoremrep ... 2
Fix compilation of proofsketch environment in inline mode ... 4

v1.0.6
\axp@newtheorem: Introduce intermediary command for theorem macro ... 10
\axp@writesection: Fix extraneous space after section number in appendix titles ... 20
General: Better support of Springer document classes ... 12
Deal with document classes where the bibliography is called \bibname ... 21
Support of new ACM document class (acmart.cls) ... 22
axp@newtheoremrep: Better handling of note-free theorems in document classes that treat theorems differently when they have an empty note ... 15
Fix incorrect use of \noexpand in optional argument of macro environment ... 16

v1.1.0
\FVE@axp@VerbatimOut: Make
\axp\proof\ compatible with\n\independent\ use\ of\ fancy\verb
\appendix\section\format: Fix\nmissing\ space\ in\ default
\appendix\section\format . . . 11
\axp\@\proofsfile: Initialization\ndefered to\ AtBeginDocument
for compatibility with \dumpped
precompiled\ preambles (K. D.\nBauer) 13
\axp\@\redefine\labels: Fix \label
not\ being\ disabled\ in\ \ams\math\nenvironments, where
\label\@in\@display is\ used
instead (K. D. Bauer) 11
\axp\@\repeqn: repeqn\ option 9
\axp\@\un\activate\eight\bit: Fix\ncompilation\ of\ non-ASCII
characters\ with
\usepackage\{utf8\}\{inputenc\}
.. 14
\axp\@\writesection: Make\n\axp\@\tmp\ wrapper\ more\ robust.
Resolves\ issues\ from\ use\ of
section\ title\ in\ fancy\hdr, and in
\table\of\ contents (K. D.\nBauer). 20
\axp\@\section: Fix handling\ of\fragile
macros\ within\ section\ headings.\nSee \#22. 20
Rewrote\ definition\ of \axp\@\section
to\ enable\ optional\ argument.
See \#23. (K. D. Bauer) 20
\axp\@\table\of\contents: Disable\ section
management\ for\ table\ of
contents 21
General: Added forward-link
mechanism (K. D. Bauer) ... 17
v1.2.0
\axp\@\new\the\rm\rep: Fix\nformatting\ of\ theorems\ without
notes\ in\ some\ document\ classes
in\ inline\ mode 13
\axp\@\new\the\rm\rep\@\def\i\n\the\rm\: Restore\ predefined\ theorem\n\rm\ counters 10
\axp\@\redefine\labels: Fix\ extra
spacing\ erroneously\ introduced
within\ the \axp\@\redefine\labels\ macro . 11
\mainbody\repeated\the\rm\: Configurable\ repeated\ theorem\ncommand 11
General: Do\ not\ load\ \bin\units\ if
\bibliography\ is\ set\ to \common . 9
\axp\@\new\the\rm\rep: Fix\ display\ of\n\the\rm\ notes 16
\proof\sketch: Fix\ proof\ sketches\ in
\inline\ compilation\ mode\ for
Springer\ document\ classes ... 12

Index
Numbers\ written\ in\ italic\ refer\ to\ the\ page\ where\ the\ corresponding\ entry\ is\ described;\ numbers\ underlined\ refer\ to\ the\ code\ line\ of\ the\ definition;\ numbers\ in\ roman\ refer\ to\ the\ code\ lines\ where\ the\ entry\ is\ used.

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\axp@\new\the\rm\rep$</td>
<td>70, 117</td>
</tr>
<tr>
<td>$\axp@\section$</td>
<td>349</td>
</tr>
<tr>
<td>\acmplain@\notefont</td>
<td>228, 240, 241</td>
</tr>
<tr>
<td>\acm\title\box</td>
<td>421</td>
</tr>
<tr>
<td>\aux\out</td>
<td>375</td>
</tr>
<tr>
<td>$\axp@\new\the\rm\rep$</td>
<td>70, 117</td>
</tr>
<tr>
<td>$\old\bib\label$</td>
<td>440, 441</td>
</tr>
<tr>
<td>$\begin\the\rm$</td>
<td>227</td>
</tr>
<tr>
<td>$\op\arg$</td>
<td>82, 85</td>
</tr>
<tr>
<td>$\bib\label$</td>
<td>440, 441</td>
</tr>
<tr>
<td>\section</td>
<td>349</td>
</tr>
<tr>
<td>$\bs\pack$</td>
<td>177</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\es\hack$</td>
<td>187</td>
</tr>
<tr>
<td>$\if\next\char$</td>
<td>344, 347</td>
</tr>
<tr>
<td>$\if\package\loaded$</td>
<td>6</td>
</tr>
<tr>
<td>$\if\star$</td>
<td>70, 342, 350</td>
</tr>
<tr>
<td>\one</td>
<td>173</td>
</tr>
<tr>
<td>$\nolig\s$</td>
<td>185</td>
</tr>
<tr>
<td>$\old\bib\label$</td>
<td>440, 441</td>
</tr>
<tr>
<td>$\op\arg$</td>
<td>82, 85</td>
</tr>
<tr>
<td>\section</td>
<td>349</td>
</tr>
<tr>
<td>$\thm\counter\rep$</td>
<td>132</td>
</tr>
</tbody>
</table>
toappendix
\errmessage 34, 43, 51
\expandonce 182
F
\FV@DefineTabOut 180
\FV@DefineWhiteSpace 184
\FV@FontScanPrep 186
\FV@ProcessLine 183
\FV@Scan 181
\FV@Space 175
\FV@VerbatimOut 175
\hspace 441
\hyperlink 285
\hypertarget 295
I
\ifblank 301
\ifbool 283
\ifcsdef 276, 284
\ifcsname 56, 62, 294
\ifcsundef 267
\ifnum 172
\inlineproof 145, 336
\input 405
\itshape 428
\label 99, 101, 110, 112, 206, 208, 361
\label@in@display 100, 105, 111, 113
\lipics@opterrshort 438
\loop 170
M
mainbodyrepeatedtheorem 5, 88, 210
message 28, 30, 32, 39, 41, 47, 49
N
\nestedproof 147, 338
\nestedproof (environment) 6, 145, 336
\newbool 281
\newtheorem 73, 75, 79
\newtheoremrep 2, 81
\newtheoremstyle 423
\noproofinappendix 6, 151, 197, 303, 319
\nosectionappendix 6, 151, 363, 385
O
\onecolumn 92
\openout 158
options:
appendix 5
bibliography 4
repeq 5
P
\preto 197, 227
\ProcessLocalKeyvalOptions 26
\proof 8, 10, 15, 94, 145, 147, 149, 163
\proof (environment) 3, 160, 321
\proofsketch 131
\proofsketch (environment) 4, 87
\providecommand 97
\putbib 416
R
\ref 236, 372
\refname 407, 408, 433
\repeat 174
\repeq (option) 5
S
\scshape 428
\section 160, 344, 347, 349, 389
\setcounter 202, 219, 220, 259
\SetupKeyvalOptions 19
\small 441
\spnewtheorem 116, 120, 122, 125, 129
T
\tableofcontents 388
\the 229, 244
\theaxp@equation 220
\thebibliography 412, 413, 433
\theopargself 224, 225, 238
\theoremstyle 432
\thm@notefont 229, 243, 244
\thmhead 228, 229, 230, 231
\toappendix (environment) 1, 151, 188
\togglefalse 304
\toggletrue 212
\unexpanded 248
\upshape 129
V
\value 202, 219, 259
W
\write 161, 183, 218, 223, 258, 300, 316, 375, 376
26
References

A Proofs for Section 1 (Usage)

This content is in the appendix.

Proof. This proof is in the appendix.

Foobar 2. This foobar is repeated in the appendix.

Proof. This is the proof of the repeated foobar.

This is a citation in the appendix [Unk16].

References for the Appendix