Extending \texttt{METAPOST} to 3D and 4D

L. Nobre G.

July 27, 2013

Abstract

Many authors have been working with three dimensions in \texttt{METAPOST} but, up to now, these works have not been integrated in the core of \texttt{METAPOST}. Since I am one of those authors, I would like to propose now a framing for that integration.

Contents

1 Projecting from 3D into 2D 1
 1.1 Exactly how? 2

2 The whole package 3
 2.1 Already on the Tracker 3
 2.2 Cross product 3
 2.3 \texttt{angle} 3
 2.4 Commands to be adapted 3
 2.5 New commands 3
 2.6 Commands that should not be touched 4

Since \texttt{colors} and \texttt{cmykcolors} were introduced in \texttt{METAPOST}, it became a simulation machine. Ordinary differential equations could be solved in 3D or 4D using the exact same Runge–Kutta code as for 2D.

But some way of projection had to be developed by the user in order to draw the results of the simulation.

1 Projecting from 3D into 2D

Many different kinds of projections exist, I tried a few and I think it is enough to project through a single point \vec{f} onto a plane Γ. This kind of projection can take advantage of \texttt{METAPOST}'s linear equations. Take, for instance, the following figure.

\footnote{When the point is at infinity, the projection is parallel and it defines only a direction.}
Point \vec{p} can be calculated from the following equations:

$$\begin{align*}
\vec{R} + \lambda (\vec{R} - \vec{f}) &= \vec{o} + \vec{p} \\
(\vec{h} \times \vec{v}) \cdot \vec{p} &= 0
\end{align*}$$

which can be coded as below:

```plaintext
color p;
R + whatever*(R-f) = o + p;
(h crossproduct v) dotproduct p = 0;
```

where \vec{R}, \vec{f}, \vec{o}, \vec{h} and \vec{v} are known colors. Of course, this requires that one defines `crossproduct`, the cross product of two vectors. This kind of projection is called “perspective” and can easily be transformed into a parallel projection, like this:

```plaintext
color p;
R + whatever*(o-f) = o + p;
(h crossproduct v) dotproduct p = 0;
```

There are a few problems, though:

- Depending on the positions of \vec{f} and \vec{R} the linear equations may produce divisions by zero. But these equations are quite simple and can be solved in advance so that divisions by zero can be caught as is done in `FEATPOST`.

- \vec{p} is a color, not a pair, so it must be converted. But this is very easy:

  ```plaintext
  x = p dotproduct h;
y = p dotproduct v;
  ```

- if both \vec{R} is a node or control point of a 3D path and the projection is a perspective then the path perspective is no longer a Bézier spline, it is a non-uniform rational basis spline (NURBS). The only way around this is to ignore the problem.

1.1 Exactly how?

Given that the actual way to draw a 3D path depends not only on the definition of that path but also on the kind of projection being used, I propose that the projection be done only at `shipout` time.

A perspective is not an affine transform and cannot be inverted by linear equations. A perspective is a new thing for `METAPOST`.

The parallel projection is an affine transform but `METAPOST` has not yet a framework neither for 3D nor for 4D transforms.

The transition from the actual `METAPOST` to a full–fledged 3D `METAPOST` depends critically on the support for smooth 3D and 4D paths.

Once `METAPOST` is beyond this transition what will certainly show up is the need for full path transforms which may either be affine or not. I propose to call these “generic” transforms as maps. But note that these full path transforms cannot be perspectives because they only map each node and control point of a given path

2I don’t know how to define the cross product in 4D.

3A map may be regarded as an approximation of a perspective.
2 The whole package

2.1 Already on the Tracker

The next most basic 3D and 4D capability that needs to be added to METAPOST is already published as Tracker item # 104: both abs and unitvector must be expanded to accept colors and cmykcolors as arguments.

2.2 Cross product

A good crossproduct for METAPOST would accept numerics, pairs and colors as arguments.

- numerics: the result is 0
- pairs A and B: the result is a color with all parts null except that the bluepart=$Ax*By-Ay*Bx$
- colors: the result is the standard cross product

2.3 angle

```plaintext
color A, B;
angle( A, B ) = angle( abs( A crossproduct B ), A dotproduct B );
```

2.4 Commands to be adapted

The following commands should be adapted to accept 3D (and 4D) points and paths:

- draw undraw drawarrow drawdblarrow
- fill unfill filldraw unfilldraw
- reverse
- precontrol postcontrol
- arclength arctime
- label dotlabel
- slanted shifted rotated scaled xscaled yscaled
- rotatedaround reflectedabout
- bbox
- subpath
- path
- transform transformed identity inverse
- direction of
- point of

And the following commands should be adapted to accept the new 3D and 4D transforms

- xpart ypart xpart xypart yxpart yypart
cyanpart magentapart yellowpart blackpart

2.5 New commands

Colors and cmykcolors should have analogues to z to be wiped–out on beginfig. I propose C for colors and D for cmykcolors. There should exist predefined names for unitary 4D vectors like purecyan = (1,0,0,0); puremagenta = (0,1,0,0), etc.

- zscaled tdtransform tdtransformed fdtransform fdtransformed
- xzpart yzpart zzpart zpart xpart yypart
cpart cmcpart cepart cpart
- mpart mmpart mepart mkpart
This last one mapped is perhaps the most messy of all. It should work like this:

\[
\text{anypath mapped NameOfUserMap;}
\]

where NameOfUserMap is the name of a macro that uses as a single argument each node and control point of the anypath. It returns a new path that may have different dimensionality.

2.6 Commands that should not be touched

One of the problems of extending \texttt{METAPOST} is that somethings really cannot be extended. This is related with the smoothness of 2D paths. With the exception of cusp points, the direction is well–behaved on a 2D path. But on a 3D path (and specially on a 4D path) most directions cannot be found. Also, \texttt{intersections} become exceedingly hard to find.

\footnote{Standard affine transforms keep the dimensionality.}