1 General

Reledmac doesn’t care neither text width (T) nor margins, whose sizes are calculated by \TeX itself or depends on other packages like \texttt{geometry}. In normal typesetting, line numbers and sidenotes are in the margin.

In parallel typesetting, sidenotes and lines numbers can be, or not, in page margins.

Normally, we get:

\[T = LM + L + B + S + A + R + RM \]

The only possible exceptions occur when the user makes mistakes when fixing L and / or A and / or B and / or R.

2 Parameters

The parameters that can be controlled by \texttt{reledmac} are (see fig. 1):

N The numbered text width, \textit{i.e.} the width of text which is between \texttt{\begin{numbering} and \end{numbering}} in normal typesetting. By default $N = T$, but can be also modified by the \texttt{reledmac/reledpar} option \texttt{widthliketwocolumns}:

in this case, $N = L + B + S + A + R$

L \texttt{\Lcolwidth}; fixed width, by default \{0.45\textwidth\}

R \texttt{\Rcolwidth}; fixed width, by default \{0.45\textwidth\}

S \texttt{\columnseparator}; \texttt{reledpar} inserts a vertical rule of width \texttt{\columnrulewidth}, by default set to be 0 \textit{pt}. You can redefine \texttt{\columnrulewidth} by

\texttt{\setlength{\columnrulewidth}{0.4pt}}

B \texttt{\beforecolumnseparator}; automatically calculated, but can be redefined by
Figure 1: Page layout
3 Columns’ position

By default, columns are positioned to the right of the page. However, you can use `\columnsposition{L}` to align them to the left, or `\columnsposition{C}` to center them.

In this case LM and RM are modified:

- with `\columnsposition{L}`, $LM = 0$ and RM is automatically calculated;
- with `\columnsposition{R}`, $RM = 0$ and LM is automatically calculated;
- with `\columnsposition{C}`, RM and LM are automatically calculated.

4 Automatically calculated parameters

Therefore, the lengths automatically calculated are LM, RM, and, if not fixed by user, B and A.

4.1 If LM, RM, B and A are calculated

$$LM = RM = B = A = \frac{T - (L + S + R)}{4}$$ (2)

4.2 If LM, RM, B are calculated

$$LM = RM = B = \frac{T - (L + A + S + R)}{3}$$ (3)

4.3 If LM, RM, A are calculated

$$LM = RM = A = \frac{T - (L + B + S + R)}{3}$$ (4)

4.4 If only LM and RM are calculated

$$LM = RM = \frac{T - (L + B + S + A + R)}{2}$$ (5)
4.5 In any case

$L M$, B, A, $R M$ can’t have a negative value. If the result of one the previous equation is negative, then that means the value equals 0.

Technically, the “calculated values” are determined using hf i 1 1.