LuaLaTeX-ja用 jclasses 互換クラス

LuaTeX-ja プロジェクト

2019/04/06

Contents

1 はじめに 1
 1.1 jclasses.dtx からの主な変更点 1

2 LuaTeX-ja の読み込み 2

3 オプションスイッチ 2

4 オプションの宣言 3
 4.1 用紙オプション .. 3
 4.2 サイズオプション .. 4
 4.3 橫置きオプション 4
 4.4 トンボオプション 5
 4.5 面付けオプション 5
 4.6 組方向オプション 5
 4.7 両面、片面オプション 6
 4.8 二段組オプション 6
 4.9 表題ページオプション 6
 4.10 右左起こしオプション 6
 4.11 数式のオプション 6
 4.12 参考文献のオプション 7
 4.13 日本語ファミリ宣言の抑制、和欧文両対応の数式文字 7
 4.14 ドラフトオプション 7
 4.15 フォントメトリックの変更 8
 4.16 オプションの実行 8

5 フォント 9
6 レイアウト

6.1 用紙サイズの決定 ... 13
6.2 段落の形 .. 14
6.3 ページレイアウト .. 14
 6.3.1 縦方向のスペース .. 14
 6.3.2 本文領域 .. 15
 6.3.3 マージン ... 21
6.4 脚注 .. 24
6.5 フロート .. 25
 6.5.1 フロートパラメータ ... 25
 6.5.2 フロートオブジェクトの上限値 27

7 改ページ（日本語 TeX 開発コミュニティ版のみ） 27

8 ページスタイル ... 29

8.1 マークについて .. 29
8.2 plain ページスタイル .. 30
8.3 jplttin ページスタイル .. 30
8.4 headnombre ページスタイル 30
8.5 footnombre ページスタイル .. 31
8.6 headings スタイル ... 31
8.7 bothstyle スタイル .. 32
8.8 myheading スタイル .. 33

9 文書コマンド ... 34

9.1 表題 .. 34
9.2 概要 .. 39
9.3 章見出し ... 40
 9.3.1 マークコマンド ... 40
 9.3.2 カウンタの定義 ... 40
 9.3.3 前付け、本文、後付け 41
 9.3.4 ボックスの組み立て .. 42
 9.3.5 part レベル ... 43
 9.3.6 chapter レベル .. 46
 9.3.7 下位レベルの見出し .. 48
 9.3.8 付録 ... 48
9.4 リスト環境 ... 49
 9.4.1 enumerate 環境 ... 52
このファイルは、LuaLaTeX用の jclasses 互換クラスファイルです。コミュニティ版をベースに作成しています。docstrip プログラムによって、横組用のクラスファイルと縦組用のクラスファイルを作成することができます。
次に docstrip プログラムのためのオプションを示します。

<table>
<thead>
<tr>
<th>オプション</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>article</td>
<td>article クラスを生成</td>
</tr>
<tr>
<td>report</td>
<td>report クラスを生成</td>
</tr>
<tr>
<td>book</td>
<td>book クラスを生成</td>
</tr>
<tr>
<td>10pt</td>
<td>10pt サイズの設定を生成</td>
</tr>
<tr>
<td>11pt</td>
<td>11pt サイズの設定を生成</td>
</tr>
<tr>
<td>12pt</td>
<td>12pt サイズの設定を生成</td>
</tr>
<tr>
<td>bk</td>
<td>book クラス用のサイズの設定を生成</td>
</tr>
<tr>
<td>tate</td>
<td>縦組用の設定を生成</td>
</tr>
<tr>
<td>yoko</td>
<td>横組用の設定を生成</td>
</tr>
</tbody>
</table>

1.1 jclasses.dtx からの主な変更点
全ての変更点を知りたい場合は、jclasses.dtx と ltjclasses.dtx で diff をとって下さい。

- もし

 ! LaTeX Error: Too many math alphabets used in version ****.

 のエラーが起こった場合は、lualatex-math パッケージを読み込んでみて下さい。

- 出力 PDF の用紙サイズが自動的に設定されるようにしてあります。

- 縦組みクラスにおいて、geometry パッケージを読み込んだときに意図通りにならない問題に対応しました。

2 LuaTEX-ja の読み込み
最初に luatexja を読み込みます。

1 \%\<article\report\book\>
2 \textbackslash RequirePackage\{luatexja\}

3 オプションスイッチ
ここでは、後ほど使用するいくつかのコマンドやスイッチを定義しています。
用紙サイズを示すために使います。A4, A5, B4, B5 用紙はそれぞれ、1, 2, 3, 4 として表されます。

\newcounter{@paper}

用紙を横向きにするかどうかのスイッチです。デフォルトは、縦向きです。

\if@landscape \if@landscape \@landscapefalse

組版をするポイント数の一部を保存するために使います。0, 1, 2 のいずれかです。

\newcommand{\@ptsize}{}

二段組時に用いるテンポラリスイッチです。

\if@restonecol \if@restonecol

タイトルページやアブストラクト（概要）を独立したページにするかどうかのスイッチです。report と book スタイルのデフォルトでは、独立したページになります。

\if@titlepage \if@titlepage False
%<article>\@titlepagetrue
%<report|book>\@titlepagetrue

chapter レベルを右ページからはじめるかどうかのスイッチです。横組では奇数ページ、縦組では偶数ページから始まることになります。report クラスのデフォルトは、“no”です。book クラスのデフォルトは、“yes”です。

%<!article>\newif\if@openright

chapter レベルを左ページからはじめるかどうかのスイッチです。日本語 TE\TeX 開発コミュニティ版で新たに追加されました。横組では偶数ページ、縦組では奇数ページから始まることになります。report クラスと book クラスの両方で、デフォルトは“no”です。

%<!article>\newif\if@openleft

スイッチ \@mainmatter が真の場合、本文を処理しています。このスイッチが偽の場合は、\chapter コマンドは見出し番号を出力しません。

%<book>\newif\if@mainmatter \@mainmattertrue

\hour \time \divide\hour by 60\relax \@tempcnta=\hour \multiply\@tempcnta 60\relax \minute \time \advance\minute-\@tempcnta

\if@stysize IM\TeX 2.09 互換モードで、スタイルオプションに adj, a5p などが指定されたときの動作をエミュレートするためのフラグです。

\if@stysize IM\TeX 2.09 互換モードで、スタイルオプションに adj, a5p などが指定されたときの動作をエミュレートするためのフラ格です。
4 オプションの宣言

ここでは、クラスオプションの宣言を行なっています。

4.1 用紙オプション

用紙サイズを指定するオプションです。

\DeclareOption{a4paper}{\setcounter{@paper}{1}\setlength{\paperheight}{297mm}\setlength{\paperwidth}{210mm}}
\DeclareOption{a5paper}{\setcounter{@paper}{2}\setlength{\paperheight}{210mm}\setlength{\paperwidth}{148mm}}
\DeclareOption{b4paper}{\setcounter{@paper}{3}\setlength{\paperheight}{364mm}\setlength{\paperwidth}{257mm}}
\DeclareOption{b5paper}{\setcounter{@paper}{4}\setlength{\paperheight}{257mm}\setlength{\paperwidth}{182mm}}

ドキュメントクラスに、以下のオプションを指定すると、通常よりもテキストを組み立てる領域の広いスタイルとすることができます。

\DeclareOption{a4j}{\setcounter{@paper}{1}\@stysizetrue \setlength{\paperheight}{297mm}\setlength{\paperwidth}{210mm}}
\DeclareOption{a5j}{\setcounter{@paper}{2}\@stysizetrue \setlength{\paperheight}{210mm}\setlength{\paperwidth}{148mm}}
\DeclareOption{b4j}{\setcounter{@paper}{3}\@stysizetrue \setlength{\paperheight}{364mm}\setlength{\paperwidth}{257mm}}
\DeclareOption{b5j}{\setcounter{@paper}{4}\@stysizetrue \setlength{\paperheight}{257mm}\setlength{\paperwidth}{182mm}}

\DeclareOption{a4p}{\setcounter{@paper}{1}\@stysizetrue \setlength{\paperheight}{297mm}\setlength{\paperwidth}{210mm}}
\DeclareOption{a5p}{\setcounter{@paper}{2}\@stysizetrue \setlength{\paperheight}{210mm}\setlength{\paperwidth}{148mm}}
\DeclareOption{b4p}{\setcounter{@paper}{3}\@stysizetrue \setlength{\paperheight}{364mm}\setlength{\paperwidth}{257mm}}
4.2 サイズオプション
基準となるフォントの大きさを指定するオプションです。

4.3 横置きオプション
このオプションが指定されると、用紙の縦と横の長さを入れ換えます。

4.4 トンボオプション
tombow オプションが指定されると、用紙サイズに合わせてトンボを出力します。このとき、トンボの脇に PDF を作成した日付が出力されます。作成日付の出力を抑制するには、tombow ではなく、tombo と指定をします。

ジョブ情報の書式は元々 filename : 2017/3/5(13:3) のような書式でしたが、jsclasses にあわせて桁数固定の filename (2017-03-05 13:03) に直しました。
4.5 面付けオプション

このオプションが指定されると、トンボオプションを指定したときと同じ位置に文章を出力します。作成した PDF をフィルムに面付け出力する場合などに指定します。

\DeclareOption{mentuke}{%
\tombowtrue \tombowdatefalse
\setlength{\@tombowwidth}{\z@}%
\maketombowbox%
}

4.6 縦組方向オプション

このオプションが指定されると、縦組で組版をします。

\DeclareOption{tate}{%
\tate\AtBeginDocument{\message{《縦組モード》}\adjustbaseline}%
}\}

縦組クラスと everyshi パッケージの相性が悪い問題に対処します。この処理は、ZR さんの pxeveryshi パッケージと実質的に同じ内容です。

\AtEndOfFile everyshi{%
\def\@EveryShipout@Output{%
\yoko
\@EveryShipout@Hook
\@EveryShipout@AtNextHook
\global\setbox\luatexoutputbox=\box\luatexoutputbox
}%
\gdef\@EveryShipout@AtNextHook{}%
\@EveryShipout@Org@Shipout\box\luatexoutputbox
}%
\}%
\endinput

4.7 両面、片面オプション

twoside オプションが指定されると、両面印字出力に適した整形を行ないます。

\DeclareOption{oneside}{\twosidefalse}
\DeclareOption{twoside}{\twosidetrue}

4.8 二段組オプション

二段組にするかどうかのオプションです。

\DeclareOption{onecolumn}{\twocolumnfalse}
\DeclareOption{twocolumn}{\twocolumntrue}

8
4.9 表題ページオプション

@titlepage が真の場合は、表題を独立したページに出力します。
102 \DeclareOption{titlepage}{@titlepagetrue}
103 \DeclareOption{notitlepage}{@titlepagefalse}

4.10 右左起こしオプション

chapter を右ページあるいは左ページからはじめるかどうかを指定するオプションです。openleft オプションは日本語 Tex 開発コミュニティによって追加されました。
104 %<!article>\if@compatibility
105 %<book>@openrighttrue
106 %<!article>\else
107 %<!article>\DeclareOption{openright}{@openrighttrue@openleftfalse}
108 %<!article>\DeclareOption{openleft}{@openlefttrue@openrightfalse}
109 %<!article>\DeclareOption{openany}{@openrightfalse@openleftfalse}
110 %<!article>\fi

4.11 数式のオプション

leqno を指定すると、数式番号を数式的左側に出力します。fleqn を指定するとディスプレイ数式を左揃えで出力します。
111 \DeclareOption{leqno}{\input{leqno.clo}}
112 \DeclareOption{fleqn}{\input{fleqn.clo}}

4.12 参考文献のオプション

参考文献一覧を “オープンスタイル” の書式で出力します。これは各ブロックが改行で区切られ、\bibindent のインデントが付く書式です。
113 \DeclareOption{openbib}{{%}
参考文献環境内の最初のいくつかのフックを満たします。
114 \AtEndOfPackage{%
115 \renewcommand\@openbib@code{%
116 \advance\leftmargin\bibindent
117 \itemindent -\bibindent
118 \listparindent \itemindent
119 \parsep \z@%
120 }%
そして、\newblock を再定義します。
121 \renewcommand\newblock{\par}}}

9
4.13 日本語ファミリ宣言の抑制、和欧文両対応の数式文字

pTeX では数式ファミリの数が 16 個だったので日本語ファミリ宣言を抑制する disablejfam オプションが用意されていましたが、LuaTeX では Omega 拡張が取り込まれて数式ファミリは 256 個まで使用できるため、このオプションは必要ありません。ただし、pTeX 2e カーネルでは未だに数式ファミリの数は 16 個に制限されているので、実際に使用可能な数式ファミリの数を増やすためには lualatex-math パッケージを読み込む必要があることに注意が必要です。

mathrmmc オプションは、\texttt{\textup{mathrm} と \texttt{mathbf} を和欧文両対応にするためのクラスオプションです。}

\begin{verbatim}
\if@compatibility
\@mathrmmctrue
\else
\DeclareOption{mathrmmc}{\@mathrmmctrue}
\fi
\end{verbatim}

4.14 ドラフトオプション

draft オプションを指定すると、オーバフルボックスの起きた箇所に、5pt の罫線が引かれます。

\begin{verbatim}
\DeclareOption{draft}{\setlength\overfullrule{5pt}}
\end{verbatim}

4.15 フォントメトリックの変更

LuaTeXJa の標準では、OTF パッケージ由来のメトリックが使われるようになっています。本クラスでは、「pTeX の組版と互換性をできるだけ持たせる」例を提示するため、

- メトリックを min10.tfm ベースの jfm-min.lua に変更。
- 明朝とゴシックは両方とも jfm-min.lua を用いるが、和文処理用グループ挿入時には「違うメトリックを使用」として思わせる。
- pTeX と同様に、「異なるメトリックの 2 つの和文文字」の間には、両者から定めるグループを両方挿入する。
- callback を利用し、標準で用いる jfm-min.lua を、段落始めの括弧が全角二分下がりになるように内部で変更している。

\texttt{\ltj@stdmcfont, \ltj@stdgtfont} による、デフォルトで使われ明朝・ゴシックのフォントの設定に対応しました。この 2 つの命令の値はユーザが日々の利用でそ
の都度指定するものではなく、何らかの理由で非埋め込みフォントが正しく利用できない場合にのみ lualatexja.cfg によってセットされるものです。

\begin{verbatim}
%<*article|report|book>
\directlua{luatexbase.add_to_callback('luatexja.load_jfm',
 function (ji, jn) ji.chars['parbdd'] = 0; return ji end,
 'ltj.jclasses_load_jfm', 1)}
\expandafter\let\csname JY3/mc/m/n/10\endcsname\relax
\DeclareFontShape{JY3}{mc}{m}{n}{<-> s * [0.962216] \ltj@stdmcfont:jfm=min}\{}
\DeclareFontShape{JY3}{gt}{m}{n}{<-> s * [0.962216] \ltj@stdgtfont:jfm=min;jfmvar=goth}\{}
\ltjglobalsetparameter{differentjfm=both}
\directlua{luatexbase.remove_from_callback('luatexja.load_jfm', 'ltj.jclasses_load_jfm')}
\end{verbatim}

4.16 オプションの実行
オプションの実行、およびサイズクラスのロードを行ないます。

\begin{verbatim}
%<*article|report|book>
%<*article>
%<tate>\ExecuteOptions{a4paper,10pt,oneside,onecolumn,final,tate}
%<yoko>\ExecuteOptions{a4paper,10pt,oneside,onecolumn,final}
\%</article>
%<report>
%<tate>\ExecuteOptions{a4paper,10pt,oneside,onecolumn,final,openany,tate}
%<yoko>\ExecuteOptions{a4paper,10pt,oneside,onecolumn,final,openany}
\%</report>
%<book>
%<tate>\ExecuteOptions{a4paper,10pt,twoside,onecolumn,final,openright,tate}
%<yoko>\ExecuteOptions{a4paper,10pt,twoside,onecolumn,final,openright}
%</book>
\ProcessOptions\relax
%<book&tate>\input{ltjtbk1\@ptsize.clo}
%<!book&tate>\input{ltjtsize1\@ptsize.clo}
%<book&yoko>\input{ltjbk1\@ptsize.clo}
%<!book&yoko>\input{ltjsize1\@ptsize.clo}
\end{verbatim}

縦組用クラスファイルの場合は、ここで plext.sty も読み込みます。

\begin{verbatim}
%<tate>\RequirePackage{lltjext}
\%</article|report|book>
\end{verbatim}

5 フォント
ここでは、\LaTeX のフォントサイズコマンドの定義をしています。フォントサイズコマンドの定義は、次のコマンドを用います。

\begin{verbatim}
@setfontsize\size<font-size>(baselineskip)
\end{verbatim}

(font-size) これから使用する、フォントの実際の大きさです。
数値コマンドは、次のように \LaTeX カーネルで定義されています。

\normalsize 基本サイズとするユーザレベルのコマンドは \normalsize です。\LaTeX の内部では
\@normalsize を使用します。
\normalsize マクロは、\abovedisplayskip と \abovedisplayshortskip、および \belowdisplayshortskip の値も設定をします。\belowdisplayskip は、つねに \abovedisplayskip と同値です。
また、リスト環境のトップレベルのパラメータは、つねに \@listI で与えられます。

ここで、ノーマルフォントを選択し、初期化をします。このとき、縦組モードならば、デフォルトのエンコードを変更します。
基準となる長さの設定をします。これらのパラメータは lltjfont.sty で定義されています。基準とする文字を「全角空白」（EUC コード 0xA1A1）から「漢」（JIS コード 0x3441）へ変更しました。

コマンドの定義は、\normalsize に似ています。

\newcommand{\small}{%
\@setfontsize{\small}{\xipt{11}}%
\abovedisplayskip 8.5\p@ \@plus3\p@ \@minus4\p@%
\abovedisplayshortskip \z@ \@plus2\p@
\belowdisplayshortskip 4\p@ \@plus2\p@ \@minus2\p@%
\def\@listi{\leftmargin\leftmargini \topsep 4\p@ \@plus2\p@ \@minus2\p@%
\parsep 2\p@ \@plus\p@ \@minus\p@%
\itemsep \parsep}%
\%}</10pt>
%<11pt>
\@setfontsize{\small}{\xipt{11}}%
\abovedisplayskip 10\p@ \@plus3\p@ \@minus5\p@%
\abovedisplayshortskip \z@ \@plus3\p@
\belowdisplayshortskip 6\p@ \@plus3\p@ \@minus3\p@%
\def\@listi{\leftmargin\leftmargini \topsep 6\p@ \@plus3\p@ \@minus5\p@%
\parsep 3\p@ \@plus\p@ \@minus\p@%
\itemsep \parsep}%
\%}</11pt>
%<12pt>
\@setfontsize{\small}{\xipt{13.6}}%
\abovedisplayskip 11\p@ \@plus3\p@ \@minus6\p@%
\abovedisplayshortskip \z@ \@plus3\p@
\belowdisplayshortskip 6.5\p@ \@plus3.5\p@ \@minus3\p@%
\def\@listi{\leftmargin\leftmargini \topsep 9\p@ \@plus3\p@ \@minus5\p@%
\parsep 4.5\p@ \@plus2\p@ \@minus\p@%
\itemsep \parsep}%
\%}</12pt>
\belowdisplayskip \abovedisplayskip}
コマンドの定義は、normalsizeに似ています。

これらは先ほどのマクロよりも簡単です。これらはフォントサイズを変更だけで、リスト環境とディスプレイ数式のパラメータは変更しません。

これらは先ほどのマクロよりも簡単です。これらはフォントサイズを変更するだけで、リスト環境とディスプレイ数式のパラメータは変更しません。

これらは先ほどのマクロよりも簡単です。これらはフォントサイズを変更するだけで、リスト環境とディスプレイ数式のパラメータは変更しません。
このクラスファイルが意図する和文スケール値（1 zw ÷ 要求サイズ）を表す実数値マクロ \Cjascale を定義します。この jclasses 互換クラスでは、LuaTeX-ja 読み込み時の和文スケール値がそのまま使用され、その値は 0.962216 です。

\Cjascale

6 レイアウト

6.1 用紙サイズの決定

\columnsep \columnsep は、二段組のときの、左右（あるいは上下）の段間の幅です。このスペースの中央に \columnseprule の幅の罫線が引かれます。

\pagewidth 出力の PDF の用紙サイズをここで設定しておきます。tombow が真のときは 2 インチ足しておきます。
\stockwidth [2015-10-18 LTJ] LuaTeX 0.81.0 ではプリミティブの名称変更がされたので、それに合わせておきます。
\stockheight [2016-07-19 LTJ] luatex.def が新しくなったことに対応する aminophen さんのパッチを取り込みました。
に合わせ、トンボオプションが指定されているとき「だけ」stockwidth, stockheight を定義するようにしました。aminophen さん、ありがとうございます。

\newlength{stockwidth}
\newlength{stockheight}
\setlength{stockwidth}{\paperwidth}
\setlength{stockheight}{\paperheight}
\advance stockwidth 2in
\advance stockheight 2in
\ifdefined\pdfpagewidth
\setlength{\pdfpagewidth}{\stockwidth}
\setlength{\pdfpageheight}{\stockheight}
\else
\setlength{\pagewidth}{\stockwidth}
\setlength{\pageheight}{\stockheight}
\fi
\else
\ifdefined\pdfpagewidth
\setlength{\pdfpagewidth}{\paperwidth}
\setlength{\pdfpageheight}{\paperheight}
\else
\setlength{\pagewidth}{\paperwidth}
\setlength{\pageheight}{\paperheight}
\fi
\fi

6.2 段落の形

\lineskip これらの値は、行が近付き過ぎたときの \TeX の動作を制御します。
\lineskip{1\p@}
\normallineskip{1\p@}
\baselinestretch これは、\baselineskip の倍率を示すために使います。デフォルトでは、何もしません。このコマンドが "empty" でない場合、\baselineskip の指定の plus や minus 部分は無視されることに注意してください。
\renewcommand{\baselinestretch}{1}
\parskip は段落間に挿入される、縦方向の追加スペースです。\parindent は段落の先頭の字下げ幅です。
\parskip{0\p@ \@plus \p@}
\parindent{1\Cwd}
\smallskipamount \medskipamount \bigskipamount これら 3 つのパラメータの値は、\LaTeX カーネルの中で設定されています。これらはおそらく、サイズオプションの指定によって変えるべきです。しかし、\LaTeX 2.09
や\LaTeX{}2の以前のリリースの両方との互換性を保つために、これらはまだ同じ値としています。

\begin{verbatim}
\setlength\smallskipamount{3\p@ \@plus 1\p@ \@minus 1\p@}
\setlength\medskipamount{6\p@ \@plus 2\p@ \@minus 2\p@}
\setlength\bigskipamount{12\p@ \@plus 4\p@ \@minus 4\p@}
\end{verbatim}

\@lowpenalty \nopagebreak と \nolinebreak コマンドは、これらのコマンドが置かれた場所に、ペナルティを起いて、分割を制御します。置かれるペナルティは、コマンドの引数によって、\@lowpenalty, \@medpenalty, \@highpenalty のいずれかが使われます。

\begin{verbatim}
\@lowpenalty 51
\@medpenalty 151
\@highpenalty 301
\end{verbatim}

6.3 ページレイアウト

6.3.1 縦方向のスペース

\headheight \headsep は、ヘッダが入るボックスの高さです。\headsep は、ヘッダの下端と本文領域との間の距離です。\topskip は、本文領域の上端と1行目のテキストのベースラインとの距離です。

\begin{verbatim}
\if@stysize
 \ifnum\c@c@paper=2 % A5
 \setlength\headsep{6mm}
 \else % A4, B4, B5 and other
 \setlength\headsep{8mm}
 \fi
\else
 \setlength\headsep{8mm}
\fi
\end{verbatim}

\footskip は、本文領域の下端とフッタの下端との距離です。フッタのボックスの高さを示す、\footheight は削除されました。
TEXのプリミティブレジスタ \maxdepthは、\topskipと同じような働きをします。\@maxdepthレジスタは、つねに\maxdepthのコピーでなくてはいけません。これは\begin{document}の内部で設定されます。\TeXと\LaTeX2.09では、\maxdepthは4ptに固定です。\LaTeX2εでは、\maxdepth+\topskipを基本サイズの1.5倍にしたいので、\maxdepthを\topskipの半分の値で設定します。
\if\@compatibility
\setlength\maxdepth{4\p@}
\else
\setlength\maxdepth{.5\topskip}
\fi

6.3.2 本文領域
\textheightと\textwidthは、本文領域の通常の高さと幅を示します。縦組でも横組でも、“高さ”は行数を、“幅”は字詰めを意味します。後ほど、これらの長さに\topskipの値が加えられます。
\textwidth基本組の字詰めです。
互換モードの場合：
\if\@compatibility
互換モード：adjやb5jのクラスオプションが指定された場合の設定：
\if\@stysize
\ifnum\c@@paper=2 % A5
\if\@landscape
\setlength\textwidth{42\Cwd}
\else
\setlength\textwidth{25\Cwd}
\fi
\else
\setlength\textwidth{38\Cwd}
\fi
\else
\setlength\textwidth{28\Cwd}
\fi
\fi
\fi
\fi
\else\ifnum\c@@paper=3 \% B4
%<10pt&yoko> \setlength\textwidth{75\Cwd}
%<11pt&yoko> \setlength\textwidth{69\Cwd}
%<12pt&yoko> \setlength\textwidth{63\Cwd}
%<10pt&tate> \setlength\textwidth{53\Cwd}
%<11pt&tate> \setlength\textwidth{49\Cwd}
%<12pt&tate> \setlength\textwidth{44\Cwd}
\else
%<10pt&yoko> \setlength\textwidth{60\Cwd}
%<11pt&yoko> \setlength\textwidth{55\Cwd}
%<12pt&yoko> \setlength\textwidth{50\Cwd}
%<10pt&tate> \setlength\textwidth{85\Cwd}
%<11pt&tate> \setlength\textwidth{76\Cwd}
%<12pt&tate> \setlength\textwidth{69\Cwd}
\fi
\else\ifnum\c@@paper=4 \% B5
%<10pt&yoko> \setlength\textwidth{60\Cwd}
%<11pt&yoko> \setlength\textwidth{55\Cwd}
%<12pt&yoko> \setlength\textwidth{50\Cwd}
%<10pt&tate> \setlength\textwidth{34\Cwd}
%<11pt&tate> \setlength\textwidth{31\Cwd}
%<12pt&tate> \setlength\textwidth{28\Cwd}
\else
%<10pt&yoko> \setlength\textwidth{37\Cwd}
%<11pt&yoko> \setlength\textwidth{34\Cwd}
%<12pt&yoko> \setlength\textwidth{31\Cwd}
%<10pt&tate> \setlength\textwidth{55\Cwd}
%<11pt&tate> \setlength\textwidth{51\Cwd}
%<12pt&tate> \setlength\textwidth{47\Cwd}
\fi
\else % A4 ant other
\if@landscape
%<10pt&yoko> \setlength\textwidth{73\Cwd}
%<11pt&yoko> \setlength\textwidth{68\Cwd}
%<12pt&yoko> \setlength\textwidth{61\Cwd}
%<10pt&tate> \setlength\textwidth{41\Cwd}
%<11pt&tate> \setlength\textwidth{38\Cwd}
%<12pt&tate> \setlength\textwidth{35\Cwd}
\else
%<10pt&yoko> \setlength\textwidth{47\Cwd}
%<11pt&yoko> \setlength\textwidth{43\Cwd}
%<12pt&yoko> \setlength\textwidth{40\Cwd}
%<10pt&tate> \setlength\textwidth{67\Cwd}
%<11pt&tate> \setlength\textwidth{61\Cwd}
%<12pt&tate> \setlength\textwidth{57\Cwd}
\fi
\fi\fi\fi
互換モード：デフォルト設定

2e モードの場合：

2e モード：a4j や b5j のクラスオプションが指定された場合の設定：二段組では用紙サイズの8割、一段組では用紙サイズの7割を版面の幅として設定します。

2e モード：デフォルト設定
基本組の行数です。

互換モードの場合:

\if@compatibility

互換モード：a4j や b5j のクラスオプションが指定された場合の設定:

\if@stysize
\ifnum\c@@paper=2 % A5
%<10pt&yoko> \setlength\textheight{17\Cvs}
%<11pt&yoko> \setlength\textheight{17\Cvs}
%<12pt&yoko> \setlength\textheight{16\Cvs}
%<10pt&tate> \setlength\textheight{26\Cvs}
%<11pt&tate> \setlength\textheight{26\Cvs}
%<12pt&tate> \setlength\textheight{25\Cvs}
\else
%<10pt&yoko> \setlength\textheight{28\Cvs}
%<11pt&yoko> \setlength\textheight{25\Cvs}
%<12pt&yoko> \setlength\textheight{24\Cvs}
%<10pt&tate> \setlength\textheight{16\Cvs}
%<11pt&tate> \setlength\textheight{16\Cvs}
%<12pt&tate> \setlength\textheight{15\Cvs}
\fi
\else\ifnum\c@@paper=3 % B4
\fi
\else\ifnum\c@@paper=3 % B4
\fi
\else
%<10pt&yoko> \setlength\textheight{38\Cvs}
%<11pt&yoko> \setlength\textheight{36\Cvs}
%<12pt&yoko> \setlength\textheight{34\Cvs}
%<10pt&tate> \setlength\textheight{48\Cvs}
%<11pt&tate> \setlength\textheight{48\Cvs}
%<12pt&tate> \setlength\textheight{45\Cvs}
\else
\fi
%<10pt&yoko> \setlength\textheight{57\Cvs}
%<11pt&yoko> \setlength\textheight{55\Cvs}
%<12pt&yoko> \setlength\textheight{52\Cvs}
%<10pt&tate> \setlength\textheight{33\Cvs}
%<11pt&tate> \setlength\textheight{33\Cvs}
%<12pt&tate> \setlength\textheight{31\Cvs}
\fi
\fi
\fi
互換モード：デフォルト設定

2e モードの場合：

22
2e モード：a4j や b5j のクラスオプションが指定された場合の設定：縦組では用紙サイズの 70%(book) か 78%(article,report)、横組では 70%(book) か 75%(article,report) を版面の高さに設定します。

2e モード：デフォルト値

最後に、\textwidth に \topskip の値を加えます。

\topmargin は、"印字可能領域"—用紙の上端から 1 インチ内側—の上端からヘッダ部分の上端までの距離です。

\toppin
dpoint による場合：

\topmargin は、"印字可能領域"—用紙の上端から 1 インチ内側—の上端からヘッダ部分の上端までの距離です。

\topmargin
2e モードの場合:

\fi
\else
\setlength{\topmargin}{32mm}
\fi
\addtolength{\topmargin}{-1in}
\addtolength{\topmargin}{-\headheight}
\addtolength{\topmargin}{-\headsep}
%</tate>
\if@stysize
\ifnum\c@c@paper=2 % A5
\addtolength{\topmargin}{-1.3in}
\else
\addtolength{\topmargin}{-2.0in}
\fi
\else
%<yoko> \addtolength{\topmargin}{-2.0in}
%<tate> \addtolength{\topmargin}{-2.8in}
\fi
\addtolength{\topmargin}{-\footskip}
\if@twocolumn
\setlength{\marginparsep}{10\p@}
\else
%<tate> \setlength{\marginparsep}{15\p@}
%<yoko> \setlength{\marginparsep}{10\p@}
\fi
\fi
\addtolength{\topmargin}{-.5\topmargin}
\fi
\@settopoint{\topmargin}
\marginparsep
\marginparsep は、本文と傍注の間にあけるスペースの幅です。横組では本文の左
\marginparpush
\marginparpush は、本文と傍注の間にあけるスペースの幅です。横組では本文の左
(right)端と傍注、縦組では本文の下（上）端と傍注の間になります。\marginparpush
は、傍注と傍注との間のスペースの幅です。
\if@twocolumn
\setlength{\marginparsep}{10\p@}
\else
\setlength{\marginparsep}{15\p@}
\fi
\fi
\setlength{\marginparpush}{7\p@}
\langle yoko>
\setlength{\marginparpush}{7\p@}
\langle yoko>
\setlength{\marginparpush}{7\p@}
\langle yoko>
まず、互換モードでの長さを示します。

互換モード、縦組の場合:
\setlength\oddsidemargin{0\p@}
\setlength\evensidemargin{0\p@}

互換モード、横組、book クラスの場合:
\setlength\oddsidemargin{.5in}
\setlength\evensidemargin{1.5in}
\setlength\marginparwidth{.75in}

互換モード、横組、report と article クラスの場合:
\setlength\oddsidemargin{44\p@}
\setlength\evensidemargin{82\p@}
\setlength\marginparwidth{107\p@}

互換モード、横組、二段組の場合:
\setlength\oddsidemargin{60\p@}
\setlength\evensidemargin{90\p@}

\setlength\oddsidemargin{30\p@}
\setlength\evensidemargin{30\p@}
縦組、横組にかかわらず、スタイルオプション設定ではゼロです。

互換モードでない場合：

\if@stysize
 \if@twocolumn\else
 \setlength\oddsidemargin{0pt}
 \setlength\evensidemargin{0pt}
 \fi
\fi

\setlength\@tempdima{\paperwidth}
%<tate> \addtolength\@tempdima{-\textheight}
%<yoko> \addtolength\@tempdima{-\textwidth}
\addtolength\oddsidemargin{-1in}
\addtolength\evensidemargin{-2in}
%<tate> \addtolength\evensidemargin{-\textheight}
%<yoko> \addtolength\evensidemargin{-\textwidth}
\addtolength\evensidemargin{-\oddsidemargin}
\@settopoint\oddsidemargin % 1999.1.6
\@settopoint\evensidemargin
\marginparwidth を計算します。ここで、\@tempdima の値は、\paperwidth - \textwidth です。

\if@twoside
 \setlength\marginparwidth{.6\@tempdima}
 \addtolength\marginparwidth{-.4in}
\else
 \setlength\marginparwidth{.5\@tempdima}
 \addtolength\marginparwidth{-.4in}
\fi
\ifdim \marginparwidth >2in
 \setlength\marginparwidth{2in}
\fi
%</yoko>
縦組の場合は、少し複雑です。

6.4 脚注

```
\footnotesep
\footnotesep
\footnotepar
\footnotesep
\footnotepar
\footnotesep
\footnotesep
```

6.5 フロート

すべてのフロートパラメータは、\LaTeX のカーネルでデフォルトが定義されています。そのため、カウンタ以外のパラメータは \renewcommand で設定する必要があります。

6.5.1 フロートパラメータ

```
\floatsep
\textfloatsep
\intextsep
```

\floatsep は、ページ上部あるいは下部のフロート間の距離です。\textfloatsep は、ページ上部あるいは下部のフロートと本文との距離です。\intextsep は、本文の途中に出力されるフロートと本文との距離です。
二段組モードで、\textwidth の幅を持つ、段抜きのフロートオブジェクトが本文と同じページに置かれるとき、本文とフロートとの距離は、\dblfloatsep と \dbltextfloatsep によって制御されます。

\dblfloatsep は、ページ上部あるいは下部のフロートと本文との距離です。\dbltextfloatsep は、ページ上部あるいは下部のフロート間の距離です。

フロートオブジェクトが、独立したページに置かれるとき、このページのレイアウトは、次のパラメータで制御されます。これらのパラメータは、一段組モードか、二段組モードでの一段出力のフロートオブジェクトに対して使われます。

ページ上部では、\@fptop の伸縮長が挿入されます。ページ下部では、\@fpbot の伸縮長が挿入されます。フロート間には \@fpsep が挿入されます。

なお、そのページを空白で満たすために、\@fptop と \@fpbot の少なくともどちらか一方に plus ...fil を含めてください。
6.5.2 フロートオブジェクトの上限値

\c@topnumber topnumber は、本文ページの上部に出力できるフロートの最大数です。
\c@bottomnumber bottomnumber は、本文ページの下部に出力できるフロートの最大数です。
\c@totalnumber totalnumber は、本文ページに出力できるフロートの最大数です。
\c@dbltopnumber dbltopnumber は、二段組時における、本文ページの上部に出力できる段抜きのフロートの最大数です。
\topfraction これは、本文ページの上部に出力されるフロートが占有できる最大の割り合です。
801 \renewcommand{\topfraction}{.7}

\bottomfraction これは、本文ページの下部に出力されるフロートが占有できる最大の割り合です。
802 \renewcommand{\bottomfraction}{.3}

\textfraction これは、本文ページに最低限、入らなくてはならない本文の割り合です。
803 \renewcommand{\textfraction}{.2}

\floatpagefraction これは、フロートだけのページで最低限、入らなくてはならないフロートの割り合です。
804 \renewcommand{\floatpagefraction}{.5}

\dbltopfraction これは、2段組時における本文ページに、2段抜きのフロートが占めることができる最大の割り合です。
805 \renewcommand{\dbltopfraction}{.7}

\dblfloatpagefraction これは、2段組時におけるフロートだけのページに最低限、入らなくてはならない2段抜きのフロートの割り合です。
806 \renewcommand{\dblfloatpagefraction}{.5}

7 改ページ（日本語 \TeX 開発コミュニティ版のみ）

\pltx@cleartorightpage \pltx@cleartoleftpage \pltx@cleartooddpage \pltx@cleartoevenpage \cleardoublepage 命令は、\LaTeX カーネルでは「奇数ページになるまでページを繰る命令」として定義されています。しかし p\LaTeX カーネルでは、アスキーの方針により「横組では奇数ページになるまで、縦組では偶数ページになるまでページを繰る命令」に再定義されています。すなわち、p\LaTeX では縦組でも横組でも右ページになるまでページを繰ることになります。

\pltx@cleartorightpage：右ページになるまでページを繰る命令
\pltx@cleartoleftpage：左ページになるまでページを繰る命令
\pltx@cleartooddpage：奇数ページになるまでページを繰る命令
\pltx@cleartoevenpage：偶数ページになるまでページを繰る命令
\cleardoublepage は \LaTeX の \cleardoublepage に似ていますが、上の 2 つに合わせるため \thispagestyle{empty} を追加してあります。

\cleardoublepage そして report と book クラスの場合は、ユーザ向け命令である \cleardoublepage を、openright オプションが指定されている場合は \pltx@cleartorightpage に、openleft オプションが指定されている場合は \pltx@cleartoleftpage に、それぞれ \let します。openany の場合は \LaTeX ハードウェアの定義のままです。

8 ページスタイル

つぎの 6 種類のページスタイルを使用できます。empty は \ltpage.dtx で定義されています。
ページスタイル foo は、\ps@foo コマンドとして定義されます。

これらは \ps@... から呼び出され、ヘッダとフッタを出力するマクロです。

\@evenhead 奇数ページのヘッダを出力
\@oddhead 奇数ページのヘッダを出力
\@evenfoot 偶数ページのフッタを出力
\@oddfoot 偶数ページのフッタを出力

これらの内容は、横組の場合は \textwidth の幅を持つ \hbox に入れられ、縦組の場合は \textheight の幅を持つ \hbox に入れられます。

8.1 マークについて

ヘッダに入る章番号や章見出しは、見出しコマンドで実行されるマークコマンドで決定されます。ここでは、実行されるマークコマンドの定義を行なっています。これらのマークコマンドは、\TeX の mark 機能を用いて、’left’ と ‘right’ の 2 種類のマークを生成するように定義しています。

\markboth{{\sc LEFT}}{{\sc RIGHT}}: 両方のマークに追加します。
\markright{{\sc RIGHT}}: ‘右’ マークに追加します。
\leftmark: \@oddhead, \@oddfoot, \@evenhead, \@evenfoot マクロで使われ、現在の “左” マークを出力します。\leftmark は \TeX の \botmark コマンドのような働きをします。初期値は空でなくてはいけません。
\rightmark: \@oddhead, \@oddfoot, \@evenhead, \@evenfoot マクロで使われ、現在の “右” マークを出力します。\rightmark は \TeX の \firstmark コマンドのような働きをします。初期値は空でなくてはいけません。

マークコマンドの動作は、左マークの‘範囲内の’ 右マークのために合理的になっています。たとえば、左マークは \chapter コマンドによって変更されます。そして右マークは \section コマンドによって変更されます。しかし、同一ページに複数の \markboth コマンドが現れたとき、おかしな結果となることがあります。

\tableofcontents のようなコマンドは、\@mkboth コマンドを用いて、あるページスタイルの中でマークを設定しなくてはなりません。\@mkboth は、\ps@... コ
マンドによって、\markboth（ヘッダを設定する）か、\@gobbletwo（何もしない）に \let されます。

8.2 plain ページスタイル
\ps@plain jpl@in に \let するために、ここで定義をします。
834 \def\ps@plain{\let\@mkboth\@gobbletwo
835 \let\ps@jpl@in\ps@plain
836 \let\@oddhead\@empty
837 \def\@oddfoot{\reset@font\hfil\thepage\hfil}%
838 \let\@evenhead\@empty
839 \let\@evenfoot\@oddfoot}

8.3 jpl@in ページスタイル
\ps@jpl@in jpl@in スタイルは、クラスファイル内部で使用するものです。LATEX では、book クラスを headings としています。しかし、\tableofcontents コマンドの内部では plain として設定されるため、一つの文書でのページ番号の位置が上下に出力されることになります。
そこで、ここでは \tableofcontents や \theindex のページスタイルを jpl@in にし、実際に出力される形式は、ほかのページスタイルで \let をしています。したがって、headings のとき、目次ページのページ番号はヘッダ位置に出力され、plain のときには、フッタ位置に出力されます。
ここで、定義をしているのは、その初期値です。
840 \let\ps@jpl@in\ps@plain

8.4 headnombre ページスタイル
\ps@headnombre headnombre スタイルは、ヘッダにページ番号のみを出力します。
841 \def\ps@headnombre{\let\@mkboth\@gobbletwo
842 \let\ps@jpl@in\ps@headnombre
843 \%<yoko> \def\@evenhead{\thepage\hfil}%
844 \%<yoko> \def\@oddhead{\hfil\thepage}%
845 \%<tate> \def\@evenhead{\hfil\thepage}%
846 \%<tate> \def\@oddhead{\thepage\hfil}%
847 \let\@oddfoot\@empty\let\@evenfoot\@empty}

8.5 footnombre ページスタイル
\ps@footnombre footnombre スタイルは、フッタにページ番号のみを出力します。
848 \def\ps@footnombre{\let\@mkboth\@gobbletwo
849 \let\ps@jpl@in\ps@footnombre
850 \%<yoko> \def\@evenfoot{\thepage\hfil}%
8.6 headings スタイル

headings スタイルは、ヘッダに見出しとページ番号を出力します。

\ps@headings
このスタイルは、両面印刷と片面印刷とで形式が異なります。

\if@twoside
横組の場合は、奇数ページが右に、偶数ページが左にきます。縦組の場合は、奇数ページが左に、偶数ページが右にきます。

\def\ps@headings{\let\ps@jpl@in\ps@headnombre
\let\@oddfoot\@empty\let\@evenfoot\@empty
%<yoko> \def\@evenhead{"rightmark}\hfil\thepage}\
%<tate> \def\@evenhead{\thepage\hfil"rightmark}\
%<yoko> \def\@oddhead{"leftmark}\hfil\thepage}\
%<tate> \def\@oddhead{\thepage\hfil"leftmark}\
\let\@mkboth\markboth
}%<*article>
864 \def\sectionmark##1{\markboth{"\ifnum \c@secnumdepth >\z@ \thesection.\hskip1\zw\fi
##1}}%
865 \def\subsectionmark##1{\markright{"\ifnum \c@secnumdepth >\@ne \thesubsection.\hskip1\zw\fi
##1}}%
}%<*report|book>
866 \def\chaptermark##1{\markboth{"\ifnum \c@secnumdepth >\m@ne
%<book> \if@mainmatter
\@chapapp \thechapter\@chappos\hskip1\zw
%<book> \else
\fi
867 \fi
868 %</report|book>
869 }

片面印刷の場合:
870 \else % if not twoside
871 \def\ps@headings{\let\ps@jpl@in\ps@headnombre
872 \let\@oddfoot\@empty
873 %<yoko> \def\@evenhead{"rightmark}\hfil\thepage}\
874 %<tate> \def\@oddhead{\thepage\hfil"rightmark}\
875 %</report|book>
876 }

片面印刷の場合：
8.7 bothstyle スタイル

bothstyle スタイルは、ヘッダに見出しを、フッタにページ番号を出力します。このスタイルは、両面印刷と片面印刷とで形式が異なります。
8.8 myheadingスタイル

myheadings ページスタイルは簡潔に定義されています。ユーザがページスタイルを設計するときのヒナ型として使用することができます。
9 文書コマンド

9.1 表題

\title 文書のタイトル、著者、日付の情報のための、これらの3つのコマンドはltsect.dtxで提供されています。これらのコマンドは次のように定義されています。

\author マクロのデフォルトは、今日の日付です。

\date \today

通常の環境では、ページの最初と最後を除き、タイトルページ環境は何もしません。また、ページ番号の出力を抑制します。レポートスタイルでは、ページ番号を1にリセットし、そして最後で1に戻します。互換モードでは、ページ番号はゼロに設定されますが、右起こしページ用のページパラメータでは誤った結果になります。二段組スタイルでも一段組のページが作られます。

日本語TEX開発コミュニティによる変更：上にあるのはアスキー版の説明です。改めてアスキー版の挙動を整理すると、以下のようにになります。

1. アスキー版では、タイトルページの番号を必ず1にリセットしていましたが、これは正しくありません。これは、タイトルページが奇数ページ目か偶数ページ目かに関わらず、レイアウトだけ奇数ページ用が適用されることからです。さらに、タイトルの次のページも偶数のページ番号を持ってしまうため、両面印刷で奇数ページと偶数ページが交互に出なくなるという問題もあります。

2. アスキー版bookクラスは、タイトルページを必ず\cleardoublepageで始めしていました。pLATEXカーネルでの\cleardoublepageの定義から、縦組の既定ではタイトルが偶数ページ目に出ることになります。これ自体が正しくないと断定することはできませんが、タイトルのページ番号を1にリセットすることと合わさって、偶数ページに送ったタイトルに奇数ページ用レイアウトが適用されてしまうという結果は正しくありません。

そこで、コミュニティ版ではタイトルのレイアウトが奇数ページページに送るという挙動を支持し、bookクラスではタイトルページを奇数ページ目に送ることにしました。これでタイトルページが表紙らしく見えるようになります。また、reportクラスのようなタイトルが成り行きに従って出る場合には

- 奇数ページ目に出る場合、ページ番号を1（奇数）にリセット
• 偶数ページ目に出る場合、ページ番号を 0（偶数）にリセット
としました。
一つめの例を考えます。
\documentclass{tbook}
\title{タイトル}\author{著者}
\begin{document}
\maketitle
\chapter{チャプター}
\end{document}
アスキーパージングでの結果は
1 ページ目：空白（ページ番号 1 は非表示）
2 ページ目：タイトル（奇数レイアウト、ページ番号 1 は非表示）
3 ページ目：チャプター（偶数レイアウト、ページ番号 2）
ですが、仮に最初の空白ページさえなければ
1 ページ目：タイトルすなわち表紙（奇数レイアウト、ページ番号 1 は非表示）
2 ページ目：チャプター（偶数レイアウト、ページ番号 2）
とみなせるため、コミュニティ版では空白ページを発生させないようにしました。
二つめの例を考えます。
\documentclass{tbook}
\title{タイトル}\author{著者}
\begin{document}
test文章\maketitle
\chapter{チャプター}
\end{document}
アスキーパージングでの結果は
1 ページ目：テスト文章（奇数レイアウト、ページ番号 1）
2 ページ目：タイトル（奇数レイアウト、ページ番号 1 は非表示）
3 ページ目：チャプター（偶数レイアウト、ページ番号 2）
ですが、これでは奇数と偶数のページ番号が交互になっていないので正しくありません。そこで、コミュニティ版では
1 ページ目：テスト文章（奇数レイアウト、ページ番号 1）
2 ページ目：空白ページ（ページ番号 2 は非表示）
3 ページ目：タイトル（奇数レイアウト、ページ番号 1 は非表示）
4 ページ目：チャプター（偶数レイアウト、ページ番号 2）
と直しました。
なお、pLATEX 2.09 互換モードはアスキー版のまま、すなわち「ページ番号をゼロに設定」としてあります。これは、横組の右起こしの挙動としては誤りですが、縦組の右起こしの挙動としては一応正しくなっているといえます。

最初に互換モードの定義を作ります。

そして、LATEX ネイティブのための定義です。

両面モードでなければ、タイトルページの直後のページのページ番号も1にします。

このコマンドは、表題を作成し、出力します。表題ページを独立させるかどうかによって定義が異なります。report と book クラスのデフォルトは独立した表題です。article クラスはオプションで独立させることができられます。

縦組のときは、\thanks コマンドを \p@thanks に \let します。このコマンドは\footnotetext を使わず、直接、文字を \thanks に格納していきます。

著者名の脇に表示される合込は直立した数字、注釈側は横に寝た数字となっていましたが、不自然なので \hbox\{yoko ...\}を追加し、両方とも直立するようにしました。
footnote カウンタをリセットし、thanks と maketitle コマンドを無効にし、いくつかの内部マクロを空にして格納領域を節約します。

タイトルが組版されたら、title コマンドなどの宣言を無効にすることができます。and の定義は、author の引数でのみ使用しますので、破棄します。
ここでグループを閉じ、footnote カウンタをリセットし、\thanks, \maketitle, \@maketitle を無効にし、いくつかの内部マクロを空にして格納領域を節約します。

\@maketitle 独立した表題ページを作らない場合の、表題の出力形式です。

9.2 概要

abstract 要約文のための環境です。bookクラスでは使えません。reportスタイルと、titlepageオプションを指定したarticleスタイルでは、独立したページに出力されます。

9.3 章見出し

9.3.1 マークコマンド

\chaptermark \...mark コマンドを初期化します。これらのコマンドはページスタイルの定義で使われます（第8節参照）。これらのたいていのコマンドはltsect.dtxですでに定
義されています。

9.3.2 カウンタの定義

\c@secnumdepth secnumdepth には、番号を付ける、見出しコマンドのレベルを設定します。

\c@chapter これらのカウンタは見出し番号に使われます。最初の引数は、二番目の引数が増加するたびにリセットされます。二番目のカウンタはすでに定義されているものでなくてはいけません。

\c@subsection くってはいけません。

\c@subsubsection
\c@paragraph
\c@subparagraph
\thepart theCTR が実際に出力される形式の定義です。

\thechapter \arabic{COUNTER} は、COUNTER の値を算用数字で出力します。
\thesection \roman{COUNTER} は、COUNTER の値を小文字のローマ数字で出力します。
\thesubsection \Roman{COUNTER} は、COUNTER の値を大文字のローマ数字で出力します。
\thesubsubsection \alph{COUNTER} は、COUNTER の値を 1 = a, 2 = b のように出力します。
\theparagraph \Alph{COUNTER} は、COUNTER の値を 1 = A, 2 = B のように出力します。
\thesubparagraph

\Kanji{COUNTER} は、COUNTER の値を漢数字で出力します。
\rensuji{⟨obj⟩} は、⟨obj⟩ を横に並べて出力します。したがって、横組のときには、何も影響しません。
\@chapapp の初期値は \"prechaptername\" です。
\@chappos の初期値は \"postchaptername\" です。
\appendix コマンドは \@chapapp を \"appendixname\" に、\@chappos を空に再定義します。

9.3.3 前付け、本文、後付け

\frontmatter 一冊の本は論理的に3つに分割されます。表題や目次や「はじめに」あるいは権利などの前付け、そして本文、それから用語集や索引や奥付けなどの後付けです。
\mainmatter 日本語 \TeX 開発コミュニティによる補足： \LaTeX\ の classes.dtx は、1996/05/26 (v1.3r) と 1998/05/05 (v1.3y) の計2回、\frontmatter と \mainmatter の定義を修正しています。一回目はこれらの命令を openany オプションに応じて切り替え、二回目はそれを元に戻しています。アスキーによる jclasses.dtx は、1997/01/15 に一回目の修正に追従しましたが、二回目の修正には追随していません。コミュニティ版では、一旦はアスキーによる仕様を維持しようと考えました (2016/11/22) が、以下の理由により二回目の修正にも追従することにしました (2017/03/05)。
アスキー版での `\frontmatter` と `\mainmatter` の改ページ挙動は

`openright` なら `\cleardoublepage`、`openany` なら `\clearpage` を実行

というものでした。しかし、`\frontmatter` 及び `\mainmatter` はノンブルを 1 にリセットしますから、改ページの結果が偶数ページ目になる場合にノンブルが偶奇逆転してしまいました。このままでは `openany` の場合に両面印刷がうまくいかないため、新しいコミュニティ版では

必ず `\pltx@cleartooddpage` を実行

としました。これは両面印刷 (twoside) の場合は奇数ページに送り、片面印刷 (oneside) の場合は単に改ページとなります。（参考：latex/2754）

```latex
\newcommand{\frontmatter}{%
  \pltx@cleartooddpage
  @mainmatterfalse\pagenumbering{roman}%
}\newcommand{\mainmatter}{%
  \pltx@cleartooddpage
  @mainmattertrue\pagenumbering{arabic}%
}\newcommand{\backmatter}{%
  if@openleft \cleardoublepage \else
  if@openright \cleardoublepage \else \clearpage \fi \fi
  @mainmatterfalse}
%</book>
```

9.3.4 ボックスの組み立て

クラスファイル定義の、この部分では、`\@startsection` と `\secdef` の二つの内部マクロを使います。これらの構文を次に示します。

`\@startsection` マクロは 6 つの引数と 1 つのオプション引数 `*` を取ります。

```latex
\@startsection{name}{level}{indent}{beforeskip}{afterskip}{style} optional *
  \[\{altheading\}|\{heading\}]
```

それぞれの引数の意味は、次のとおりです。

- `<name>` レベルコマンドの名前です（例：`section`）。
- `<level>` 見出しの深さを示す数値です（`chapter=1, section=2,...`）。“`<level>\leq \text{カウンタ} \seccntdef` の值” のとき、見出し番号が出力されます。
- `<indent>` 見出しに対する、左マージンからのインデント量です。

1 縦 `tbook` のデフォルト (openright) が該当するほか、横 `jbook` と縦 `tbook` の `openany` のときには成り行き次第で該当する可能性があります。
(beforeskip) 見出しの上に置かれる空白の絶対値です。負の場合は、見出しに続くテキストのインデントを抑制します。

(afterskip) 正のとき、見出しの後の垂直方向のスペースとなります。負の場合は、見出しの後の水平方向のスペースとなります。

(style) 見出しのスタイルを設定するコマンドです。

(*) 見出し番号を付けないとき、対応するカウンタは増加します。

(heading) 新しい見出しの文字列です。

見出しコマンドは通常、\@startsection と 6 つの引数で定義されています。
\secdef マクロは、見出しコマンドを \@startsection を用いないで定義するときに使います。このマクロは、2 つの引数を持ちます。
\secdef{unstarcmds}{starcmds}

(unstarcmds) 見出しコマンドの普通の形式で使われます。
(starcmds) *形式の見出しコマンドで使われます。

\secdef は次のようにして使うことができます。
\def\chapter {... \secdef \CMDA \CMDB }
\def\CMDA {[#1]#2{...} % \chapter[#1]{...}
\def\CMDB {#1{...}} % \chapter*{...} の定義

9.3.5 part レベル

\part このコマンドは、新しいパート（部）をはじめます。

article クラスの場合は、簡単です。

新しい段落を開始し、小さな空白を入れ、段落後のインデントを行い、\secdef で作成します。（アスキーによる元のドキュメントには「段落後のインデントをしないようにし」と書かれていましたが、実際のコードでは段落後のインデントを行っていました。そこで日本語 TeX 開発コミュニティは、ドキュメントをコードに合わせて「段落後のインデントを行い」と修正しました。）
report と book スタイルの場合は、少し複雑です。
まず、右ページからはじまるように改ページをします。そして、部屋のページスタイルを empty にします。2段組の場合でも、1段組で作成しますが、後ほど2段組に戻すために、\@restonecol スイッチを使います。

\part
このマクロが実際に部レベルの見出しを作成します。このマクロも文書クラスによって定義が異なります。
article クラスの場合は、secnumdepth が -1 よりも大きいとき、見出し番号を付けます。このカウンタが -1 以下の場合には付けません。

report と book クラスの場合は、secnumdepth が -2 よりも大きいときに、見出し番号を付けます。-2 以下では付けません。
このマクロは、番号を付けないときの体裁です。

\@spart
\def\@spart#1{{%
\parindent\z@\raggedright
\interlinepenalty\@M\normalfont
\huge\bfseries#1\par}
\@afterheading}

\@endpart
\def\@endpart{
\vfil\newpage
\if@twoside
\if@openleft
\null\thispagestyle{empty}\newpage
\else\if@openright
\null\thispagestyle{empty}\newpage
\fi\fi
\fi

二段組文書のとき、スイッチを二段組モードに戻す必要があります。

\if@tempswa\twocolumn\fi

二段組文書のとき、スイッチを二段組モードに戻す必要があります。
9.3.6 chapter レベル

chapter 章レベルは、必ずページの先頭から開始します。openright オプションが指定されている場合は、右ページからはじまるように cleardoublepage を呼び出します。そうでなければ、clearpage を呼び出します。なお、縦組の場合でも右ページからはじまるように、フォーマットファイルで cleardoublepage が定義されています。

日本語 TeX 開発コミュニティによる補足：コミュニティ版の実装では、openright と openleft の場合に cleardoublepage をクラスファイルの中で再定義しています。7 を参照してください。

章見出しが出力されるページのスタイルは、jpl@in になります。jpl@in は、headnomble か footnomble のいずれかです。詳細は、第 8 節を参照してください。

また、@topnum をゼロにして、章見出しの上にトップフロートが置かれないようにしています。

\chapter マクロは、章見出しに番号を付けるときに呼び出されます。secnumdepth が −1 よりも大きく、@mainmatter が真（book クラスの場合）のときに、番号を出力します。

日本語 TeX 開発コミュニティによる補足：本家 TeX の classes では、二段組のときチャプタータイトルは一段組に戻されますが、アスキーによる jclasses では二段組のままにされています。したがって、チャプタータイトルより高い位置に右カラムの始点が来るという挙動になっていますが、コミュニティ版でもアスキー版の挙動を維持しています。

\def\chapter[#1]{\refstepcounter{chapter}%%
\ifnum \c@secnumdepth >\m@ne
%<book> \if@mainmatter
\addcontentsline{toc}{chapter}{{\protect\numberline{\@chapapp\thechapter\@chappos}#1}}%<book> \else\addcontentsline{toc}{chapter}{#1}\fi
\else
\addcontentsline{toc}{chapter}{#1}\fi
\chaptermark{#1}%%
\addtocontents{lof}{\protect\addvspace{10\p@}}%}
このマクロが実際に章見出しを組み立てます。
\addtocontents{lot}{\protect\addvspace{10\p@}}%
\@makechapterhead{#2}\@afterheading
\def\@makechapterhead#1{
\vskip2\Cvs
{\parindent\z@
\raggedright
\normalfont\huge\bfseries
\leavevmode
\ifnum \c@secnumdepth >\m@ne
\setlength\@tempdima{\linewidth}%
%<book> \if@mainmatter
\setbox\z@\hbox{\@chapapp\thechapter\@chappos\hskip1\zw}\
\addtolength\@tempdima{-\wd\z@}%
\unhbox\z@\nobreak
%<book> \fi
\vtop{\hsize\@tempdima#1}}
\vskip3\Cvs}
\def\@schapter#1{\@makeschapterhead{#1}\@afterheading}
\def\@makeschapterhead#1{
\vskip2\Cvs
{\parindent\z@
\raggedright
\normalfont\huge\bfseries
\leavevmode
\setlength\@tempdima{\linewidth}%
\vtop{\hsize\@tempdima#1}}
\vskip3\Cvs}
\def\@makeschapterhead#1{\hbox{}
\vskip2\Cvs
\{\parindent\z@
\raggedright
\normalfont\huge\bfseries
\leavevmode
\ifnum \c@secnumdepth >\m@ne
\setlength\@tempdima{\linewidth}%
%<book> \if@mainmatter
\setbox\z@\hbox{\@chapapp\thechapter\@chappos\hskip1\zw}\
\addtolength\@tempdima{-\wd\z@}%
\unhbox\z@\nobreak
%<book> \fi
\vtop{\hsize\@tempdima#1}}
\vskip3\Cvs}
\@schapter このマクロは、章見出しに番号を付けないときに呼び出されます。
日本語 \TeX\ 開発コミュニティによる補足：やはり二段組でチャプタータイトルより高い位置に右カラムの始点が来るという挙動を維持してあります。
\def\@schapter#1{\@makeschapterhead{#1}\@afterheading}
\def\@makeschapterhead#1{\hbox{}
\vskip2\Cvs
\{\parindent\z@
\raggedright
\normalfont\huge\bfseries
\leavevmode
\setlength\@tempdima{\linewidth}%
\vtop{\hsize\@tempdima#1}}
\vskip3\Cvs}
\@makeschapterhead 番号を付けない場合の形式です。
\def\@makeschapterhead#1{\hbox{}
\vskip2\Cvs
\{\parindent\z@
\raggedright
\normalfont\huge\bfseries
\leavevmode
\setlength\@tempdima{\linewidth}%
\vtop{\hsize\@tempdima#1}}
\vskip3\Cvs}
\section 見出しの前後に空白を付け、\Large\bfseries で出力をします。
\newcommand{\section}{\@startsection{section}{1}{\z@} \@plus.5\Cvs \@minus.2\Cvs\{1.5\Cvs \@plus.5\Cvs \@minus.2\Cvs\}}
\section{9.3.7 下位レベルの見出し}
\section 見出しの前後に空白を付け、\Large\bfseries で出力をします。
\subsection 見出しの前後に空白を付け、\texttt{large bfseries} で出力をします。
\begin{verbatim}
\newcommand{\subsection}{\@startsection{subsection}{2}{\z@} \baselineskip \parskip \z@ \relax \@plus .5\parskip \relax \@minus .2\parskip \@plus .5\parskip \relax \normallfont \large \bfseries}
\end{verbatim}

\subsubsection 見出しの前後に空白を付け、\texttt{normalsize bfseries} で出力をします。
\begin{verbatim}
\newcommand{\subsubsection}{\@startsection{subsubsection}{3}{\z@} \baselineskip \parskip \z@ \relax \@plus .5\parskip \relax \@minus .2\parskip \@plus .3\parskip \relax \normallfont \normalsize \bfseries}
\end{verbatim}

\paragraph 見出しの前に空白を付け、\texttt{normalsize bfseries} で出力をします。見出しの後ろで改行されません。
\begin{verbatim}
\newcommand{\paragraph}{\@startsection{paragraph}{4}{\z@} \baselineskip \parskip \z@ \relax \@plus 3.25ex \relax \@minus .2ex \relax \@plus 1em \relax \@minus 1em \relax \normallfont \normalsize}
\end{verbatim}

\subparagraph 見出しの前に空白を付け、\texttt{normalsize bfseries} で出力をします。見出しの後ろで改行されません。
\begin{verbatim}
\newcommand{\subparagraph}{\@startsection{subparagraph}{5}{\z@} \baselineskip \parskip \z@ \relax \@plus 3.25ex \relax \@minus .2ex \relax \@plus 1em \relax \@minus 1em \relax \normallfont \normalsize}
\end{verbatim}

9.3.8 付録
\appendix article クラスの場合、\texttt{appendix} コマンドは次のことを行ないます。

- \texttt{section} と \texttt{subsection} カウンタをリセットする。
- \texttt{thesection} を英小文字で出力するように再定義する。
\begin{verbatim}
\newcommand{\appendix}{\par
\setcounter{section}{0}
\setcounter{subsection}{0}
%<tate> \renewcommand{\thesection}{\rensuji{\@Alph\c@section}}
%<yoko> \renewcommand{\thesection}{\@Alph\c@section}}
\end{verbatim}

report と book クラスの場合、\texttt{appendix} コマンドは次のことを行ないます。

- \texttt{chapter} と \texttt{section} カウンタをリセットする。
- \texttt{@chapapp} を \texttt{appendixname} に設定する。

51
9.4 リスト環境

ここではリスト環境について説明をしています。
リスト環境のデフォルトは次のように設定されます。
まず、\textit{\texttt{\leftmargin}}, \textit{\texttt{\listparindent}}, \textit{\texttt{\itemindent}}をゼロにします。そして、\texttt{K}番目のレベルのリストは\texttt{@listK}で示されるマクロが呼び出されます。ここで\texttt{K}は小文字のローマ数字で示されます。たとえば、3番目のレベルのリストとして\texttt{@listiii}が呼び出されます。\texttt{@listK}は\texttt{\leftmargin}を\texttt{\leftmarginK}に設定します。

\texttt{\leftmargini} \texttt{\leftmarginii} \texttt{\leftmarginiii} \texttt{\leftmarginiv} 二段組モードのマージンは少しだけ小さく設定してあります。
\textit{\texttt{\leftmargini}}, \texttt{\leftmarginii}, \texttt{\leftmarginiii}, \texttt{\leftmarginiv}, \texttt{\leftmarginv}, \texttt{\leftmarginvi}次の3つの値は、\texttt{\labelsep}とデフォルトラベル（‘(m)’, ‘vii.’, ‘M.’）の幅の合計よりも大きくしてあります。
\texttt{\leftmargini}, \texttt{\leftmarginii}, \texttt{\leftmarginiii}, \texttt{\leftmarginiv}, \texttt{\leftmarginv}, \texttt{\leftmarginvi} 次の3つの値は、\texttt{\labelsep}とデフォルトラベル（‘(m)’, ‘vii.’, ‘M.’）の幅の合計よりも大きくしてあります。
\texttt{\leftmargini}, \texttt{\leftmarginii}, \texttt{\leftmarginiii}, \texttt{\leftmarginiv}, \texttt{\leftmarginv}, \texttt{\leftmarginvi} 二段組モードのマージンは少しだけ小さく設定してあります。

\texttt{\labelsep}, \texttt{\labelwidth} \texttt{\labelsep}はラベルとテキストの項目の間の距離です。\texttt{\labelwidth}はラベルの幅です。
これらのペナルティは、リストや段落環境の前後に挿入されます。

このペナルティは、リスト項目の間に挿入されます。

リスト環境の前に空行がある場合、\parskip と \topsep に \partopsep が加えられた値の縦方向の空白が取られます。

\@listi \@listii \@listiii \@listiv \@listv \@listvi

下位レベルのリスト環境のパラメータの設定です。これらは保存用のバージョンを保たないことと、フォントサイズコマンドによって変更されないように注意をしてください。
ください。言い換えれば、このクラスは、本文サイズが\normalsize で現れるリストの入れ子についてだけ考えています。

\def\@listii{\leftmargin\leftmarginii \labelwidth\leftmarginii \advance\labelwidth-\labelsep}
\topsep 4\p@ \@plus2\p@ \@minus\p@
\parsep 2\p@ \@plus\p@ \@minus\p@
\itemsep\parsep}
\def\@listiii{\leftmargin\leftmarginiii \labelwidth\leftmarginiii \advance\labelwidth-\labelsep}
\topsep 4.5\p@ \@plus2\p@ \@minus\p@
\parsep 2\p@ \@plus\p@ \@minus\p@
\itemsep\parsep}
\def\@listiv {\leftmargin\leftmarginiv \labelwidth\leftmarginiv \advance\labelwidth-\labelsep}
\itemsep\parsep}
\def\@listv {\leftmargin\leftmarginv \labelwidth\leftmarginv \advance\labelwidth-\labelsep}
\itemsep\parsep}
\def\@listvi {\leftmargin\leftmarginvi \labelwidth\leftmarginvi \advance\labelwidth-\labelsep}
\itemsep\parsep}
\renewcommand{\theenumi}{\rensuji{\@arabic\c@enumi}}
\renewcommand{\theenumii}{\rensuji{\@alph\c@enumii}}
\renewcommand{\theenumiii}{\rensuji{\@roman\c@enumiii}}
\renewcommand{\theenumiv}{\rensuji{\@roman\c@enumiv}}

9.4.1 enumerate環境

enumerate環境は、カウンタ\texttt{enumi}, \texttt{enumii}, \texttt{enumiii}, \texttt{enumiv}を使います。\texttt{enumN}は\texttt{N}番目のレベルの番号を制御します。

\theenumi 出力する番号の書式を設定します。これらは、すでに\texttt{ltlists.dtx}で定義されています。
\theenumii \texttt{\%<article|report|book>}
\theenumiii \texttt{\%<tate>}
\theenumiv \texttt{\renewcommand{\theenumi}{\rensuji{\@arabic\c@enumi}}}
 \renewcommand{\theenumii}{\rensuji{\@arabic\c@enumii}}}
 \renewcommand{\theenumiii}{\rensuji{\@arabic\c@enumiii}}}
 \renewcommand{\theenumiv}{\rensuji{\@arabic\c@enumiv}}}

54
\labelenumi enumerate 環境のそれぞれの項目のラベルは、\labelenumi \ldots \labelenumiv で生成されます。
\labelenumii
\labelenumiii
\labelenumiv
\p@enumii \p@enumiii \p@enumiv

\enumerate トップレベルで使われたときに、最初と最後に半行分のスペースを開けるように、
\ref コマンドによって、enumerate 環境の N 番目のリスト項目が参照されるときの書式です。

\enumerate トップレベルで使われたときに、最初と最後に半行分のスペースを開けるように、
変更します。この環境は、\ttlists.dtx で定義されています。
9.4.2 itemize 環境

itemize 環境のそれぞれの項目のラベルは、labelenumi ... labelenumiv で生成されます。

itemize トップレベルで使われたときに、最初と最後に半行分のスペースを開けるように、変更します。この環境は、ltlists.dtx で定義されています。

9.4.3 description 環境

description 環境を定義します。縦組時には、インデントが３字分だけ深くなります。
ラベルの形式を変更する必要がある場合は、\descriptionlabelを再定義してください。

\newcommand{\descriptionlabel}[1]{%\hspace{\labelsep}\normalfont\bfseries #1}

9.4.4 verse 環境

verse 環境は、リスト環境のパラメータを使って定義されています。改行をするには\\を用います。\@centercrに\letされています。

\newenvironment{verse}{%\let\\@centercr\list{}{\itemsep\z@ \itemindent -1.5em\listparindent\itemindent\rightmargin\leftmargin \advance\leftmargin 1.5em}{\item\relax}{\endlist}

9.4.5 quotation 環境

quotation 環境もまた、list環境のパラメータを使用して定義されています。この環境の各行は、\textwidthよりも小さく設定されています。この環境における、段落の最初の行はインデントされます。

\newenvironment{quotation}{\list{}{\listparindent 1.5em\itemindent\listparindent\rightmargin\leftmargin\parsep\z@ \@plus\p@}{\item\relax}{\endlist}

9.4.6 quote 環境

quote 環境は、段落がインデントされないことを除き、quotation 環境と同じです。

\newenvironment{quote}{\list{}{\rightmargin\leftmargin}{\item\relax}{\endlist}

9.5 フロート

ltfloat.dtxでは、フロートオブジェクトを操作するためのツールしか定義していません。タイプがTYPEのフロートオブジェクトを扱うマクロを定義するには、次の変数が必要です。
タイプ TYPE のフロートを置くデフォルトの位置です。

タイプ TYPE のフロートの番号です。各 TYPE には、一意な、2 の倍数の TYPE 番号を割り当てます。たとえば、図が番号 1 ならば、表は 2 です。次のタイプは 4 となります。

タイプ TYPE のフロートの目次を出力するファイルの拡張子です。たとえば、ext@figure は 'lot' です。

キャプション用の図番号を生成するマクロです。たとえば、fnum@figure は '図 thefigure' を作ります。

9.5.1 figure 環境
ここでは、figure 環境を実装しています。

\c@figure 図番号です。
\thefigure 図番号です。
\newenvironment{figure}{\@float{figure}}{\end@float}
\newenvironment{figure*}{\@float{figure*}}{\end@float}
\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\section{figure 環境}
ここでは、figure 環境を実装しています。

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\section{figure 環境}
ここでは、figure 環境を実装しています。

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\section{figure 環境}
ここでは、figure 環境を実装しています。

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\section{figure 環境}
ここでは、figure 環境を実装しています。

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\section{figure 環境}
ここでは、figure 環境を実装しています。

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\section{figure 環境}
ここでは、figure 環境を実装しています。

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\section{figure 環境}
ここでは、figure 環境を実装しています。

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\section{figure 環境}
ここでは、figure 環境を実装しています。

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\section{figure 環境}
ここでは、figure 環境を実装しています。

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\section{figure 環境}
ここでは、figure 環境を実装しています。

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\section{figure 環境}
ここでは、figure 環境を実装しています。

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\section{figure 環境}
ここでは、figure 環境を実装しています。

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}

\begin{figure}
図番号です。
\caption{図のキャプション}
\end{figure}

\begin{figure*}
図番号です。
\caption{図のキャプション}
\end{figure*}
9.5.2 table 環境

ここでは、table 環境を実装しています。

\c@table 表番号です。
\thetable %<article>\newcounter{table}
%<report\book>\newcounter{table}[chapter]
%<tate> %<article>\renewcommand{\thetable}{\rensuji{\@arabic\c@table}}
%<report\book>\renewcommand{\thetable}{% #1 \ifnum\c@chapter>0\thechapter{} \fi\rensuji{\@arabic\c@table}}
%<yoko> %<article>\renewcommand{\thetable}{\@arabic\c@table}
%<report\book>\renewcommand{\thetable}{% #1 \ifnum\c@chapter>0\thechapter. \fi\@arabic\c@table}
%<yoko> %</tate>
%</yoko>

\fps@table フロートオブジェクトタイプ “table” のためのパラメータです。
\ftype@table %<*tate>\def\fps@table{tbp}
%<report\book>\def\ftype@table{2}
%<yoko>\def\text@table{lot}
\ext@table %<tate>\def\fnum@table{\tablename\thetable}
%<report\book>\def\fnum@table{\tablename\thetable}
%<yoko>\def\fnum@table{\tablename-\thetable}

table *形式は2段抜きのフロートとなります。
table* \newenvironment{table*}
\begin{table*}{\@float{table}}
\end{table*}
\newenvironment{table}
\begin{table}{\@float{table}}
\end{table}

9.6 キャプション

\@makecaption \caption コマンドは、キャプションを組み立てるために \@mkcaption を呼出します。このコマンドは二つの引数を取ります。一つは、\text 言で、フロートオブジェクトの番号です。もう一つは、\text でキャプション文字列です。\text は通常、‘図 3.2’のような文字列が入っています。このマクロは、\parbox の中で呼び出されます。書体は \normalsize です。
これらの長さはキャプションの前後に挿入されるスペースです。

キャプション内で複数の段落を作成することができるように、このマクロは long で定義します。

9.7 コマンドパラメータの設定

9.7.1 array と tabular 環境

arraycolsep array 環境のカラムは 2\arraycolsep で分離されます。

\setlength{arraycolsep}{5\p@}

\tabcolsep tabular 環境のカラムは 2\tabcolsep で分離されます。

\setlength{tabcolsep}{6\p@}

arrayrulewidth array と tabular 環境内の罫線の幅です。

\setlength{arrayrulewidth}{.4\p@}

doublerulesep array と tabular 環境内の罫線間を調整する空白です。

\setlength{doublerulesep}{2\p@}

9.7.2 tabbing 環境

\tabbingsep ' コマンドで置かれるスペースを制御します。

\setlength{tabbingsep}{\labelsep}
9.7.3 minipage 環境
\complexfootins minipage にも脚注を付けることができます。\skip\@mpfootins は、通常の \skip\footins と同じような動作をします。
1611 \skip\@mpfootins = \skip\footins

9.7.4 framebox 環境
\fboxsep \fboxsep は、\fbox と \framebox での、テキストとボックスの間に入れる空白です。
\fboxrule \fboxrule は \fbox と \framebox で作成される罫線の幅です。
1612 \setlength{\fboxsep}{3\p@}
1613 \setlength{\fboxrule}{.4\p@}

9.7.5 equation と eqnarray 環境
\theequation equation カウンタは、新しい章の開始でリセットされます。また、equation 番号には、章番号が付けます。
このコードは \chapter 定義の後、より正確には chapter カウンタの定義の後、でなくてはいけません。
1614 \%<article>\renewcommand{\theequation}{\@arabic\c@equation}
1615 \%</article>
1616 \%<report|book>
1617 \%\@addtoreset{equation}{chapter}
1618 \%\renewcommand{\theequation}{%}
1619 \%\ifnum\c@chapter>\z@\thechapter.\fi \@arabic\c@equation}
1620 \%</report|book>

10 フォントコマンド
まず、数式内に日本語を直接、記述するために数式記号用文字に “JY3/mc/m/n” を
登録します。数式バージョンが bold の場合は、“JY3/gt/m/n” を用います。これ
らは、\mathmc、\mathgt として登録されます。また、日本語数式ファミリとして
\symmincho がこの段階で設定されます。mathrmmc オプションが指定されていた場
合には、これに引き続き \mathrm と \mathbf を和欧文両対応にするための作業が
なされます。この際、他のマクロとの衝突を避けるため \AtBeginDocument を用い
て展開順序を遅らせる必要があります。
変更
LaTeX 2.09 compatibility mode では和文数式フォント fam が 2 重定義されてい
たので、その部分を変更しました。
1620 \unless\if@italic\@disablejfam
1621 \if@compatibility\else
1622 \DeclareSymbolFont{mincho}{JY3}{mc}{m}{n}
ここではLaTeX 2.09で一般的に使われていたコマンドを定義しています。これら
のコマンドはテキストモードと数式モードのどちらでも動作します。これらは互換
性のために提供をしますが、できるだけ\text...と\math...を使うようにして
ください。

これらのコマンドはフォントファミリを変更します。互換モードの同名コマンドと
異なり、すべてのコマンドがデフォルトフォントにリセットしてから、対応する属
性を変更することに注意してください。

このコマンドはボールド書体にします。ノーマル書体に変更するには、\mdseries
と指定をします。

これらのコマンドはフォントシェイプを切替えます。スラント体とスモールキャッ
プの数式アルファベットはありませんので、数式モードでは何もしませんが、警告
メッセージを出力します。\upshape コマンドで通常のシェイプにすることができ
ます。

これらのコマンドは数式モードでだけ使うことができます。数式モード以外では何
もしません。現在のNFSSは、これらのコマンドが警告を生成するように定義して
いますので、‘手ずから’定義する必要があります。
11 相互参照

11.1 目次

\section コマンドは、.toc ファイルに、次のような行を出力します。

\contentsline {section}{⟨title⟩}{⟨page⟩}

〈title〉には項目が、〈page〉にはページ番号が入ります。\section に見出し番号が付く場合は、〈title〉は、\numberline {〈num〉}〈heading〉となります。〈num〉は \thesection コマンドで生成された見出し番号です。〈heading〉は見出し文字列です。この他の見出しコマンドも同様です。

figure 環境での\caption コマンドは、.lof ファイルに、次のような行を出力します。

\contentsline {figure}{\numberline {〈num〉}〈caption〉}{⟨page⟩}

〈num〉は、\thefigure コマンドで生成された図番号です。〈caption〉は、キャプション文字列です。table 環境も同様です。

\contentsline {section}{⟨name⟩}コマンドは、\l@〈name〉に展開されます。したがって、目次の体裁を記述するには、\l@chapter, \l@section を定義します。図目次のために\l@figure です。これらの多くのコマンドは \@dottedtocline コマンドで定義されています。このコマンドは次のような書式となっています。

\@dottedtocline{〈level〉}{〈indent〉}{〈numwidth〉}{〈title〉}{⟨page⟩}

〈level〉“〈level〉 <= tocdepth” のときにだけ、生成されます。\chapter はレベル0、\section はレベル1、... です。

〈indent〉一番外側からの左マージンです。

〈numwidth〉見出し番号（\numberline コマンドの〈num〉）が入るボックスの幅です。

\c@tocdepth tocdepth は、目次ページに出力をする見出しレベルです。
1646 %<article>\setcounter{tocdepth}{3}
1647 %</article>\setcounter{tocdepth}{2}

また、目次を生成するために次のパラメータも使います。

\@pnumwidth ページ番号の入るボックスの幅です。
1648 \newcommand{\@pnumwidth}{1.55em}

\@tocrmarg 複数行にわたる場合の右マージンです。
1649 \newcommand{\@tocrmarg}{2.55em}
ドットの間隔（mu単位）です。2や1.7のように指定します。

\dotsep

この長さ変数は、目次項目の間にに入るスペースの長さです。デフォルトはゼロとなっています。縦組のとき、スペースを少し広げます。

\toclineskip

この長さ変数は、目次項目の間に入るスペースの長さです。デフォルトはゼロとなっています。縦組のとき、スペースを少し広げます。

\numberline

numberlineマクロの定義を示します。オリジナルの定義では、ボックスの幅を\@tempdimaにしていますが、この変数はいろいろな箇所で使われますので、期待した値が入らない場合があります。

フォント選択コマンドの後、あるいはnumberlineマクロの中でフォントを切替えてもよいのですが、一時変数を意識したくないので、見出し番号の入るボックスを\@lnumwidth変数を用いて組み立てるようにnumberlineマクロを再定義します。

\dottedtocline

目次の各行間に\toclineskipを入れるように変更します。このマクロはltsect.dtxで定義されています。

\addcontentsline

縦組の場合にページ番号を\rensuiで囲むように変更します。このマクロはltsect.dtxで定義されています。

11.1.1 本文目次

\tableofcontents 目次を生成します。

\newcommand{\tableofcontents}{% \%<report|book> \if@twocolumn\@restonecoltrue\onecolumn \else\@restonecolfalse\fi \%<report|book> \%<article> \section*{\contentsname} \%<!article> \chapter*{\contentsname} \tableofcontents では、\@mkboth は heading の中に入れてあります。ほかの命令（listoffigures など）については、\@mkboth は heading の外に出してあります。これは \LaTeX の classes.dtx に合わせています。

\newcommand*{\l@part}[2]{% \ifnum\c@tocdepth>-2\relax \%<article> \addpenalty\@secpenalty% \%<article> \addpenalty{-\@highpenalty}% \addvspace{2.25em \@plus\p@}% \begingroup \parindent\z@ \rightskip\@pnumwidth \%<article> \setlength\@lnumwidth{4\zw}% \#1\hfil\nobreak \hb@xt\@pnumwidth{\hss#2}\par \nobreak \%<article> \if@compatibility \global\nobreaktrue \%<article> \everypar{\global\nobreakfalse\everypar{}}% \%<article> \fi \%<article> \fi \endgroup}

\l@chapter chapter レベルの目次です。

\newcommand{\l@chapter}[2]{%
レベルの目次です。

下位レベルの目次項目の体裁です。
図目次と表目次

\listoffigures 図の一覧を作成します。
\listoftables 表の一覧を作成します。
11.2 参考文献

\bibindent オープンスタイルの参考文献で使うインデント幅です。
1797 \newdimen\bibindent
1798 \setlength\bibindent{1.5em}

\newblock \newblock
ibindent のデフォルト定義は、小さなスペースを生成します。
1799 \newcommand{\newblock}{\hskip .11em\@plus.33em\@minus.07em}

\newblock \thebibliography 参考文献や関連図書のリストを作成します。
1800 \newenvironment{thebibliography}[1]
1801 %<article>{\section*{\refname}\@mkboth{\refname}{\refname}\
1802 %<report|book>{\chapter*{\bibname}\@mkboth{\bibname}{\bibname}\
1803 \list{\@biblabel{\@arabic\c@enumiv}}\
1804 \settowidth\labelwidth{\@biblabel{#1}}\
1805 \leftmargin\labelwidth
1806 \advance\leftmargin\labelsep
1807 \@openbib@code
1808 \usecounter{enumiv}\
1809 \let\p@enumiv\@empty
1810 \renewcommand{\theenumiv}{\@arabic\c@enumiv}}\
1811 \sloppy
1812 \clubpenalty4000
1813 \@clubpenalty\clubpenalty
1814 \widowpenalty4000%
1815 \sfcode`.@m}
1816 \def\@noitemerr
1817 {\@latex@warning{Empty `thebibliography' environment}}\
1818 \endlist

\@openbib@code \@openbib@code のデフォルト定義は何もしません。この定義は、openbib オプションによって変更されます。
1819 \let\@openbib@code\@empty

\biblabel The label for a \bibitem[...] command is produced by this macro. The default
from latex.dtx is used.
1820 \% \renewcommand*{\@biblabel}{[#1]\hspace{\hfill}}

\cite The output of the \cite command is produced by this macro. The default from
ltbibl.dtx is used.
1821 \% \renewcommand*{\cite}{[#1]}}
11.3 索引

theindex 2段組の索引を作成します。索引の先頭のページのスタイルはjp1@inとします。したがって、headingsとbothstyleに適した位置に出力されます。

\newenvironment{theindex}
{\if@twocolumn\@restonecolfalse\else\@restonecoltrue\fi
%<article>
 \twocolumn[\section*{\indexname}]
%<report|book>
 \twocolumn[\@makeschapterhead{\indexname}]
\@mkboth{\indexname}{\indexname}
\thispagestyle{jpl@in}\parindent\z@
\parskip\z@ \@plus .3\p@ \relax
\columnseprule\z@ \columnsep 35\p@
\let\item\@idxitem}
{\if@restonecol\onecolumn\else\clearpage\fi}
\@idxitem 索引項目の字下げ幅です。\@idxitemは\itemの項目の字下げ幅です。
\subitem\newcommand{\@idxitem}{\par\hangindent 40\p@}
\subsubitem\newcommand{\@idxitem}{\@idxitem \hspace*{30\p@}}
\indexspace 索引の“文字”見出しの前に入るスペースです。
\newcommand{\indexspace}{\par \vskip 10\p@ \@plus5\p@ \@minus 3\p@ \relax}

11.4 脚注

\footnoterule 本文と脚注の間に引かれる罫線です。
\renewcommand{\footnoterule}{%\kern-3\p@
 \hrule \@width.4\columnwidth \kern2.6\p@}
\c@footnote reportとbookクラスでは、chapterレベルでリセットされます。
\@makefntext このマクロにしたがって脚注が組まれます。
\@makefntext は脚注記号を組み立てるマクロです。
\newcommand\@makefntext[1]{\par \vskip 10\p@ \@plus5\p@ \@minus 3\p@ \relax
%<tate>
\newcommand\@makefntext[1]{\parindent 1\zw
\noindent\hb@xt@ 2\zw{\hss\@makefntext[#1]}}
%<tate>
%<yoko>
\newcommand\@makefntext[1]{\parindent 1em

69
12 今日の日付

組版時における現在の日付を出力します。

\if 西暦 \today コマンドの’年’を、西暦か和暦のどちらで出力するかを指定するコマンドです。2018年7月以降の日本語TEX開発コミュニティ版(v1.8)では、デフォルト和暦を和暦ではなく西暦に設定しています。
\newif\if 西暦 \西暦 true
\def\西暦\西暦 true}
\def\和暦\西暦 false}
\heisei \today コマンドを\rightmark で指定したとき、\rightmark を出力する部分で和暦のための計算ができないので、クラスファイルを読み込む時点で計算しておきます。
\newcount\heisei \heisei\year \advance\heisei\year -1988\relax
\today 縦組の場合は、漢数字で出力します。pLaTeX 2018-12-01以前では縦数式ディレクション時でも漢数字で出力していませんが、pLaTeX 2019-04-06以降からはそうしなくなりました。
\def\pltx@today@year@#1{%}
\ifnum\numexpr\year -#1=1 元 \else
\ifnum\ltjgetparameter{direction}=3 \kansuji\numexpr\year -#1\relax
\else
\number\numexpr\year -#1\relax\nobreak
\fi
\fi
\def\pltx@today@year{%}
\ifnum\numexpr\year*10000+\month*100+\day<19890108 昭和 \pltx@today@year@{1925}%
\else\ifnum\numexpr\year*10000+\month*100+\day<20190501 平成 \pltx@today@year@{1988}%
\else
\fi
\def\today{%}
\if 西暦
\ifnum\ltjgetparameter{direction}=3 \kansuji\year
\else\number\year\nobreak\fi 年
\else
\def\pltx@today@year

70
13 初期設定

\prepartname
\postpartname
\prechaptername
\postchaptername
\contentsname
\listfigurename
\listtablename
\refname
\bibname
\indexname
\figurename
\tablename
\appendixname
\abstractname

stfloatsパッケージがシステムにインストールされている場合は、このパッケージを使ってpLaTeXの標準時と同じようにボトムフロートの下に脚注が組まれるようにします。
14.1 ftnright パッケージ

脚注番号の書式が ftnright パッケージによって勝手に書き換えられるので、パッケージ読み込み前に予め退避しておき、読み込み後に復帰させます。