The **pgf-cmykshadings** package

David Purton*

2018/10/24 v1.1a

Abstract

The **pgf-cmykshadings** package provides support for CMYK and grayscale shadings for the **pgf** package. By default **pgf** only supports RGB shadings. **pgf-cmykshadings** attempts to produce shadings consistent with the currently selected **xcolor** colour model. The **rgb**, **cmyk**, and **gray** colour models from the **xcolor** package are supported.

Contents

1 Introduction 2
2 Acknowledgements 2
3 Bug Reports and Feature Requests 2
4 Documentation 2
 4.1 Basic Usage ... 2
 4.1.1 Package options 3
 4.1.2 Load order .. 3
 4.1.3 Colour models 3
 4.1.4 Functional shadings 4
 4.2 Main Interface .. 4
 4.2.1 Declaring shadings 4
 4.2.2 Using shadings 5
 4.2.3 Utility functions 5
5 Implementation ... 7
 5.1 Main Package ... 7
 5.2 Drivers .. 16

Change History 31

*Email: dcpurton@marshwiggle.net
1 Introduction

The pgf package, and other packages built on top of it, only support RGB shadings (colour gradients). This means that printing applications requiring CMYK shadings cannot easily be produced. It also can lead to unexpected colour mismatches in documents when attempting to define a shading from colours defined in CMYK. This can occur when the natural colour model of the xcolor package is in use and colours like cyan and magenta are defined as CMYK. An attempt to produce a shading using these colours will be silently converted to RGB, but RGB cyan and RGB magenta look significantly different from CMYK cyan and magenta. This is a significant cause of confusion for end users.

The following example illustrates this problem and the corresponding solution provided by the pgf-cmykshadings package.

\begin{tikzpicture}
\fill[cyan] (0,0) rectangle (1,1);
\shade[left color=cyan, right color=magenta] (1.25,0) rectangle (3.75,1);
\fill[magenta] (4,0) rectangle (5,1);
\end{tikzpicture}

pgf behaviour:

\begin{tikzpicture}
\fill[cyan] (0,0) rectangle (1,1);
\shade[left color=cyan, right color=magenta] (1.25,0) rectangle (3.75,1);
\fill[magenta] (4,0) rectangle (5,1);
\end{tikzpicture}

pgf-cmykshadings behaviour:

2 Acknowledgements

Substantial parts of the code for the pgf-cmykshadings package are taken from the pgf package file pgf coreshade.code.tex along with the driver files pgfsys-*.def copyright © 2006 Till Tantau and then slightly modified to support CMYK and grayscale shadings.

3 Bug Reports and Feature Requests

Bug reports and feature requests can be made at the pgf-cmykshadings package GitHub repository. See https://github.com/dcpurton/pgf-cmykshadings.

4 Documentation

4.1 Basic Usage

All that is required to use CMYK shadings instead of RGB shadings is to include the package in your document preamble:

\usepackage{pgf-cmykshadings}

However, there are some caveats in using the package, which are outlined below.
4.1.1 Package options

\texttt{pgf-cmykshadings} supports the following package options:

- \texttt{cmyk} (default) to use CMYK shadings when the \texttt{xcolor} package \texttt{natural} colour model is in use.

- \texttt{rgb} to use RGB shadings when the \texttt{xcolor} package \texttt{natural} colour model is in use.

4.1.2 Load order

\texttt{pgf-cmykshadings} should be loaded before any shadings are defined otherwise these will be defined as RGB. This means you should load \texttt{pgf-cmykshadings} before (for example) \texttt{tikz} and \texttt{beamer}.

If you want to pass custom options to \texttt{xcolor} (e.g., a colour model or set of named colours), you should load \texttt{pgf-cmykshadings} after \texttt{xcolor} or use \texttt{\PassOptionsToPackage {before} {loading \texttt{pgf-cmykshadings}.}

4.1.3 Colour models

\texttt{pgf-cmykshadings} attempts to produce shadings consistent with the currently selected \texttt{xcolor} package colour model. The \texttt{rgb}, \texttt{cmyk}, and \texttt{gray} colour models from the \texttt{xcolor} package are supported.

\textbf{Note:} The colour model chosen for a shading is based on the \texttt{xcolor} colour model \textit{at the time the shading is created}. This is either when \texttt{\pgfdeclare*shading} is called with no optional argument or when \texttt{\pgfuseshading} is called if \texttt{\pgfdeclare*shading} was called with an optional argument.

If the \texttt{xcolor} package \texttt{natural} colour model is in use then the shading colour model will be CMYK by default (equivalent to passing the \texttt{cmyk} option to the \texttt{pgf-cmykshadings} package). RGB shadings can be output by default instead by passing the \texttt{rgb} option to the \texttt{pgf-cmykshadings} package.

In practice this means that if you are using the \texttt{natural} colour model of the \texttt{xcolor} package you can still get mismatched colours if you, for example, create a shading from green (which is defined as RGB) to magenta (which is defined as CMYK). The shading has to pick one colour model and will look different to one of the solid colours.

For this reason it is recommended to always load the \texttt{xcolor} package before the \texttt{pgf-cmykshadings} package with either the \texttt{rgb}, \texttt{cmyk}, or \texttt{gray} options to avoid colour surprises.

\begin{tikzpicture}
\fill [green] (0,0) rectangle (1,1);
\shade[left color=green, right color=magenta]
(1.25,0) rectangle (3.75,1);
\fill [magenta] (4,0) rectangle (5,1);
\end{tikzpicture}

\texttt{xcolor natural} colour model:

\begin{tabular}{ccc}
\hline
\texttt{green} & \texttt{green} & \texttt{magenta} \\
\hline
\end{tabular}

\texttt{xcolor cmyk} colour model:

\begin{tabular}{ccc}
\hline
\texttt{green} & \texttt{green} & \texttt{magenta} \\
\hline
\end{tabular}

\texttt{xcolor rgb} colour model:

\begin{tabular}{ccc}
\hline
\texttt{green} & \texttt{green} & \texttt{magenta} \\
\hline
\end{tabular}

\texttt{xcolor gray} colour model:

\begin{tabular}{ccc}
\hline
\texttt{gray} & \texttt{gray} & \texttt{gray} \\
\hline
\end{tabular}
4.1.4 Functional shadings

By nature, the PostScript® code used to generate functional shadings must output either RGB or CMYK data. For this reason, `\pgfdeclarefunctionalshading` is not portable across colour models.

Take particular care that the same colour model is in use at declaration time and use time for functional shadings declared with an optional argument as otherwise the PostScript® data will not match the declared colour space and you will end up with a malformed PDF.

This also means that you should not use the functional shadings from the `tikz` shading library (bilinear interpolation, color wheel, color wheel black center, color wheel white center, and Mandelbrot set) except when the `xcolor rgb` colour model is in use, otherwise you will end up with a malformed PDF.

Having said this, it is possible to create portable functional shadings by providing conditional code to append colour transformations to the PostScript® data. A variety of `\pgffuncshading*to*` (e.g., `\pgffuncshadingrgbtocmyk`) macros along with `\ifpgfshadingmodel*` (e.g., `\ifpgfshadingmodelcmyk`) conditionals are provided to assist with these transformations.

```
\pgfdeclarefunctionalshading[black]{twospots}
  {\pgfpointorigin}{\pgfpoint{3.5 cm}{3.5 cm}}{}
  2 copy
  45 sub dup mul exch
  40 sub dup mul 0.5 mul add sqrt
  dup mul neg 1.0005 exch exp 1.0 exch sub
  3 1 roll
  70 sub dup mul .5 mul exch
  70 sub dup mul add sqrt
  dup mul neg 1.002222 exch exp 1.0 exch sub
  1.0 3 1 roll
  \ifpgfshadingmodelcmyk
    \pgffuncshadingrgbtocmyk
  \fi
  \ifpgfshadingmodelgray
    \pgffuncshadingrgbtogray
  \fi

xcolor cmyk model: \hspace{1cm} xcolor rgb model: \hspace{1cm} xcolor gray model:
```

4.2 Main Interface

4.2.1 Declaring shadings

The four standard `pgf` functions for declaring shadings are supported as documented in the `pgf` manual.
There is one extension provided by the \texttt{pgf-cmykshadings} package. It is possible to specify CMYK colours directly in the colour specification argument using a syntax analogous to the RGB, Gray, and named colours already supported by the \texttt{pgf} package. i.e., \texttt{cmyk(position)=(\{C\},\{M\},\{Y\},\{K\})}.

Shadings declared \textit{without} an optional argument are created immediately in the currently active \texttt{xcolor} colour model. Shadings declared \textit{with} and optional argument are created at the time they are actually used (using \texttt{\pgfuseshading}).

\begin{verbatim}
\pgfdeclarehorizontalshading \pgfdeclarehorizontalshading[{color list}]{(shading name)}{(shading height)}{(color specification)}
\end{verbatim}

Declare a horizontal shading.

\begin{verbatim}
\pgfdeclareverticalshading \pgfdeclareverticalshading[{color list}]{(shading name)}{(shading width)}{(color specification)}
\end{verbatim}

Declare a vertical shading.

\begin{verbatim}
\pgfdeclareradialshading \pgfdeclareradialshading[{color list}]{(shading name)}{(center point)}{(color specification)}
\end{verbatim}

Declare a radial shading.

\begin{verbatim}
\pgfdeclarefunctionshading \pgfdeclarefunctionshading[{color list}]{(shading name)}{(lower left corner)}{(upper right corner)}{(init code)}{(type 4 function)}
\end{verbatim}

Declare a functional shading.

\subsection{4.2.2 Using shadings}

Shadings are used as documented in the \texttt{pgf} manual.

\begin{verbatim}
\pgfuseshading \pgfuseshading{(shading name)}
\end{verbatim}

Use a previously declared shading. If the specified shading was declared with an optional argument, then the shading will be created at this point in the currently active \texttt{xcolor} colour space.

\begin{verbatim}
\pgfshadepath \pgfshadepath{(shading name)}{(angle)}
\end{verbatim}

Shade the currently active \texttt{pgf} path using the specified shading at the specified angle.

\begin{verbatim}
\pgfadditionalshadetransform \pgfadditionalshadetransform{(transformation)}
\end{verbatim}

This command is used to specify an additional transformation that should be applied to shadings when \texttt{\pgfshade} used.

\subsection{4.2.3 Utility functions}

The following functions are mainly useful for in declaring functional shadings.
\pgfshadecolortorgb \pgfshadecolortorgb\{color name\}\{macro\}

This command takes \color name as input and stores the colour’s red/green/blue components as real numbers between 0.0 and 1.0 separated by spaces (which is exactly what you need if you want to push it on a stack) in \macro. This macro can then be used inside the \type 4 function argument for \pgfdeclarefunctionalshading.

In addition, three macros suffixed with \texttt{red}, \texttt{green} and \texttt{blue} are defined, which store the individual components of \color name. These can also be used in the \type 4 function argument.

\pgfshadecolortocmyk \pgfshadecolortocmyk\{color name\}\{macro\}

This command is analogous to \pgfshadecolortorgb, but stores the colour’s cyan/magenta/yellow/black components. Four macros suffixed with \texttt{cyan}, \texttt{magenta}, \texttt{yellow}, and \texttt{black} are also defined.

\pgfshadecolortogray \pgfshadecolortogray\{color name\}\{macro\}

This command is analogous to \pgfshadecolortorgb, but stores the colour’s gray component. Although it’s not needed, for consistency a second macro suffixed with \texttt{gray} is also defined.

\pgffuncshadingrgbtocmyk \pgffuncshadingrgbtocmyk
Within the \type 4 function argument of \pgfdeclarefunctionalshading, this command can be used to convert the top 3 elements on the stack from RGB to CMYK. In combination with the \ifpgfshadingmodelcmyk conditional this macro can be used to make functional shading declarations more portable across colour models.

\pgffuncshadingrgbtogray \pgffuncshadingrgbtogray
Within the \type 4 function argument of \pgfdeclarefunctionalshading, this command can be used to convert the top 3 elements on the stack from RGB to grayscale. In combination with the \ifpgfshadingmodelgray conditional this macro can be used to make functional shading declarations more portable across colour models.

\pgffuncshadingcmyktorgb \pgffuncshadingcmyktorgb
Within the \type 4 function argument of \pgfdeclarefunctionalshading, this command can be used to convert the top 4 elements on the stack from CMYK to RGB. In combination with the \ifpgfshadingmodelrgb conditional this macro can be used to make functional shading declarations more portable across colour models.

\pgffuncshadingcmyktogray \pgffuncshadingcmyktogray
Within the \type 4 function argument of \pgfdeclarefunctionalshading, this command can be used to convert the top 4 elements on the stack from CMYK to grayscale. In combination with the \ifpgfshadingmodelgray conditional this macro can be used to make functional shading declarations more portable across colour models.

\pgffuncshadinggraytorgb \pgffuncshadinggraytorgb
Within the \type 4 function argument of \pgfdeclarefunctionalshading, this command can be used to convert the top element on the stack from grayscale to RGB. In combination with the \ifpgfshadingmodelrgb conditional this macro can be used to make functional shading declarations more portable across colour models.
Within the \textit{(type 4 function)} argument of \texttt{pgfdeclarefunctionalshading}, this command can be used to convert the top element on the stack from grayscale to CMYK. In combination with the \texttt{ifpgfshadingmodelcmyk} conditional this macro can be used to make functional shading declarations more portable across colour models.

Within the \textit{(type 4 function)} argument of \texttt{pgfdeclarefunctionalshading}, this command can be used to test if the \texttt{xcolor} colour model is \texttt{rgb} at the time the shading is created. This can be used to ensure that the data output in the \textit{(type 4 function)} correctly matches the active colour model.

Within the \textit{(type 4 function)} argument of \texttt{pgfdeclarefunctionalshading}, this command can be used to test if the \texttt{xcolor} colour model is \texttt{cmyk} at the time the shading is created. This can be used to ensure that the data output in the \textit{(type 4 function)} correctly matches the active colour model.

Within the \textit{(type 4 function)} argument of \texttt{pgfdeclarefunctionalshading}, this command can be used to test if the \texttt{xcolor} colour model is \texttt{gray} at the time the shading is created. This can be used to ensure that the data output in the \textit{(type 4 function)} correctly matches the active colour model.

\section{Implementation}

\subsection{Main Package}

```
(*package)
\ProvidesPackage{pgf-cmykshadings} \[2018/10/24\]
\[CMYK and grayscale shadings support for PGF (DCP)\]
\RequirePackage{pgf}
```

Replace dependence on \texttt{pgf@convertrgbstring} and \texttt{pgf@rgbconv} with generic macros \texttt{pgf@convertstring} and \texttt{pgf@conv}.

```
\def\pgf@parsefunc#1{%
  \edef\temp{{#1}}%
  \expandafter\pgf@convertstring\temp%
  \edef\temp{{\pgf@conv}}%
  \expandafter\pgf@@parsefunc\temp%
}
```

Replace RGB parsing macros with new macros selected on the basis of the current colour space \texttt{pgf@shading@mode}.

```
\def\pgf@@parsefunc#1{%
  \let\pgf@bounds=\pgfutil@empty%
  \let\pgf@funcs=\pgfutil@empty%
  \let\pgf@psfuncs=\pgfutil@empty%
  \let\pgf@encode=\pgfutil@empty%
  \let\sys@shading@ranges=\pgfutil@empty%
```

\setcounter{section}{4}
\begin{thebibliography}{1}
\bibitem{cmykshadings}
\texttt{pgf-cmykshadings} \texttt{2018/10/24}
```
\ifpgfshadingmodelrgb
\ifpgfshadingmodelcmyk
\ifpgfshadingmodelgray
```

Replace dependence on \texttt{pgf@convertrgbstring} and \texttt{pgf@rgbconv} with generic macros \texttt{pgf@convertstring} and \texttt{pgf@conv}.

```
\def\pgf@parsefunc#1{%
  \edef\temp{{#1}}%
  \expandafter\pgf@convertstring\temp%
  \edef\temp{{\pgf@conv}}%
  \expandafter\pgf@@parsefunc\temp%
}
```

Replace RGB parsing macros with new macros selected on the basis of the current colour space \texttt{pgf@shading@mode}.

```
\def\pgf@@parsefunc#1{%
  \let\pgf@bounds=\pgfutil@empty%
  \let\pgf@funcs=\pgfutil@empty%
  \let\pgf@psfuncs=\pgfutil@empty%
  \let\pgf@encode=\pgfutil@empty%
  \let\sys@shading@ranges=\pgfutil@empty%
```

\setcounter{section}{4}
\begin{thebibliography}{1}
\bibitem{cmykshadings}
\texttt{pgf-cmykshadings} \texttt{2018/10/24}
```
\ifpgfshadingmodelrgb
\ifpgfshadingmodelcmyk
\ifpgfshadingmodelgray
```
\texttt{Define RGB parsing macros.}
\let\pgf@parsefirstrgb=\pgf@parsefirst
\let\pgf@parselastdomrgb=\pgf@parselastdom
\let\pgf@parsemidrgb=\pgf@parsemid
\let\pgf@parserestrgb=\pgf@parserest

\texttt{Define new CMYK parsing macros.}
\def\pgf@parsecfirstcmyk[cmyk(#1)=(#2,#3,#4,#5)\{#6\}]{\%
 \pgfmathsetlength\pgf@x{#1}\%
 \edef\pgf@sys@shading@start@pos{\the\pgf@x}\%
 \pgf@sys@bp@correct\pgf@x\%
 \edef\pgf@sys@doma{\pgf@sys@tonumber{\pgf@x}}\%
 \edef\pgf@sys@prevx{\pgf@sys@tonumber{\pgf@x}}\%
 \pgf@getcmyktuplewithmixin{#2}{#3}{#4}{#5} \%
 \edef\pgf@sys@shading@start@cmyk{\pgf@sys@cmyk} \%
 \let\pgf@sys@prevcolor=\pgf@sys@shading@start@cmyk \%
 \let\pgf@sys@prevpos=\pgf@sys@shading@start@pos \%
 \edef\pgf@cmyk{#6} \%
 \edef\pgf@firstcolor{\pgf@cmyk} \%
}{\%
 \pgf@sys@shading@range@num=0 \relax\%
 \edef\pgf@pdfparseddomain{0 1} \%
 \edef\pgf@pdfparsedfunction{\pgf@singlefunc\space} \%
 \edef\pgf@pdfparsedfunction{\pgf@singlefunc\space} \%
}{\%
 \edef\pgf@pdfparseddomain{\pgf@doma\space\pgf@domb} \%
 \edef\pgf@pdfparsedfunction{\pgf@singlefunc\space} \%
 \edef\pgf@pdfparseddomain{\pgf@doma/\space/\pgf@domb} \%
 \edef\pgf@pdfparsedfunction{\pgf@singlefunc\space} \%
}{\%
 \pgf@getcmyktuplewithmixin{#2}{#3}{#4}{#5} \%
 \edef\pgf@singlefunc{\space \%
 << /FunctionType 2 /Domain [0 1] /C0 \%
 [{\pgf@func} /space] /Bounds [0 1 /pgf@encode] \%
 >> } \%
}{\%
 \edef\pgf@psfuncs{\pgf@psfuncs} \%
}{\%
\def\pgf@parsecmidcmkyk[cmyk(#1)=(#2,#3,#4,#5)\{#6\}]{\%
 \pgf@getcmyktuplewithmixin{#2}{#3}{#4}{#5} \%
 \edef\pgf@singlefunc{\space \%
 << /FunctionType 2 /Domain [0 1] /C0 \%
 [{\pgf@func} /space] /Bounds [0 1 /pgf@encode] \%
 >> } \%
}{\%
 \edef\pgf@psfuncs{\pgf@psfuncs} \%
}{\%
\def\pgf@parserecestcmyk[cmyk(#1)=(#2,#3,#4,#5)]{\%
 \pgf@getcmyktuplewithmixin{#2}{#3}{#4}{#5} \%
 \edef\pgf@singlefunc{\space \%
 << /FunctionType 2 /Domain [0 1] /C0 \%
 [{\pgf@func} /space] /Bounds [0 1 /pgf@encode] \%
 >> } \%
}{\%
 \edef\pgf@psfuncs{\pgf@psfuncs} \%
}{\%
\def\pgf@parsecfirstcmyk[cmyk(#1)=(#2,#3,#4,#5)\{#6\}]{\%
 \pgf@getcmyktuplewithmixin{#2}{#3}{#4}{#5} \%
 \edef\pgf@singlefunc{\space \%
 << /FunctionType 2 /Domain [0 1] /C0 \%
 [{\pgf@func} /space] /Bounds [0 1 /pgf@encode] \%
 >> } \%
}{\%
 \edef\pgf@psfuncs{\pgf@psfuncs} \%
}{\%
\def\pgf@parselastdomcmyk[cmyk(#1)=(#2,#3,#4,#5)]{\%
 \pgf@getcmyktuplewithmixin{#2}{#3}{#4}{#5} \%
 \edef\pgf@singlefunc{\space \%
 << /FunctionType 2 /Domain [0 1] /C0 \%
 [{\pgf@func} /space] /Bounds [0 1 /pgf@encode] \%
 >> } \%
}{\%
 \edef\pgf@psfuncs{\pgf@psfuncs} \%
}
Define new colour space agnostic colour specification parsing macros. This includes parsing CMYK colour specifications (i.e., \texttt{color(position)=(C,M,Y,K)}).
New macros to convert CMYK colours to a format suitable for use in the \textit{(type 4 function)} argument of \texttt{pgfdeclarefunctionalshading}.

\begin{verbatim}
\newdimen\pgf@xd
\def\pgfshadecolortocmyk#1#2{%
 \pgfutil@colorlet{pgf@tempcol}{#1}%
 \pgfutil@extractcolorspec{pgf@tempcol}{\pgf@tempcolor}%
 \expandafter\pgfutil@convertcolorspec\pgf@tempcolor{cmyk}{\pgf@cmykcolor}%
 \expandafter\pgfshading@cmyk\pgf@cmykcolor\relax%
 \edef#2{\pgf@sys@tonumber{\pgf@xa}\space\pgf@sys@tonumber{\pgf@xb}\space\pgf@sys@tonumber{\pgf@xc}\space\pgf@sys@tonumber{\pgf@xd}\space}%
 \edef\csname\string#2cyan\endcsname{\pgf@sys@tonumber{\pgf@xa}\space}%
 \edef\csname\string#2magenta\endcsname{\pgf@sys@tonumber{\pgf@xb}\space}%
 \edef\csname\string#2yellow\endcsname{\pgf@sys@tonumber{\pgf@xc}\space}%
 \edef\csname\string#2black\endcsname{\pgf@sys@tonumber{\pgf@xd}\space}%
 \escapechar\c@pgf@counta
}
\def\pgfshading@cmyk#1,#2,#3,#4\relax{%
 \pgf@xa=#1pt%
 \pgf@xb=#2pt%
 \pgf@xc=#3pt%
 \pgf@xd=#4pt%
}
\end{verbatim}

New macros to convert grayscale colours to a format suitable for use in the \textit{(type 4 function)} argument of \texttt{pgfdeclarefunctionalshading}.

\begin{verbatim}
\def\pgfshadecolortogray#1#2{%
 \pgfutil@colorlet{pgf@tempcol}{#1}%
 \pgfutil@extractcolorspec{pgf@tempcol}{\pgf@tempcolor}%
 \expandafter\pgfutil@convertcolorspec\pgf@tempcolor{gray}{\pgf@graycolor}%
 \expandafter\pgfshading@gray\pgf@graycolor\relax%
 \edef#2{\pgf@sys@tonumber{\pgf@xa}\space}%
 \escapechar\c@pgf@counta
\end{verbatim}

\begin{verbatim}
\def\pgfshading@gray#1\relax{%
 \pgf@xa=#1pt%
}
\end{verbatim}
Ensure colour model is set up based on the current `xcolor` colour model when declaring shadings.

\def\pgfdeclarehorizontalshading{
 \pgf@setup@model
 \pgfutil@ifnextchar[{
 \pgf@declarehorizontalshading{\pgf@declarehorizontalshading[]}}
\def\pgfdeclareverticalshading{
 \pgf@setup@model
 \pgfutil@ifnextchar[{
 \pgf@declareverticalshading{\pgf@declareverticalshading[]}}
\def\pgfdeclareradialshading{
 \pgf@setup@model
 \pgfutil@ifnextchar[{
 \pgf@declareradialshading{\pgf@declareradialshading[]}}
\def\pgfdeclarefunctionalshading{
 \pgf@setup@model
 \pgfutil@ifnextchar[{
 \pgf@declarefunctionalshading{\pgf@declarefunctionalshading[]}}
Ensure colour model is set up based on the current `xcolor` colour model when using shadings.

\def\pgfuse shading#1{
 \edef\pgf@shadingname{@pgfshading#1}\%}
\def\pgf@shadingsavedmodel{\pgfshading#1@model}\%
\expandafter\pgfutil@ifundefined\expandafter{\pgf@shadingname}
 {\pgferror{Undefined shading "#1"}}\%
 {%
 \pgf@setup@model
 \pgfutil@globalcolorsfalse
 \def\pgf@shade@adds{}
 \pgfutil@ifundefined{pgf@deps\pgf@shadingname}{}
 {%
 \edef\@list{\csname pgf@deps\pgf@shadingname\endcsname}%
 \pgfutil@for\@temp:=\@list\do{%}
 {%
 \pgfuse shading\@temp
 \edef\pgfshadingsavedmodel{\applycolormixins\@temp}%
 \pgfutil@ifundefined{applycolormixins}{\@temp}{%
 \%{\applycolormixins\@temp}%
 \expandafter\pgfutil@ifundefined\expandafter{\pgf@shadingsavedmodel}
 \{%
 \expandafter\pgfutil@convertcolorspec\pgf@tempcolor{%\pgf@shading@model}{\pgf@color}}%
 \{%
 \expandafter\pgfutil@convertcolorspec\pgf@tempcolor{%\pgf@shadingsavedmodel}{\pgf@color}}%
 \%{\pgfuse shading\@temp}
 \edef\pgf@shade@adds{\pgf@shade@adds,\pgf@color}%
 }%
 %}

 }%
 }%
\expandafter\pgf@strip@shadename\pgf@shadingname!!%
\pgfutil@ifundefined{pgfshading\pgf@basename}{pgfshading\pgf@shadingname}{pgfshading\pgf@shade@adds}!%
\begin{verbatim}
\expandafter\def\expandafter\@temp\expandafter{\csname pgf@func\pgf@shadingname\endcsname}
\edef\@args{{\pgf@basename\pgf@shade@adds}}
\expandafter\expandafter\expandafter\def\expandafter\expandafter\expandafter{\csname pgf@args\pgf@shadingname\endcsname}
\expandafter\@args\@@args
\pgf@invokeshading{%\csname @pgfshading\pgf@basename\pgf@shade@adds!\endcsname}
\end{verbatim}

Conditionals for use in the \texttt{\textless type 4 function\textgreater} argument of \texttt{\pgfdeclarefunctionalshading} to test for the currently active \texttt{xcolor} colour model.

\newif\ifpgfshadingmodelrgb
\newif\ifpgfshadingmodelcmyk
\newif\ifpgfshadingmodelgray

Shading colour space property set up based on the currently active \texttt{xcolor} colour model.

\begin{verbatim}
\def\pgf@setup@model{%
\pgfshadingmodelrgbtrue \pgfshadingmodelcmykfalse \pgfshadingmodelgrayfalse
\XC@sdef\pgf@mod@test{\XC@tgt@mod{natural}}
\def\pgf@shading@functional@range{0 1 0 1 0 1 0 1}
\def\pgf@shading@device{/DeviceRGB}
\def\pgf@shading@ps@device{setrgbcolor}
\def\pgf@shading@model{rgb}
\ifx\pgf@mod@test\XC@mod@natural
\def\pgf@shading@functional@range{0 1 0 1 0 1 0 1}
\def\pgf@shading@device{/DeviceCMYK}
\def\pgf@shading@ps@device{setcmykcolor}
\def\pgf@shading@model{cmyk}
\pgfshadingmodelrgbfalse
\else\def\pgf@shading@functional@range{0 1 0 1 0 1}
\def\pgf@shading@device{/DeviceRGB}
\else\def\pgf@shading@functional@range{0 1 0 1 0 1}
\def\pgf@shading@device{/DeviceCMYK}
\def\pgf@shading@ps@device{setcmykcolor}
\def\pgf@shading@model{cmyk}
\fi
\fi
\end{verbatim}

Converters for use in the \texttt{⟨type 4 function⟩} argument of \texttt{\pgfdeclarefunctionalshading}. These macros use the same algorithms as \texttt{xcolor}.

\edef\pgffuncshadingrgbtocmyk{%
 1.0 exch sub 3 1 roll
 1.0 exch sub 3 1 roll
 1.0 exch sub 3 1 roll
 3 copy
 2 copy gt \{ exch \} if pop
 2 copy gt \{ exch \} if pop
 dup 3 1 roll sub
 0.0 2 copy lt \{ exch \} if pop
 1.0 2 copy gt \{ exch \} if pop
 4 1 roll
 dup 3 1 roll sub
 0.0 2 copy lt \{ exch \} if pop
 1.0 2 copy gt \{ exch \} if pop
 4 1 roll
 dup 3 1 roll sub
 0.0 2 copy lt \{ exch \} if pop
 1.0 2 copy gt \{ exch \} if pop
 4 1 roll
%
\edef\pgffuncshadingrgbtogray{%
 0.11 mul exch 0.59 mul add exch 0.3 mul add
%
\edef\pgffuncshadingcmyktorgb{%
 % covert to CMY
 dup 3 1 roll add
 1.0 2 copy gt \{ exch \} if pop
 4 1 roll
 dup 3 1 roll add
 1.0 2 copy gt \{ exch \} if pop
 4 1 roll
Load the correct driver file.

\def\pgfutilgetcmykshadingsdriver{%
\expandafter\pgfutil@getcmykshadingsdriver\pgfsysdriver[\]
}
\def\pgfutil@getcmykshadingsdriver pgfsys-#1[{{
 \edef\pgfsyscmykshadingsdriver{pgfsys-cmykshadings-#1}%
}
}\pgfutilgetcmykshadingsdriver
\pgfutil@InputIfFileExists{\pgfsyscmykshadingsdriver}{}/{}

Style options to use CMYK shadings by default or not when the selected xcolor colour model is natural.

\newif\ifpgfcmykshadingdefault
\DeclareOption{cmyk}{\pgfcmykshadingdefaulttrue}
\DeclareOption{rgb}{\pgfcmykshadingdefaultfalse}
\ExecuteOptions{cmyk}
\ProcessOptions\relax
\package

5.2 Drivers

pdftex driver

(*pdftex-driver)
\ProvidesFile{pgfsys-cmykshadings-pdftex.def}{[2018/10/24
 CMYK and grayscale shadings support for PGF pdftex driver (DCP)]}
\ProvidesFile{pgfsys-cmykshadings-xetex.def}
[2018/10/24 CMYK and grayscale shadings support for PGF xetex driver (DCP)]
\input pgfsys-cmykshadings-dvipdfmx.def

\ProvidesFile{pgfsys-cmykshadings-luatex.def}
[2018/10/24 CMYK and grayscale shadings support for PGF luatex driver (DCP)]
\def\pgfsys@horishading#1#2#3{%\%
 \% \pgf@parsefunc[#3] \% \pgfmathparse[#2] \% \setbox\pgfutil@tempboxa=\hbox to\pgf@max{\% \box to\pgfmathresult pt\{\vfill\pgfsys@invoke{\Sh sh}\}\hfil}\% \pgf@process{\pgfpoint{\pgf@max}{\#2}}\% \immediate\saveboxresource resources \% /Shading << /Sh << /ShadingType 2 /ColorSpace \pgf@shading@device\space /Domain \{\pgf@pdfparsedomain\} /Coords \{\pgf@doma\space0 \pgf@domb\space0\} /Function \pgf@pdfparsedfunction /Extend [false false] >> >>\pgfutil@tempboxa\% << \expandafter\xdef\csname \pgfshading#1\endcsname{% \leavevmode \noexpand\pdfrefxform\the\pdflastxform\noexpand\pdfrefobj\pgf@temp@num\} \expandafter\xdef\csname \pgfshading#1@model\endcsname{% \pgf@shading@model\}%}%}(/pdftex-driver)

(*xetex-driver)\def\pgfsys@horishading#1#2#3{%\%
 \% \pgf@parsefunc[#3] \% \pgfmathparse[#2] \% \setbox\pgfutil@tempboxa=\hbox to\pgf@max{\% \box to\pgfmathresult pt\{\vfill\pgfsys@invoke{\Sh sh}\}\hfil}\% \pgf@process{\pgfpoint{\pgf@max}{\#2}}\% \immediate\saveboxresource resources \% /Shading << /Sh << /ShadingType 2 /ColorSpace \pgf@shading@device\space /Domain \{\pgf@pdfparsedomain\} /Coords \{\pgf@doma\space0 \pgf@domb\space0\} /Function \pgf@pdfparsedfunction /Extend [false false] >> >>\pgfutil@tempboxa\% << \expandafter\xdef\csname \pgfshading#1\endcsname{% \leavevmode \noexpand\pdfrefxform\the\pdflastxform\noexpand\pdfrefobj\pgf@temp@num\} \expandafter\xdef\csname \pgfshading#1@model\endcsname{% \pgf@shading@model\}%}%}(/xetex-driver)

(*luatex-driver)\def\pgfsys@horishading#1#2#3{%\%
 \% \pgf@parsefunc[#3] \% \pgfmathparse[#2] \% \setbox\pgfutil@tempboxa=\hbox to\pgf@max{\% \box to\pgfmathresult pt\{\vfill\pgfsys@invoke{\Sh sh}\}\hfil}\% \pgf@process{\pgfpoint{\pgf@max}{\#2}}\% \immediate\saveboxresource resources \% /Shading << /Sh << /ShadingType 2 /ColorSpace \pgf@shading@device\space /Domain \{\pgf@pdfparsedomain\} /Coords \{\pgf@doma\space0 \pgf@domb\space0\} /Function \pgf@pdfparsedfunction /Extend [false false] >> >>\pgfutil@tempboxa\% << \expandafter\xdef\csname \pgfshading#1\endcsname{% \leavevmode \noexpand\pdfrefxform\the\pdflastxform\noexpand\pdfrefobj\pgf@temp@num\} \expandafter\xdef\csname \pgfshading#1@model\endcsname{% \pgf@shading@model\}%}%}(/xetex-driver)
\def\pgfsys@functionalshading#1#2#3#4{%
 %
 \pgf@process(#2)%
 \pgf@xa=\pgf@x
 \pgf@ya=\pgf@y
 \pgf@process(#3)%
 \pgf@xb=\pgf@x
 \pgf@yb=\pgf@y
 \advance\pgf@x by-\pgf@xa
 \advance\pgf@y by-\pgf@ya
 \setbox\pgfutil@tempboxa=\hbox to\pgf@x{%
 \vbox to\pgf@y{\vfil\pgfsys@invoke{/Sh sh}}
 }%
 \pgf@sys@bp@correct{\pgf@xa}%
 \pgf@sys@bp@correct{\pgf@ya}%
 \pgf@sys@bp@correct{\pgf@xb}%
 \pgf@sys@bp@correct{\pgf@yb}%
 \pgf@xc=-\pgf@xa
 \pgf@yc=-\pgf@ya
 % Now build the function
 \pdfextension obj
 attr
 stream
 {{#4}}%
 \edef\pgf@temp@num{\the\numexpr\pdffeedback lastobj\relax}%
 \saveboxresource resources {%
 /Shading << /Sh << /ShadingType 1
 /ColorSpace \pgf@shading@device
 /Matrix [1 0 0 1 \pgf@sys@tonumber{\pgf@xc}]
 /Domain [\pgf@sys@tonumber{\pgf@xa}\space
 \pgf@sys@tonumber{\pgf@xb}\space
 \pgf@sys@tonumber{\pgf@ya}\space
 \pgf@sys@tonumber{\pgf@yb}]%
 /Range [\pgf@shading@functional@range]%
 }

 %
 ({#4})%
 \edef\pgf@temp@num{\the\numexpr\pdffeedback lastobj\relax}%
 \saveboxresource resources {%
 /Shading << /Sh << /ShadingType 1
 /ColorSpace \pgf@shading@device
 /Matrix [1 0 0 1 \pgf@sys@tonumber{\pgf@xc}]
 /Domain [\pgf@sys@tonumber{\pgf@xa}\space
 \pgf@sys@tonumber{\pgf@xb}\space
 \pgf@sys@tonumber{\pgf@ya}\space
 \pgf@sys@tonumber{\pgf@yb}]%
 /Function \pgf@temp@num{\space 0 R}
 }%
 \expandafter\xdef\csname @pgfshading#1!@model\endcsname{
 \pgf@shading@model}
}\endgraf}
\ProvidesFile{pgfsys-cmykshadings-dvipdfmx.def}\[2018/10/24
CMYK and grayscale shadings support for PGF dvipdfmx driver (DCP)]
\def\pgfsys@horishading#1#2#3{%
\pgf@parsefunc{#3}% \pgfmathparse{#2}% \edef\@tempa{\noexpand\pgfutil@insertatbegincurrentpagefrombox{% \special{pdf:bxobj \@pgfshade\the\pgfsys@objnum}\space width \the\pgf@max\space height \pgfmathresult pt}% \special{pdf:put @resources << /Shading << /Sh << /ShadingType 2 /ColorSpace \pgfshading@device\space /Domain \pgf@pdfparseddomain /Coords \pgf@doma\space0 \pgf@domb\space0 /Function \pgf@pdfparsedfunction /Extend [false false] >> >>}% \pgfsys@invoke{/Sh sh}% \special{pdf:exobj}}\@tempa% << \global\advance\pgfsys@objnum\@ne% }
\def\pgfsys@vertshading#1#2#3{%
\pgf@parsefunc{#3}% \pgfmathparse{#2}% \edef\@tempa{\noexpand\pgfutil@insertatbegincurrentpagefrombox{% \special{pdf:bxobj \@pgfshade\the\pgfsys@objnum}\space width \pgfmathresult pt\space height \the\pgf@max}% \special{pdf:put @resources << /Shading << /Sh << /ShadingType 2 /ColorSpace \pgfshading@device\space /Domain \pgf@pdfparseddomain /Coords \pgf@doma\space0 \pgf@domb\space0 /Function \pgf@pdfparsedfunction /Extend [false false] >> >>}% \pgfsys@invoke{/Sh sh}% \special{pdf:exobj}}\@tempa% << \global\advance\pgfsys@objnum\@ne% }
\def\pgfsys@objnum{0}
% Now build the function
\edef\@tempa{\noexpand\pgfutil@insertatbegincurrentpage{\special{pdf:stream \pgfstream\the\pgfsys@objnum\space({#4})\space
\\FunctionType 4 /Domain \[\pgf@sys@tonumber{\pgf@xa}\space
\pgf@sys@tonumber{\pgf@xb}\space
\pgf@sys@tonumber{\pgf@ya}\space
\pgf@sys@tonumber{\pgf@yb}\]\space
/Range \[\pgf@shading@functional@range\]>>}}}}\@tempa%
\edef\@tempa{\noexpand\pgfutil@insertatbegincurrentpage{\special{pdf:bxobj \pgfshade\the\pgfsys@objnum\space
\special{pdf:put \resources <</Shading <</Sh
/ColorSpace \pgf@shading@device\space
/Matrix [1 0 0 1 \pgf@sys@tonumber{\pgf@xc}\space
\pgf@sys@tonumber{\pgf@yc}\]\space
\pgf@sys@tonumber{\pgf@xa}\space
\pgf@sys@tonumber{\pgf@xb}\space
\pgf@sys@tonumber{\pgf@ya}\space
\pgf@sys@tonumber{\pgf@yb}\]\space
\Function \pgfstream\the\pgfsys@objnum\space
\pgfsys@invoke{Sh sh}>> >>>>\space
\pgfsys@invoke{/Sh sh}>>}}\@tempa% <<
\expandafter\xdef\csname @pgfshading#1!\endcsname{\leavevmode\hbox to\the\pgf@x{\vbox to\the\pgf@y{\vfil\special{pdf:uxobj \pgfshade\the\pgfsys@objnum}\hfil}}}%}
\expandafter\xdef\csname @pgfshading#1@model!\endcsname{\pgf@shading@model}%
\global\advance\pgfsys@objnum\@ne}
\input dvipdfmx-driver

dvipdfm driver

\ProvidesFile{pgfsys-cmykshadings-dvipdfm.def}%
[2018/10/24 CMYK and grayscale shadings support for PGF dvipdfm driver (DCP)]
\def\pgfsys@horishading#1#2#3{%
\pgf@parsefunc{#3}%
\pgf@process{\pgfpoint{\pgf@max}{#2}}%
\edef\@temp{\noexpand\pgfutil@insertatbegincurrentpage{%\special{pdf:stream \pgfstream\the\pgfsys@objnum\space{(#4)}}%\space
\\FunctionType 4 /Domain \[\pgf@sys@tonumber{\pgf@xa}\space
\pgf@sys@tonumber{\pgf@xb}\space
\pgf@sys@tonumber{\pgf@ya}\space
\pgf@sys@tonumber{\pgf@yb}\]\space
/Range \[\pgf@shading@functional@range\]>>}}}%
\edef\@temp{\noexpand\pgfutil@insertatbegincurrentpage{%\special{pdf:beginxobj \pgfshade\the\pgfsys@objnum\space
\special{pdf:put \resources <</Shading <</Sh
/ColorSpace \pgf@shading@device\space
/Matrix [1 0 0 1 \pgf@sys@tonumber{\pgf@xc}\space
\pgf@sys@tonumber{\pgf@yc}\]\space
\pgf@sys@tonumber{\pgf@xa}\space
\pgf@sys@tonumber{\pgf@xb}\space
\pgf@sys@tonumber{\pgf@ya}\space
\pgf@sys@tonumber{\pgf@yb}\]\space
\Function \pgfstream\the\pgfsys@objnum\space
\pgfsys@invoke{Sh sh}>> >> >>\space
\pgfsys@invoke{/Sh sh}>>}}}%
\expandafter\xdef\csname @pgfshading#1!\endcsname{\leavevmode\hbox to\the\pgf@x{\vbox to\the\pgf@y{\vfil\special{pdf:uxobj \pgfshade\the\pgfsys@objnum}\hfil}}}%}
\expandafter\xdef\csname @pgfshading#1@model!\endcsname{\pgf@shading@model}%
\edef\@temp{\noexpand\pgfutil@insertatbegincurrentpage{\
\special{pdf: beginxobj @pgfshade#1 width\
 \the\pgfutil@tempdima\space height \the\pgfutil@tempdima}\}\@temp}
\edef\@temp{\noexpand\pgfutil@insertatbegincurrentpage{\
\special{pdf: put @resources <<\
/Shading << /Sh << /ShadingType 3\
/ColorSpace \pgf@shading@device\space\
/Domain \pgf@pdfparseddomain\
/Coords \pgf@sys@tonumber{\pgf@xa} \pgf@sys@tonumber{\pgf@ya}\
\pgf@sys@tonumber{\pgf@x} \pgf@sys@tonumber{\pgf@y}\
\pgf@doma\space\pgf@sys@tonumber{\pgf@xa} \pgf@sys@tonumber{\pgf@ya}\
\pgf@sys@tonumber{\pgf@x} \pgf@sys@tonumber{\pgf@y}\
\pgf@domb}\space\
/Function \pgf@pdfparsedfunction\
/Extend [true false] >> >> >>\}\@temp <<\
\pgfutil@insertatbegincurrentpage{\special{pdf: content /Sh sh}\
\special{pdf: endxobj}}\}\@temp}
\expandafter\xdef\csname @pgfshading#1!endcsname\endcsname{\
\hbox to\the\pgfutil@tempdima{\vbox to\the\pgfutil@tempdima{\
\vfil\special{pdf: usexobj @pgfshade#1}\hfil}}}
\expandafter\xdef\csname @pgfshading#1@model!endcsname\endcsname{\
\pgf@shading@model}}
⟨dvipdfm-driver⟩
dvips driver
⟨dvips-driver⟩
\ProvidesFile{pgfsys-cmykshadings-dvips.def}%
[2018/10/24]
CMYK and grayscale shadings support for PGF dvips driver (DCP)
\input pgfsys-cmykshadings-common-postscript.def\
⟨dvips-driver⟩
textures driver
⟨textures-driver⟩
\ProvidesFile{pgfsys-cmykshadings-textures.def}%
[2018/10/24]
CMYK and grayscale shadings support for PGF textures driver (DCP)
\input pgfsys-cmykshadings-common-postscript.def\
⟨textures-driver⟩
vtex driver
⟨vtx-driver⟩
\ProvidesFile{pgfsys-cmykshadings-vtex.def}%
[2018/10/24]
CMYK and grayscale shadings support for PGF vtx driver (DCP)
\input pgfsys-cmykshadings-common-postscript.def\
⟨vtx-driver⟩
PostScript® driver common code
\ProvidesFile{pgfsys-cmykshadings-common-postscript.def}%
[2018/10/24]
CMYK and grayscale shadings support for PGF PostScript driver (DCP)]

\def\pgfsys@horishading#1#2#3{
{\pgf@parsefunc{#3}}\%\pgfmathsetlength\pgf@x{#2}\%\pgf@xa=\pgf@x\%\pgf@sys@bp@correct{\pgf@x}\%\pgf@y=\pgf@max\%\pgf@sys@bp@correct{\pgf@y}\%
\expandafter\xdef\csname @pgfshading#1!\endcsname{\hbox to \the\pgf@max{\noexpand\vrule width0pt height\the\pgf@xa\noexpand\pgfsys@beginpurepicture\noexpand\pgfsys@rect{0pt}{0pt}{\the\pgf@max}{\the\pgf@xa}\noexpand\pgfsys@clipnext\noexpand\pgfsys@discardpath\noexpand\pgfsys@invoke{\pgf@domb\space \pgf@sys@tonumber{\pgf@x}\pgfh\pgf@shading@model\space \pgf@psfuncs\space pop}\hss\noexpand\pgfsys@endpurepicture}}}%\expandafter\xdef\csname @pgfshading#1@model!\endcsname{\pgf@shading@model}%\}
}
\def\pgfsys@vertshading#1#2#3{
{\pgf@parsefunc{#3}}\%\pgfmathsetlength\pgf@x{#2}\%\pgf@xa=\pgf@x\%\pgf@sys@bp@correct{\pgf@x}\%\pgf@y=\pgf@max\%\pgf@sys@bp@correct{\pgf@y}\%
\expandafter\xdef\csname @pgfshading#1!\endcsname{\hbox to \the\pgf@xa{\noexpand\vrule width0pt height\the\pgf@max\noexpand\pgfsys@beginpurepicture\noexpand\pgfsys@rect{0pt}{0pt}{\the\pgf@xa}{\the\pgf@max}\noexpand\pgfsys@clipnext\noexpand\pgfsys@discardpath\noexpand\pgfsys@invoke{\pgf@domb\space \pgf@sys@tonumber{\pgf@x}\pgfv\pgf@shading@model\space \pgf@psfuncs\space pop}\hss\noexpand\pgfsys@endpurepicture}}}%\expandafter\xdef\csname @pgfshading#1@model!\endcsname{\pgf@shading@model}%\}
}
\def\pgfsys@radialshading#1#2#3{
{\pgf@parsefunc{#3}}\%\pgf@process{#2}
PostScript® support code.
\g@addto@macro\pgfsys@atbegindocument{%
 Define RGB PostScript® shading functions.
 \pgf@sys@postscript@header{/pgfHrgb { pgfH } bind def}\
 \pgf@sys@postscript@header{/pgfVrgb { pgfV } bind def}\
 \pgf@sys@postscript@header{/pgfR1rgb { pgfR1 } bind def}\
 \pgf@sys@postscript@header{/pgfR2rgb { pgfR2 } bind def}\

 Define CMYK PostScript® shading functions.
 \pgf@sys@postscript@header{/pgfHcmyk{\
 /pgfheight exch def 0.75 setlinewidth [] 0 setdash\
 /pgfshade {pgfAcmyk} def /pgfdir { dup 0 moveto\
 dup 6 index lineto } bind def} bind def}\
 \pgf@sys@postscript@header{/pgfVcmyk{\
 /pgfheight exch def 0.75 setlinewidth [] 0 setdash\
 /pgfshade {pgfAcmyk} def /pgfdir { dup 0 exch moveto dup 6 index\
 exch lineto } bind def} bind def}\
 \pgf@sys@postscript@header{/pgfR1cmyk{\
 newpath dup dup dup 0 360 arc clip newpath\
 /pgfendx exch def /pgfendy exch def\
 /pgfstartx exch def /pgfstarty exch def\
 /pgfdiffx pgfendx pgfstartx sub def\
 /pgfdiffy pgfendy pgfstarty sub def\
 pgfheight 12 index 12 index 12 index 12 index 18 index\
 pgfdiff {\
 4 index 4 index 4 index 4 index setcmykcolor % Set color\
 pgfdir\
 stroke\
 5 -1 roll 9 index add % cyan += incyan\
 5 -1 roll 8 index add % magenta += incmagenta\
 5 -1 roll 7 index add % yellow += incyellow\
 5 -1 roll 6 index add % black += incblack\
 5 -1 roll .5 sub % x += 0.5\
 } repeat\
 mark 19 1 roll cleartomark exch pop % leave only start x on stack\
)bind def %}\
 \pgf@sys@postscript@header{/pgfR2cmyk{\
 newpath dup dup dup 0 360 arc clip newpath\
 dup /pgfendx exch def /pgfendy exch def\
 0.875 setlinewidth [] 0 setdash\
 /pgfshade {pgfAcmyk} def /pgfstartx exch def\
 /pgfstarty exch def /pgfdiffx pgfendx pgfstartx sub def\
 /pgfdiffy pgfendy pgfstarty sub def}
dup /pgfdomb exch def
}bind def %
\pgf@sys@postscript@header{/pgfR2cmyk{
newpath 0.5 add pgfcircx pgfcircy 3 2 roll 0 360 arc
setcmykcolor fill pop}bind def }%
\pgf@sys@postscript@header{/pgfRcmyk{
/pgfdiff 10 index round cvi 10 index round cvi sub 4 mul 1 add def
/pgfcircx pgfstarty 11 index pgfdiffx pgfdomb div mul add def
/pgfcircxe pgfstarty 10 index pgfdiffx pgfdomb div mul add def
/pgfcircye pgfstarty 10 index pgfdiffy pgfdomb div mul add def
/pgfxstep pgfcircxe pgfcircx sub pgfdiff div def
/pgfystep pgfcircye pgfcircy sub pgfdiff div def
3 index 8 index sub pgfdiff div % put cyan-step on stack
3 index 8 index sub pgfdiff div % put magenta-step on stack
3 index 8 index sub pgfdiff div % put yellow-step on stack
3 index 8 index sub pgfdiff div % put black-step on stack
11 index 11 index 11 index 11 index 17 index
pgfdiff {
4 index 4 index 4 index 4 index setcmykcolor % Set color
pgfcircx pgfcircy 2 index 0 360 arc closepath
stroke
5 -1 roll 8 index add % cyan += incyan
5 -1 roll 7 index add % magenta += incmagenta
5 -1 roll 6 index add % yellow += incyellow
5 -1 roll 5 index add % black += incblack
5 -1 roll .25 sub % x += 0.25
/pgfcircx pgfcircy pgfxstep add def
/pgfcircy pgfcircx pgfystep add def
} repeat
mark 18 1 roll cleartomark exch pop % leave only start x on stack
}bind def %

Define grayscale PostScript® shading functions.
\pgf@sys@postscript@header{/pgfHgray{
/pgfheight exch def 0.75 setlinewidth [] 0 setdash
/pgfshade {pgfAgray} def /pgfdir { dup 0 moveto
dup 3 index lineto } bind def }bind def }%
\pgf@sys@postscript@header{/pgfVgray{
/pgfheight exch def 0.75 setlinewidth [] 0 setdash
/pgfshade {pgfAgray} def /pgfdir { dup 0 exch moveto dup 3 index
exch lineto } bind def }bind def }%
\pgf@sys@postscript@header{/pgfAgray{
/pgfdiff 10 index round cvi 4 index round cvi sub 2 mul 1 add def
dup 2 index sub pgfdiff div % put gray-step on stack
pgfheight 3 index 6 index
pgfdiff {
1 index setgray % Set color
pgfdir
stroke
exch 3 index add % gray += incgray
exch .5 sub % x += 0.5
} repeat
mark 7 1 roll cleartomark exch pop % leave only start x on stack
}bind def }%
\begin{verbatim}
"common-ps-driver"
\end{verbatim}

\section*{Change History}

v1.0

General: First public release \hspace{0.5cm} 1

v1.1

General: Fix typo for \texttt{rgb} option \hspace{0.5cm} 16
Support \texttt{dvisvgm} driver \hspace{0.5cm} 15

v1.1a

Support \texttt{dvipdfm} driver \hspace{0.5cm} 24
Support \texttt{PostScript\textregistered} drivers \hspace{0.5cm} 26
Support \texttt{tex4ht} driver \hspace{0.5cm} 15

General: Fix missing percent sign \hspace{0.5cm} 11