The *cooking-units* package*

Ben Vitecek
b.vitecek@gmx.at
2018/09/24

Abstract

This package enables user to globally format units, to switch between them and since v1.10 you can also change your recipes for a given number of persons. It should be used for light-hearted things like cookery books (and not e.g. scientific texts).\(^1\) Please read through the section “Important Changes”

Contents

1 Introduction 2
 1.1 Important Changes ... 2
 1.2 Supported languages ... 3

2 The Commands 3

3 Label & refs: Changing the amount of the recipe 5

4 Some Interesting options 6
 4.1 Numerals .. 6
 4.2 Phrases ... 6
 4.3 Rounding temperatures ... 7

5 Predefined units & some notes 7

6 Defining units 7

7 Defining options to change units 9

8 Language support 13
 8.1 Phrases ... 15

\(^1\) I did hide some grammatical and spelling errors for easter egg hunters ☢.
1 Introduction

While writing on a cookery book I used – for reasons whatsoever – three different units for weight: kilogram (kg), gram (g) and decagram (dag, or older: dkg). Later my mother told me that she doesn’t like it if a cookery book uses more than two different units (for weight in this case). Happily I hardly used Decagram and therefore didn’t have many problems changing the units. But, well ... I am using \LaTeX{} and changing those units by hand seemed not very \LaTeX{}like, so I started writing some code to convert units. I expanded the code, rewrote it in \LaTeX{}3 (which is much more pleasant than \LaTeX{}2\epsilon) and here it is.

1.1 Important Changes

Language I am now using the translations package and I hope it makes things easier. As such, declaring the used language through class options shouldn’t be necessary anymore.

Phrases This package now supports the usage of “phrases” (words used instead of certain integers) (which I think are called “counting measures” in english, but I am not sure).
\texttt{\textbackslash cutext} and \texttt{\textbackslash Cutext} If no translation is found for a specific language, \texttt{\textbackslash cutext} and \texttt{\textbackslash Cutext} are replaced by \texttt{\textbackslash cunum} with a warning is given.

\textbf{Commands} Currently, it seems that allowing \texttt{\langle label\rangle} to be set by arrow-brackets was not the best idea as it leads to problems if they are made active (e.g. \texttt{babel} and option \texttt{spanish}). As such, < is not allowed as a “special-sign” anymore as this package tries to “fix” this idea (at least make it work). If any problems occur (for this specific case or in general) please feel free to contact me.

\section*{1.2 Supported languages}
\begin{itemize}
\item German
\item English
\item French (currently suboptimal2)
\end{itemize}

Have another language to add or a correction of an existing one? See section 10 for more details. Wanna just check the existing translations? See appendix A.

\section*{2 The Commands}

This package offers the following commands for unit printing (and converting):

\begin{itemize}
\item \texttt{\textbackslash cunum\langle label\rangle\{\langle options\rangle\}\{\langle amount\rangle\}\{\langle space\rangle\}\{\langle unit-key\rangle\}}
\item \texttt{\textbackslash cutext\langle label\rangle\{\langle options\rangle\}\{\langle amount\rangle\}\{\langle unit-key\rangle\}}
\item \texttt{\textbackslash Cutext\langle label\rangle\{\langle options\rangle\}\{\langle amount\rangle\}\{\langle unit-key\rangle\}}
\item \texttt{\textbackslash cuam\langle label\rangle\{\langle options\rangle\} \{\langle amount\rangle\}}
\item \texttt{\textbackslash cusetup\{\langle options\rangle\}}
\end{itemize}

Numbers and units are printed using \texttt{\textbackslash cunum}. The numerical part can interpret _ and / as (mixed) fractions and -- as a separator for ranges; to convert units use the option \texttt{\langle old-unit\rangle=}\texttt{\langle new-unit\rangle}3. It furthermore allows the sign ? to be used as a placeholder for not known amounts and raises a warning to remind that this amount needs a check-up4. \texttt{\langle\langle space\rangle\rangle} adds a space between the number and the unit using \texttt{\textbackslash phantom}.

For a list of predefined units have a look at table 1. \texttt{\langle label\rangle} is explained in section 3.

2You can only get limited information from the internet.
3New keys can be added and defined, see section 5 and section 6 for further information.
4You can customize this behavior, see section 9
1 kg \(\cunum{1}{kg}\)
2.3 kg \(\cunum{2.3}{kg}\)
2.3 kg \(\cunum{2,3}{kg}\)
2–3 kg \(\cunum{2--3}{kg}\)
2.5–3.5 kg \(\cunum{2.5--3.5}{kg}\)
2500–3500 g \(\cunum{kg=g}{2.5--3,5}{kg}\)
392 °F \(\cunum{C=F}{180--200}{C}\)
356–392 °F \(\cunum{C=F}{180--200}{C}\)
\(\frac{1}{2}\) m \(\cunum{1/2}{m}\)
1\(\frac{1}{2}\) m \(\cunum{1_1/2}{m}\)
1\(\frac{1}{2}\) m \(\cunum[m=cm]{1_1/2}{m}\)
? ℓ \(\cunum{?}{l}\)
50 dag \(\cunum{50}{dag}\)
5 dag \(\cunum{5}{0}{dag}\)
1.12 m \(\cunum{1.1234}{m}\)

Decimal numbers are automatically rounded to 2 digits after the colon, temperatures (C, F, K and Re) are automatically rounded to integers.\(^5\)
\(\cutext\) and \(\Cutext\) print the number and the written name of the unit. Since v1.10 it works similar\(^6\) to \(\cunum\): it allows the conversion between units and interprets the numerical part (again _ and / are used for (mixed) fractions and -- for ranges). Furthermore, if the package option use-numerals is used, integers below a specific integer (by default 13; see use-numerals-below) are written out with \(\Cutext\) capitalizing the first letter (using package fmtcount).

1 litre \(\cutext{1}{l}\)
1 litre \(\Cutext{1}{l}\)
1 to 2 litres \(\cutext{1--2}{l}\)
12 litres \(\cutext{12}{l}\)
13 litres \(\cutext{13}{l}\)

and using package option use-numerals=true

one litre \(\cutext{1}{l}\)
One litre \(\Cutext{1}{l}\)
one to two litres \(\cutext{1--2}{l}\)
One to two litres \(\Cutext{1--2}{l}\)
twelve litres \(\cutext{12}{l}\)
13 litres \(\Cutext{13}{l}\)

Furthermore, since v1.10 \(\cutext\) and \(\Cutext\) also allow their units to be changed (this behavior can be altered using cutext-change-unit):

1000 millilitres \(\cutext{1}{l}\)
1000 millilitres \(\Cutext{1}{l}\)
1000 to 2000 millilitres \(\cutext{1--2}{l}\)
12000 millilitres \(\cutext{12}{l}\)
13000 millilitres \(\Cutext{13}{l}\)
? litres \(\Cutext{?}{l}\)
\(\frac{1}{2}\) litres \(\Cutext{1/2}{l}\)

\(^5\)You can – of course – change this behavior, see section 9.
\(^6\)One could also say “exactly like”.
\texttt{cunam} works like \texttt{cunum}, but without a unit, so changing units doesn’t affect it. Like \texttt{cunum} and \texttt{/} are used to imply a (mixed) fraction and -- is used for ranges.

\begin{verbatim}
3 \texttt{cunam}(3)\n2-3 \texttt{cunam}(2--3)\n\frac{2}{3} \texttt{cunam}(2/3)\n1 \frac{2}{3} \texttt{cunam}(1_2/3)
\end{verbatim}

Furthermore it allows the concept of “phrases” (replacing a positive integer by a word, such as “12” becoming “dozen”) which can be activated by the option \texttt{use-phrases} (as I don’t know any english phrases, I switched the language to german for the following examples)

\begin{verbatim}
\texttt{cusetup}{use-phrases=true}
11 \texttt{cunam}(11)\n1 Dutzend \texttt{cunam}(12)\n13 \texttt{cunam}(13)\n2 Dutzend \texttt{cunam}(24)\n1–2 Dutzend \texttt{cunam}(12--24)\n12–13 \texttt{cunam}(12--13)\n18 \texttt{cunam}(18)\n5 Dutzend \texttt{cunam}(60)
\end{verbatim}

3 \textbf{Label & refs: Changing the amount of the recipe}

What if you don’t want to change units, but the amounts of the recipe because you cook not for 4 persons, but for 2 and don’t like to do the math? Simple, use the following commands:

\begin{itemize}
 \item \texttt{cxlabel}{⟨label⟩}{⟨number of persons⟩}
 \item \texttt{curef}{⟨label⟩}
\end{itemize}

The first one is the important one: It defines a \texttt{⟨label⟩} for a recipe which is initially for \texttt{⟨number of persons⟩}. Afterwards \texttt{⟨label⟩} can be used to tell the commands from section 2 that the given amounts are for \texttt{⟨number of persons⟩}. Each \texttt{⟨label⟩} must be unique and an error is raised if a \texttt{⟨label⟩} is already defined.

If you would like to print the number of persons this recipe is for, use \texttt{curef}, which is fully expandable.

The following example uses \texttt{cxlabel} to specify that the recipe is initially intended for 2 persons:

\begin{verbatim}
\texttt{cxlabel}{recipe}{2}
recipe for \texttt{curef}{recipe} persons:\
\texttt{cunum}{recipe}{10--20}{dag} flour,\n\texttt{cunum}{recipe}{1/2}{l} water,\n\texttt{cutext}{ref=recipe}{10}{g} nuts,\n\texttt{cunam}{recipe}{2--3} eggs,\n\texttt{cunum}{180}{C} (\texttt{cunum}[C=F]{180}{C}) open fire
\end{verbatim}

\footnote{At least I think}
In combination with the option `set-number-of-persons` and `recalculate-amount` you can have this recipe changed to four persons:

\cubelabel{recipe}{2}
\% adding options:
\cusetup{set-number-of-persons=4,recalculate-amount=true}

recipe for 4 persons:
20–40 dag flour,
1 ℓ water,
20 gramme nuts,
4–6 eggs,
180°C (356°F) open fire

Note that fractions are automatically evaluated and that only values with a (label) are changed (\cunum{180}{C} for example stays the same which also makes sense as the heat should be the same).

4 Some Interesting options

This package has some options which might be of interest and to highlight them, this section exists. All options can be found in section 9.

4.1 Numerals

As seen above, you can use the package-option `use-numerals` to print integers used by \cutext and \Cutext below `use-numerals-below` (13 by default) by fmtcount. You can still decide if numerals should be printed or not with `print-numerals`.

\textbf{Note}: `use-numerals` is a package option as it needs to load fmtcount which is not loaded by default.

4.2 Phrases

In (I presume) all languages there exist phrases for a given amount or a number of things (think it is called “counting measurement”). In German you may say instead of “12”: “ein Dutzend”. Using this option you can tell this package to replace predefined integers used in \cuam by phrases for the currently used language (to define new ones, see section 8.1)

Using (for example) language \texttt{ngerman} (or \texttt{naustrian}, etc.) with package option `use-phrases=true` gives:

<table>
<thead>
<tr>
<th>Phrase</th>
<th>fmtcount code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Dutzend</td>
<td>\cuam{12}</td>
</tr>
<tr>
<td>2 Dutzend</td>
<td>\cuam{24}</td>
</tr>
<tr>
<td>1–2 Dutzend</td>
<td>\cuam{12--24}</td>
</tr>
<tr>
<td>12–13</td>
<td>\cuam{12--13}</td>
</tr>
<tr>
<td>18</td>
<td>\cuam{18}</td>
</tr>
<tr>
<td>5 Dutzend</td>
<td>\cuam{60}</td>
</tr>
</tbody>
</table>
This of course also works with the `package-option use-numerals`:

- \texttt{\cusetup{use-phrases=true}}
- \texttt{\cuam{12}}
- \texttt{\cuam{24}}
- \texttt{\cuam{12--24}}
- \texttt{\cuam{12--13}}
- \texttt{\cuam{18}}
- \texttt{\cuam{60}}

\textbf{Note:} Currently only the lower-case variant for `use-numerals` is supported. Furthermore this feature is only available for `\cuam`.

4.3 Rounding temperatures

By default temperatures are rounded to integers (using `round-to-int = true`). Since 1.30 it is possible to round amounts to a negative precision. If you want to round temperatures to the tens see the following example (`set-option-for-\langle unit \rangle` is described in section 9.2.1).

\begin{verbatim}
180 °C \cunum{180}{C} \cunum[C=F]{180}{C} \cunum[C=Re]{180}{C} \cunum[C=K]{180}{C}
\end{verbatim}

\begin{verbatim}
\cusetup{set-option-for-C={round-precision=-1}} \cusetup{set-option-for-F={round-precision=-1}} \cusetup{set-option-for-Re={round-precision=-1}} \cusetup{set-option-for-K={round-precision=-1}}
\end{verbatim}

5 Predefined units & some notes

In table 1 and you can find all predefined units which can be transformed into each other (sorted by group). Other predefined units (which cannot be used for transformation) are shown in table 2. Table 3 pretty much exists just for fun.

6 Defining units

New units can be defined using

- `\declarecookingunit`
- `\newcookingunit`
- `\providecookingunit`
Table 1: This table shows all units which can be transformed into each other, sorted by group. The columns “default” show the abbreviations used if for given language no translation is defined. The translations used for `cutext` and `Cutext` are shown in appendix A. Note that “electron volt” exists just for fun.

<table>
<thead>
<tr>
<th>description</th>
<th>key</th>
<th>default</th>
<th>description</th>
<th>key</th>
<th>default</th>
</tr>
</thead>
<tbody>
<tr>
<td>kilogramme</td>
<td>kg</td>
<td>kg</td>
<td>metre</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>decagramme</td>
<td>dag</td>
<td>dag</td>
<td>decimetre</td>
<td>dm</td>
<td>dm</td>
</tr>
<tr>
<td>gramme</td>
<td>g</td>
<td>g</td>
<td>centimetre</td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>ounce</td>
<td>oz</td>
<td>oz</td>
<td>millimetre</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>pound</td>
<td>lb</td>
<td>lb</td>
<td>inch</td>
<td>in</td>
<td>in</td>
</tr>
<tr>
<td>stick (of butter)</td>
<td>stick</td>
<td>stick</td>
<td>litre</td>
<td>l</td>
<td>l</td>
</tr>
<tr>
<td>hour</td>
<td>h</td>
<td>h</td>
<td>decilitre</td>
<td>dl</td>
<td>dl</td>
</tr>
<tr>
<td>minute</td>
<td>min</td>
<td>min</td>
<td>centilitre</td>
<td>cl</td>
<td>cl</td>
</tr>
<tr>
<td>second</td>
<td>s</td>
<td>s</td>
<td>millilitre</td>
<td>ml</td>
<td>ml</td>
</tr>
<tr>
<td>calorie</td>
<td>cal</td>
<td>cal</td>
<td>degree Celsius</td>
<td>°C</td>
<td>°C</td>
</tr>
<tr>
<td>kilocalorie</td>
<td>kcal</td>
<td>kcal</td>
<td>degree Fahrenheit</td>
<td>°F</td>
<td>°F</td>
</tr>
<tr>
<td>joule</td>
<td>J</td>
<td>J</td>
<td>degree Réaumur</td>
<td>°Ré</td>
<td>°Ré</td>
</tr>
<tr>
<td>kilojoule</td>
<td>kJ</td>
<td>kJ</td>
<td>kelvin</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>electron volt</td>
<td>eV</td>
<td>eV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: A (not only) spoonful of (more or less) country and language dependent units. Please note that sometimes a translation is nearly impossible as a unit (e.g. “saltspoonful”) may not exist in another language (like german; at least I never heard of it). So please only use units known to you.

<table>
<thead>
<tr>
<th>description</th>
<th>key</th>
<th>symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>pinch</td>
<td>pn</td>
<td>pinch</td>
</tr>
<tr>
<td>tablespoon</td>
<td>EL</td>
<td>EL</td>
</tr>
<tr>
<td>teaspoon</td>
<td>TL</td>
<td>TL</td>
</tr>
<tr>
<td>dessertspoonful</td>
<td>dsp</td>
<td>dsp.</td>
</tr>
<tr>
<td>coffeespoonful</td>
<td>csp</td>
<td>csp.</td>
</tr>
<tr>
<td>saltspoonful</td>
<td>ssp</td>
<td>ssp.</td>
</tr>
<tr>
<td>Messerspitze (point of a knife)</td>
<td>Msp</td>
<td>Msp.</td>
</tr>
</tbody>
</table>

Table 3: List of (not really) nonsense units (exist just for fun, there will be no support for those units; unless – of course – you really want it).

<table>
<thead>
<tr>
<th>unit-key</th>
<th>symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>eVc-2</td>
<td>eV/c^2</td>
</tr>
<tr>
<td>hbareV-1</td>
<td>h/eV</td>
</tr>
<tr>
<td>chbareV-1</td>
<td>\hbar/eV</td>
</tr>
<tr>
<td>(chbareV-1)³</td>
<td>$c^3\hbar^3/eV^3$</td>
</tr>
</tbody>
</table>
These commands define the unit \(\text{(unit-key)}\). If the key is not the same as the printed symbol use \([\text{symbol}]\). Note that \(\text{(unit-key)}\) should neither contain / nor ,.

\newcookingunit raises an error if the unit is already defined, \declarecookingunit creates or (if given) overwrites \(\text{symbol}\) and \providecookingunit does nothing if the unit is already defined.

All units have male gender \text{m} by default.

Some examples:

\begin{verbatim}
\declarecookingunit{kg}
\declarecookingunit{g}
\declarecookingunit[Msp.]{Msp}
\declarecookingunit[\ensuremath{{}^\circ\kern-\scriptspace C}]{{C}}
\end{verbatim}

Note: The definition of the printed degree Celsius is directly copied and pasted from (a maybe older version of) \text{sunitx}

7 Defining options to change units

Options (to change units) can be newly defined or added to already existing keys (units) using

- \texttt{\cudefinekeys}
- \texttt{\cudefinesinglekey}
- \texttt{\cuaddkeys}
- \texttt{\cuaddsinglekeys}
- \texttt{\cuaddtokeys}

I apologize for the (name) inconsistency between \texttt{\cudefinekeys} and \texttt{\cudefinesinglekey} (although they are named similarly, they work different).
If you define new units (see section 6) and cannot add them to already existing keys you can use \texttt{\cudefinekeys} bzw. \texttt{\cudefinesinglekey} to define new keys.

\texttt{\cudefinekeys} takes \{\texttt{unit-key-1}\} as a “basis”, defines a key with the name \texttt{\langle unit-key-1 \rangle} and adds the values \langle unit-key-1 \rangle, \langle unit-key-2 \rangle, \langle unit-key-3 \rangle, etc. Furthermore this command also defines the keys \langle unit-key-2 \rangle, \langle unit-key-3 \rangle, etc. with the same values as \langle unit-key-1 \rangle. Please note that \langle \ldots \rangle has to be a number.

Sometimes it is not that easy and the conversion of one unit into another needs are more complicated formula (see for example temperatures). If that is the case use \texttt{\cudefinesinglekey}. As the name says it defines only the key \langle unit-key-1 \rangle with the values \langle unit-key-1 \rangle, \langle unit-key-2 \rangle, etc. The advantage of this command is that now \langle \ldots \rangle can be a formula and the numerical input can be placed explicitly using \#1.

\textbf{Example:} This example defines following keys with their respective value:

- the key \texttt{kg} with the values \texttt{kg}, \texttt{dag}, \texttt{g} and \texttt{oz}
- the key \texttt{dag} with the values \texttt{kg}, \texttt{dag}, \texttt{g} and \texttt{oz}
- the key \texttt{g} with the values \texttt{kg}, \texttt{dag}, \texttt{g} and \texttt{oz}
- the key \texttt{oz} with the values \texttt{kg}, \texttt{dag}, \texttt{g} and \texttt{oz}
- the key \texttt{d} with the values \texttt{d}, \texttt{h}, \texttt{min} and \texttt{s}

\begin{verbatim}
1 kg = 1 kg 1 kg = 100 dag 1 kg = 1000 g
1 kg = 35.27399 oz 1 kg = 2.204622 6 lb
\end{verbatim}

\texttt{\cudefinekeys \{kg\}}

\begin{verbatim}
\{dag\}{ 100 } \% 1 kg are 100 dag
\{g\} { 1000 } \% 1 kg are 1000 g
\{oz\} { 35.27399 } \% 1 kg are 35.27399 oz
\{lb\} { 2.204 622 6 } \% 1 kg are 2.204 622 6 lb
\end{verbatim}
To convert degree Fahrenheit to degree Celsius, Kelvin and degree Réamur one needs the formulas
\[T_C = \left(T_F - 32 \right) \cdot \frac{5}{9} \]
\[T_K = \left(T_F - 459.67 \right) \cdot \frac{5}{9} \]
\[T_{Re} = \left(T_F - 32 \right) \cdot \frac{4}{9} \]
with \(T_F \) being the input temperature in degree Fahrenheit and \(T_C \) being the same temperature in degree Celsius, etc. Using \texttt{cudefinesinglekey} the key \(F \) with values \(C, K \) and \(Re \) is defined:

\texttt{cudefinesinglekey \{F\} {C} { (#1 - 32) * 5/9 } \% see formulas above}
\texttt{K} { (#1 + 459.67) * 5/9 } \% see formulas above
\texttt{Re} { (#1 - 32) * 4/9 } \% see formulas above

This defines the key \(F \) with the values \(F, C, K \) and \(Re \).

\texttt{\cuaddkeys\{}[\texttt{\cuaddsinglekeys\{}[\texttt{\cuaddkeys\{}[\texttt{\cuaddsinglekeys\}}

These commands add \texttt{\textbackslash unit-key-2}, etc. to the already defined key \texttt{\textbackslash unit-key-1}. \texttt{\cuaddkeys} takes the already defined key \texttt{\textbackslash unit-key-1} as a “basis”, and adds \texttt{\textbackslash unit-key-2}, \texttt{\textbackslash unit-key-3}, etc. to its values. Furthermore it adds those new values to other keys linked to \texttt{\textbackslash unit-key-1} and defines the new keys \texttt{\textbackslash unit-key-2}, etc. with the same values as \texttt{\textbackslash unit-key-1}.

If the conversion is more complicated use \texttt{\cuaddsinglekeys}. It adds \texttt{\textbackslash unit-key-2}, etc. as values to \texttt{\textbackslash unit-key-1}. The numerical input can be placed using \#1 (see \texttt{\textbackslash cudefinesinglekey}). This command neither defines new keys nor does it add values to other keys than \texttt{\textbackslash unit-key-1}.

\footnote{See Wikipedia.}
Example: Suppose you are British (I am sorry, I can’t think of another reason to use those units) and you want to implement ’stone’ (yes, I was surprised myself that such a unit exists, but it even appears in a Sherlock Holmes story). You exactly know that 1 st equals 14 lb, well … now you have two choices. \texttt{cuaddkeys} or \texttt{cuaddtokeys} (use the one best fitting). This example uses the first, the next the latter one.

\begin{verbatim}
\newcookingunit{st} \texttt{%% defining new unit ’stone’}
\cuaddkeys{lb} \texttt{%% adding st to lb (could also add to kg, dag and oz)}
{
 \{st\} \{ 1/14 \} \texttt{%% 1 lb are 1/14 st as 14 lb are 1 st}
}
0.07st \texttt{\cunum[lb=st]{1}{lb}}
14lb \texttt{\cunum[st=lb]{1}{st}}
6350.29g \texttt{\cunum[st=g]{1}{st}}
6.35kg \texttt{\cunum[st=kg]{1}{st}}
0.16st \texttt{\cunum[kg=st]{1}{kg}}
101.6kg \texttt{\cunum[st=kg]{16}{st}}
\end{verbatim}

Example: Now you want to add degree Rømer and convert Celsius to degree Rømer:

\begin{verbatim}
T_{Ro} = T_{C} \cdot \frac{21}{40} + 7.5
\end{verbatim}

%%% defining new unit ’degree R\(\circ\)mer’
\newcookingunit \texttt{\\ensuremath{ {} ^ { \circ } }kern-\scriptspace R(\o) } \texttt{\{Ro\}}
\cuaddsinglekeys \{C\} \texttt{%% adds value ’Ro’ to ’C’}.
{
 \{Ro\} \{ #1 * \frac{21}{40} + 7.5 \}
}
\cusetup \texttt{%% round to integer automatically}
{
 \set-option-for-Ro = \{ \texttt{\texttt{\\round-to-int}} = \texttt{true} \}
}
10°C \texttt{\cunum{10}{C}}
13°Ro \texttt{\cunum[C=Ro]{10}{C}}
\end{verbatim}

%\texttt{cuaddtokeys} \texttt{(\{unit-key-1\}) (\{unit-key-2\}) ((1 unit-key-2 are ... unit-key-1))}
Works similar to \texttt{cuaddkeys} regarding the definition of keys.

Example: Continuing the example from before, this time with \texttt{cuaddtokeys}:

\begin{verbatim}
\newcookingunit{st} \texttt{%% defining (again) new unit ’stone’}
\cuaddtokeys \{lb\} \texttt{\{st\} \{ 14 \} \texttt{\texttt{%% 1 st are 14 lb}}}
0.07st \texttt{\cunum[lb=st]{1}{lb}}
14lb \texttt{\cunum[st=lb]{1}{st}}
6350.29g \texttt{\cunum[st=g]{1}{st}}
6.35kg \texttt{\cunum[st=kg]{1}{st}}
0.16st \texttt{\cunum[kg=st]{1}{kg}}
101.6kg \texttt{\cunum[st=kg]{16}{st}}
\end{verbatim}
8 Language support

Unit names and symbols depend on the language. To change the name depending on the language you can use \cudefiname and to only change symbols use \cudefinesymbol.

Those are special keys (as they cannot be used as units). Not only are printed units language depending, but as is the decimal mark ("." or ",") and the text which substitutes the range-sign. To set the decimal mark use decimal-mark (see examples below), to set the range-sign for \cutext and \Cutext use cutext-range-sign.

Note that cutext-range-sign is “overwritten” by the option cutext-range-sign. If the option is set, then the language symbol will be ignored.

Furthermore if you are using the package-option use-numerals you may also use the keys one(m), one(f) and one(n). If you use this option, integers below a certain value (see option use-numerals-below) are written-out. The only problem is the written-out “1” mostly depends on the gender of the following word (e.g. “ein Baum” (m), “eine Pflanze” (f) and “ein Auto” (n)). To set the written-out 1 to be correct with the gender of the used unit, use these keys (see also examples below)

\cudefiname\cudefiname\cudefiname{Language}
{
 {⟨unit-key-1⟩} [{⟨symbol-1⟩}] {⟨singular-1⟩} [⟨plural-1⟩] ⟨gender⟩
 {⟨unit-key-2⟩} [{⟨symbol-2⟩}] {⟨singular-2⟩} [⟨plural-2⟩] ⟨gender⟩
 ...
}

This command defines the names (and optionally the symbol) of the units printed in \cutext and \Cutext (and \cunum regarding the symbol) for the specific ⟨Language⟩. For details regarding ⟨language⟩ see the translations documentation.

If the plural form of the name differs from the singular form use [⟨plural⟩] to specify the plural form, if no [⟨plural⟩] is given the plural will be set equal to its singular. The singular form is only used if the number in \cutext and \Cutext is equal to 1.

⟨gender⟩ can be m (maskulin), f (feminin) or n (neutrum). If not given m is used as default.

\cudefiname {English}
{
 {kg} {kilogramme}
 {oz} {ounce}
 {h} {hour} [hours]
 {C} {degree\ space Celsius} [degrees\ space Celsius]
 {decimal-marker} {.}
 {cutext-range-sign} {-to-}
 {one(m)} {one}
 {one(f)} {one}
 {one(n)} {one}
}

\cudefiname {German}
{
 {kg} {Kilogramm} ⟨n>
\cudefinesymbol \cudefinesymbol{(Language)}
{
{(unit-key-1)} {(symbol-1)}
{(unit-key-2)} {(symbol-2)}
...
}
This command defines the symbols of the units printed in \cunum for the specific \langle language\rangle. It works similar as \cudefinename, but only the symbols (and no names) can be set. For details regarding \langle language\rangle see the translations documentation.

\cudefinesymbol {English}
{
{decimal-mark} \{.\}
{cutext-range-sign} \{-to-\}
{one(m)} \{one\}
{one(f)} \{one\}
{one(n)} \{one\}
}
\cudefinesymbol {German}
{
{decimal-mark} \{,\}
{cutext-range-sign} \{-bis-\}
{one(m)} \{ein\}
{one(f)} \{eine\}
{one(n)} \{ein\}
}
\cudefinesymbol {French}
{
{l} \{L\}
{dl} \{dL\}
{cl} \{cL\}
{ml} \{mL\}
{decimal-mark} \{.\}
{one(m)} \{un\}
{one(f)} \{une\}
{one(n)} \{un\}
}
Example: Imagine that instead of the abbreviation “dag” for “decagramme” you want to use “ducks” (because ... I don’t know). You can easily do this via

\cun{English}

\cud{dag} \cud{ducks}

As you can see it may be a bit suboptimal as there is no plural version allowed. You do it anyway and end up with:

\cunum{12}{dag} weed
\cunum{3}{dag} nuts
\cunum{10}{dag} duckmeat

8.1 Phrases

Each language has synonyms for certain (integer) numbers. This package supports those phrases and they can be implemented with the following command and used by \cun{am}:

\cud{\langle Language\rangle}

Here is a list of some phrases for the language “German”:

\cud{German}

\cud{12} {Dutzend} \cud{60} {Schock} \cud{6} \cud{halbes \ Dutzend} % implemented by default

Let’s just use them (german language activated!):
As you can see, “Schock” (60) is preferred over “Dutzend” (12) as it linked to the higher number. Furthermore, for 6 the phrase “halbes Dutzend” (half a dozen) is used, but because it is a star version it is not used for 18.

9 Options

Options in cooking-units can mostly be set globally using \cusetup{} or locally using the optional argument of the respective command (but not as a package option). The only exception is the option given in section 9.1 which needs to be used as a package option.

9.1 Load time options

\usepackage[use-numerals={true/false}]{cooking-units}

If set to true loads package fmtcount and uses \numberstringnum{} for \cutext{} and \Numberstringnum{} for \Cutext{} to write-out numbers below use-numerals-below (13 by default), integers above are printed as numbers. You can decide to not print any numerals by setting print-numerals to false.

Note: use-numerals is a package option as it needs to load fmtcount which is not loaded by default.

Note: Please note the keys one(m), one(f) and one(n) to change the printed “one” (as “one” is in many languages dependent on the gender of the following word. E.g in German: Masculine: ein Baum, Feminin: eine Pflanze, Neutrum: ein Auto).

9.2 Normal options

Options in this subsection can only be set as local options or using \cusetup{}, but not as load time options.

\cusetup{options} Options can be set using \cusetup{options}.
9.2.1 Unit Specific options

\[\langle \text{unit-key-1} \rangle = \langle \text{unit-key-2} \rangle \]
Change \langle unit-key-1 \rangle to \langle unit-key-2 \rangle (see section 7 to define new options).

\[\langle \text{group} \rangle = \langle \text{unit-key} \rangle \]
Changes each unit contained in \langle group \rangle to \langle unit-key \rangle (\langle unit-key \rangle must be part of \langle group \rangle).

<table>
<thead>
<tr>
<th>\langle group \rangle</th>
<th>default \langle unit-key \rangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>kg, dag, g, oz, lb, stick</td>
</tr>
<tr>
<td>length</td>
<td>m, dm, cm, mm, in</td>
</tr>
<tr>
<td>volume</td>
<td>l, dl, cl, ml</td>
</tr>
<tr>
<td>temperature</td>
<td>C, F, K, Re</td>
</tr>
<tr>
<td>energy</td>
<td>cal, kcal, J, kJ, eV</td>
</tr>
<tr>
<td>time</td>
<td>d, h, min, s</td>
</tr>
</tbody>
</table>

\begin{verbatim}
\cusetup{weight=g}
\cunum{1}{kg}
\cunum{1}{dag}
\cunum{1}{g}
\cunum{1}{oz}
\cunum{1}{lb}
\cunum{1}{stick}
\end{verbatim}

\hspace{1cm} add-unit-to-group =
\begin{verbatim}
\{
\langle group1 \rangle = \{(unit-key-list)\},
\langle group2 \rangle = \{(unit-key-list)\},
\ldots
\} \end{verbatim}
Add each \langle unit-key \rangle in \langle unit-keys-list \rangle to \langle group \rangle.

Example: This example adds the unit st to the group weight and Ro to temperature.
\begin{verbatim}
\cusetup
\{
add-unit-to-group = \{ weight = \{st\} , temperature = \{Ro\} \}
\}
\end{verbatim}
\begin{verbatim}
\cusetup{weight=g}
\cunum{1}{kg}\}\cunum{1}{dag}\cunum{1}{g}\cunum{1}{oz}\cunum{1}{lb}\cunum{1}{stick}\}
\end{verbatim}
Sets and adds \(\langle \text{key1}=\text{value1}, \ldots \rangle \) to a specific \(\langle \text{unit-key} \rangle \), \text{erase-all-options} (see below) is used to erase all options for all \(\langle \text{unit-key} \rangle \)s.

You may want to attach some options to a special \(\langle \text{unit-key} \rangle \). Those options are automatically activated if (and only if) the specific \(\langle \text{unit-key} \rangle \) is used (or changed into this unit). Setting options overwrites old options. Adding options, well ... adds the options to the old ones.

You can “delete” the options by setting an empty value for a specific \(\langle \text{unit-key} \rangle \) (or use \text{erase-all-options} (or \text{erase-all-options-for}) (see below) to erase all options for all \(\langle \text{unit-key} \rangle \)s)

Example: The following rounds the values to integers for F, C, K and Re:

\begin{verbatim}
cusetup
{
set-option-for-F = {round-to-int = true },
set-option-for-C = {round-to-int = true },
set-option-for-K = {round-to-int = true },
set-option-for-Re = {round-to-int = true }
}
\end{verbatim}
Erase options added to units. `erase-all-options` erases all options for all \langle unit-key\rangle s. `erase-all-options-for` is used to remove added options from the specified \langle unit-key\rangle s.

Example: The following code erases all attached options from C, F, K and Re:

```latex
\cusetup{ erase-all-options-for = \{C, F, K, Re\} }
```

9.2.2 Command behavior

cutext-to-cunum

`cutext-to-cunum = \{true/false\}`

Want to get rid of all `\cutext` and `\Cutext`? Set this option to `true` and all `\cutext` and `\Cutext` are changed into `\cunum`.

- 1 kilogramme `\cutext{1}{kg}`
- 2 kilogramme `\Cutext{2}{kg}`
- \(\frac{1}{2}\) kilogramme `\cutext{1/2}{kg}`
- ? kilogramme `\cutext{?}{kg}`
- 1000 to 2000 gramme `\cutext[kg=g]{1--2}{kg}`

```latex
\cusetup{cutext-to-cunum=true}
```

- 1 kg `\cutext{1}{kg}`
- 2 kg `\Cutext{2}{kg}`
- \(\frac{1}{2}\) kg `\cutext{1/2}{kg}`
- ? kg `\cutext{?}{kg}`
- 1000–2000 g `\cutext[kg=g]{1--2}{kg}`

cutext-change-unit

`cutext-change-unit = \{true/false\}`

Set this option to `true` if you do not want the units of `\cutext` and `\Cutext` to be changed. Set to `true` by default.

- 1000 gramme `\cutext[kg=g]{1}{kg}`
- \(\frac{1}{2}\) kilogramme `\cutext[kg=g]{1/2}{kg}`
- 1000 to 2000 gramme `\cutext[kg=g]{1--2}{kg}`

```latex
\cusetup{cutext-change-unit=false}
```

- 1 kilogramme `\cutext[kg=g]{1}{kg}`
- \(\frac{1}{2}\) kilogramme `\cutext[kg=g]{1/2}{kg}`
- 1 to 2 kilogramme `\cutext[kg=g]{1--2}{kg}`

cuam-version

`cuam-version = \{old/new\}`

`cutext-version = \{old/new\}`

Since v1.10 this package also parses and checks the input of `\cutext` and `\Cutext` and `\cuam`. If you want to restore the old behavior, set this option to `old`, but note that then you can neither change the amounts for a given number of persons nor change the unit of `\cutext` and `\Cutext`. Both of them are set to `new` by default.
9.2.3 Hooks

<table>
<thead>
<tr>
<th>Hook</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>commands-add-hook</td>
<td><code>{\langle code\rangle}</code></td>
</tr>
<tr>
<td>cunum-add-hook</td>
<td><code>{\langle code\rangle}</code></td>
</tr>
<tr>
<td>cutext-add-hook</td>
<td><code>{\langle code\rangle}</code></td>
</tr>
<tr>
<td>Cutext-add-hook</td>
<td><code>{\langle code\rangle}</code></td>
</tr>
<tr>
<td>cuam-add-hook</td>
<td><code>{\langle code\rangle}</code></td>
</tr>
</tbody>
</table>

Adds `{\langle code\rangle}` to the respective command (or in case of the first key: to all commands). The hook is executed after setting the keys, but before parsing and processing the input. Please be careful with spaces, they will be printed.

Example: You would like to count how often all commands of this package are used. Simply add:

\begin{verbatim}
\newcounter{CookingUnitsCounter} \% % or however you like it
\cusetup{commands-add-hook={\stepcounter{CookingUnitsCounter}}}
\% % beware of spaces inside the add-hook keys.
\end{verbatim}

to your preamble. The following table lists how often each command is used in this documentation (with help of totalcount):

<table>
<thead>
<tr>
<th>Command</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cunum</td>
<td>195</td>
</tr>
<tr>
<td>\cutext</td>
<td>66</td>
</tr>
<tr>
<td>\Cutext</td>
<td>26</td>
</tr>
<tr>
<td>\cuam</td>
<td>71</td>
</tr>
<tr>
<td>Total</td>
<td>358</td>
</tr>
</tbody>
</table>

9.2.4 Input and Outputs

<table>
<thead>
<tr>
<th>Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>expand-both</td>
<td><code>{n/o/f/x}</code></td>
</tr>
<tr>
<td>expand-amount</td>
<td><code>{n/o/f/x}</code></td>
</tr>
<tr>
<td>expand-unit</td>
<td><code>{n/o/f/x}</code></td>
</tr>
</tbody>
</table>

By default the commands `{\cunum}`, `{\cutext}` and `{\Cutext}` and `{\cunum}` do not expand their input. You can change the expansion behavior of the `{amount}` and/or `{unit-key}` using the options specified above. The meaning of the available values are the same as specified in the \LaTeX3 document “interface3”.

It is set to \texttt{n} by default.

<table>
<thead>
<tr>
<th>Option</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>set-special-sign</td>
<td><code>{\langle character(s)\rangle}</code></td>
</tr>
<tr>
<td>add-special-sign</td>
<td><code>{\langle character(s)\rangle}</code></td>
</tr>
</tbody>
</table>

Allows `{\langle character(s)\rangle}` to be used in the first mandatory argument of `{\cunum}`, `{\cuam}`, `{\cutext}` and `{\Cutext}` without raising an error (you can customize this behavior, see \texttt{set-unknown-message}). By default it is set to \texttt{?}. Please note that the sign `<` is not allowed as a special sign.
set-unknown-message set-unknown-message = (error/warning/none)

Using a special sign (? by default) causes a warning to be raised. Set this option to error if you want an error (as an extra emphasis), warning if you want a warning (default) and none if you don’t want to know anything about it.

set-cutext-translation-message set-cutext-translation-message = (error/warning/none)

If a translation for \texttt{\textit{cutext}} and \texttt{\textsc{Cutext}} is not available the commands are replaced by \texttt{\texttt{cunum}}. Currently – if this is happening – a warning is shown, you may change the behavior of the message (error, warning or not showing at all) using this option.

print-numerals print-numerals = (true/false)

If the package option \texttt{use-numerals} is set to true you can deactivate the printing of numerals by setting print-numerals to false and activate them by setting it to true. Note that this option is automatically set to true if \texttt{use-numerals} is used.

use-numerals-below use-numerals-below = (integer)

Only usable if the package option \texttt{use-numerals} is active. Prints the name of the numbers for integers used in \texttt{\textit{cutext}} and \texttt{\textsc{Cutext}} smaller than \texttt{(integer)}. \texttt{(integer)} is by default 13. Package fmtcount is used for this purpose. You can deactivate the printing of numerals by print-numerals=false.
one kilogramme \cutext{1}{kg}\
two kilogramme \cutext{2}{kg}\
twelve kilogramme \cutext{12}{kg}\
13 kilogramme \cutext{13}{kg}\
\cusetup{use-numerals-below=10}

one kilogramme \cutext{1}{kg}\
two kilogramme \cutext{2}{kg}\
12 kilogramme \cutext{12}{kg}\
13 kilogramme \cutext{13}{kg}\
\cusetup{use-numerals-below=0}

1 kilogramme \cutext{1}{kg}\
2 kilogramme \cutext{2}{kg}\
12 kilogramme \cutext{12}{kg}\
13 kilogramme \cutext{13}{kg}\
\cusetup{use-numerals-below=12001}

\cutext{1}{kg}\
\cutext{2}{kg}\
\cutext{12}{kg}\
\cutext{13}{kg}\
\cusetup{parse-number=false}

\cutext{1--2}{kg}\
\cutext{1----------2}{kg}\
\cutext{1.2}{kg}\
\cutext{1,2}{kg}\
\cutext{1/2}{kg}\
\cutext{1_2/3}{kg}\
\cutext{1/2_3}{kg}\
\cutext{someweirdstuff}{kg}\
\cunum{1}{kg}\
\cunum{1--2}{kg}\
\cunum{1--2}{kg}\
\cunum{1----------2}{kg}\
1_1/2\
kwflk\
\cuam{1--2}\
\cuam{1_1/2}\
kwflk\

cunum{1}{kg} \{}{kg}\
cunum{1--2}{kg} \{}{kg}\
cunum{1----------2}{kg} \{}{kg}\
cunum{1,2}{kg} \{}{kg}\
cunum{1/2}{kg} \{}{kg}\
cunum{1_2/3}{kg} \{}{kg}\
cunum{1/2_3}{kg} \{}{kg}\
cunum{someweirdstuff}{kg} \{}{kg}\
cunum{1}{kg} \{}{kg}\
cunum{100}{kg} \{}{kg}\
cunum{gjfak}{kg} \{}{kg}\
cunum{12}{kg} \{}{kg}\
cuam{1--2}\
\cuam{1_1/2}\
kwflk\

parse-number = (true/false)

If set to false prints the number of \cunum, \cutext, \Cutext and \cuam as they are (after some ... well ... parsing due to “..”). Is set to true by default.
range-sign
\[\text{range-sign} = \{\langle\text{string}\rangle\}\]

\[\text{cunum-range-sign} = \{\langle\text{string}\rangle\}\]

\[\text{cutext-range-sign} = \{\langle\text{string}\rangle\}\]

The second sets the printed range sign used in \texttt{\cunum} (and \texttt{\cuam}) to \langle\text{string}\rangle, the third sets the printed range sign used in \texttt{\cutext} and \texttt{\Cutext} to \langle\text{string}\rangle. Using the first option sets the range signs for both \texttt{\cunum} (and \texttt{\cuam}) and \texttt{\cutext}/\texttt{\Cutext} to \langle\text{string}\rangle.

The default for \langle\text{string}\rangle is -- (for both).

Since version 1.45 there also exits the language symbol \texttt{cutext-range-sign} (see section 8). If the option \texttt{cutext-range-sign} is set the language symbol will be ignored.

1–2 kg \cunum{1--2}{kg}\[\]
1–2 \cuam{1--2}\[\]
1 to 2 kilogramme \cutext{1--2}{kg}\[\]
1 to 2 kilogramme \Cutext{1--2}{kg}\[\]

\cusetup{cunum-range-sign={--}}

Ducks
1 to 2 kg \cunum{1--2}{kg}\[\]
1 to 2 \cuam{1--2}\[\]
1 to 2 kilogramme \cutext{1--2}{kg}\[\]
1 to 2 kilogramme \Cutext{1--2}{kg}\[\]

\cusetup{cutext-range-sign={--}}

Ducks
1–2 kg \cunum{1--2}{kg}\[\]
1–2 \cuam{1--2}\[\]
1–2 kilogramme \cutext{1--2}{kg}\[\]
1–2 kilogramme \Cutext{1--2}{kg}\[\]

\cusetup{range-sign={--}}

\cusetup{range-sign={--}}

Ducks
1-to-2 kg \cunum{1--2}{kg}\[\]
1-to-2 \cuam{1--2}\[\]
1-to-2 kilogramme \cutext{1--2}{kg}\[\]
1-to-2 kilogramme \Cutext{1--2}{kg}\[\]

\cusetup{range-sign={--}}

\cusetup{use-phrases=true,print-numerals=true}

use-phrases
\[\text{use-phrases} = \{\langle\text{true/false}\rangle\}\]

Setting this option to \texttt{true} replaces certain integers (see section 8.1 for more information) with their phrase counterpart. This option is set to \texttt{false} by default.

Example: For the German language:

12 \cuam{12}\[\]
12–24 \cuam{12--24}\[\]
36 \cuam{36}\[\]

\cusetup{use-phrases=true}

1 Dutzend \cuam{12}\[\]
1–2 Dutzend \cuam{12--24}\[\]
3 Dutzend \cuam{36}\[\]

\cusetup{use-phrases=true,print-numerals=true}

ein Dutzend \cuam{12}\[\]
ein–zwei Dutzend \cuam{12--24}\[\]
drei Dutzend \cuam{36}\[\]
9.2.5 Rounding options

round-precision

\texttt{round-precision = \langle integer \rangle}

Rounds the amount automatically to \langle integer \rangle digits after the colon. Note that units like C, F, K and Re are still rounded to integers due to \texttt{set-option-for-\langle unit-key \rangle}.

\begin{verbatim}
1.23457 kg \cunum{1.23457}{kg} \cunum{1.235}{kg} \cunum{1.23}{kg} \cunum{1.0}{kg} \cunum{0}{kg} \cunum{0}{kg}
0.01259 kg \cunum{0.01259}{kg} \cunum{0.012}{kg} \cunum{0.01}{kg} \cunum{0.0}{kg} \cunum{0}{kg} \cunum{0}{kg}
194 kg \cunum{194}{kg} \cunum{190}{kg} \cunum{186}{kg} \cunum{182}{kg} \cunum{178}{kg} \cunum{174}{kg}
392–410 °F \cunum{392--410}{°F} \cunum{390--392}{°F} \cunum{388--390}{°F} \cunum{386--388}{°F} \cunum{384--386}{°F} \cunum{382--384}{°F}
−273 °C \cunum{-273}{°C} \cunum{-272}{°C} \cunum{-271}{°C} \cunum{-270}{°C} \cunum{-269}{°C} \cunum{-268}{°C}
\end{verbatim}

\textbf{Note:} Also negative numbers are allowed.

\begin{verbatim}
270 °C \cunum{270}{°C} \cunum{271}{°C} \cunum{272}{°C} \cunum{273}{°C} \cunum{274}{°C} \cunum{275}{°C}
270 °C \cunum{270}{°C} \cunum{271}{°C} \cunum{272}{°C} \cunum{273}{°C} \cunum{274}{°C} \cunum{275}{°C}
180 °C \cunum{180}{°C} \cunum{181}{°C} \cunum{182}{°C} \cunum{183}{°C} \cunum{184}{°C} \cunum{185}{°C}
300–390 °F \cunum{300--390}{°F} \cunum{389--390}{°F} \cunum{388--390}{°F} \cunum{387--390}{°F} \cunum{386--390}{°F} \cunum{385--390}{°F}
\end{verbatim}

round-to-int

\texttt{round-to-int = \langle true/false \rangle}

Rounds the amount to an integer if set \texttt{true}.

\begin{verbatim}
1 kg \cunum{1.23456789}{kg} \cunum{1.235}{kg} \cunum{1.23}{kg} \cunum{1.0}{kg} \cunum{0}{kg} \cunum{0}{kg}
13 kg \cunum{12.58}{kg} \cunum{12.59}{kg} \cunum{12.5}{kg} \cunum{12.0}{kg} \cunum{11.0}{kg} \cunum{11.0}{kg}
0–0 kg \cunum{0}{kg} \cunum{0}{kg} \cunum{0}{kg} \cunum{0}{kg} \cunum{0}{kg} \cunum{0}{kg}
1235 g \cunum{1.23456789}{g} \cunum{1.235}{g} \cunum{1.23}{g} \cunum{1.0}{g} \cunum{0}{g} \cunum{0}{g}
\end{verbatim}

round-half

\texttt{round-half = \langle default/commercial \rangle}

This option is only important for half-way numbers (e.g. 0.005). By setting it to \texttt{default} the value will be rounded to the nearest even number. Setting it to \texttt{commercial} rounds the value away from zero.

It is set to \texttt{default} by ... \texttt{default}.

\textbf{Note:} \texttt{default} actually refers to the fact that it is the default rounding algorithm used by \texttt{\textbackslash fp_eval:n \{ round() \}} without a third argument.
0 kg \cunum{0.005}{kg}\delimeter\ \cunum{-0.005}{kg}\delimeter\ 1.24 kg \cunum{1.245}{kg}\delimeter\ \cunum{0.005}{kg}\delimeter\ \cunum{-0.005}{kg}\delimeter\ 1.25 kg

9.2.6 Fractions

\textbf{eval-fraction} \quad \text{eval-fraction = \{true/false\}}

This option takes true or false as values. If set to true fractions are evaluated. Please note that divisions through zero are not allowed.

0.33 kg \cunum{1/3}{kg}\delimeter\ 0.5 kg \cunum{1/2}{kg}\delimeter\ 500 g \cunum{1/2}{kg}\delimeter\ 1.5 kg \cunum{1/2}{kg}\delimeter\ 1500 g \cunum{1/2}{kg}\delimeter\ -1500 g \cunum{1/2}{kg}\delimeter\ 1\frac{1}{2} kg \cunum{1\frac{1}{2}}{kg}\delimeter\ \cunum{1/2}{kg}\delimeter\ \cunum{1\frac{1}{2}}{kg}\delimeter\ \cunum{1\frac{1}{2}}{kg}\delimeter\ \cunum{1\frac{1}{2}}{kg}\delimeter

\textbf{fraction-command} \quad \text{fraction-command = \{\command\}}

Sets the command used for printing fractions equal to \{\command\}. \{\command\} has to take two arguments. By default it is equal to \sfrac from xfrac. Please note that the amount is not printed inside a math environment by default.

\newcommand\myfrac[2]{#1/#2} \cunum{1/8}\delimeter\ \cuam{1/8}\delimeter\ \cunum{1/2}{kg}\delimeter\ \cunum{4/5}{C}\delimeter\ \cunum{1_2/3}{kg}\delimeter\ \cunum{1/8}\delimeter\ \cunum{1/2}{kg}\delimeter\ \cunum{4/5}{C}\delimeter\ \cunum{1_2/3}{kg}\delimeter

\textbf{fraction-inline} \quad \text{fraction-inline = \{input containing \#1 and \#2\}}

Similar to fraction-command only that you don’t have to define a command to alter the output of the fraction.
\cusetup{fraction-inline=#1/#2}

\cunum{1/8}{kg}
\cunum{4/5}{C}
\cunum{1_2/3}{kg}
\cunum{8/1}{kg}
\cunum{5/4}{C}
\cunum{1_2/3}{kg}

\cusetup{mixed-fraction-space=1em}

\cuam{1_2/3}\ \cunum{1_2/3}{kg}\ \cunum{10_2/3}{kg}
\cusetup{mixed-fraction-space=0em}

\cutext-space = \langle \text{\textit{string}} \rangle

\cutext{1}{kg}\ \Cutext{10}{kg}
\cusetup{cutext-space=}
phrase-space = \{\langle \text{string} \rangle \}

\langle \text{string} \rangle \) is inserted between the numeral part and the phrase part while using \texttt{\cuam}. By default it is set to \texttt{\space}. Use this option if you want to e.g. insert an unbreakable space.

(Switching to german)

```
\begin{verbatim}
1 Dutzend \cuam{12}\\
12 Dutzend \cuam{144}\\
\cusetup{phrase-space=-} \cuam{12}\\
12 Dutzend \cuam{144}\\
\cusetup{phrase-space=} \cuam{12}\\
12 Dutzend \cuam{144}\\
\cusetup{phrase-space=qwe} \cuam{12}\\
1qweDutzend \cuam{12}\\
12qweDutzend \cuam{144}\\
\end{verbatim}
```

amount-unit-space = \{\langle \text{string} \rangle \}

Change the spacing for \texttt{\cunum} between the printed amount(s) and the unit. The default value is \texttt{\thinspace}.

```
\begin{verbatim}
\selectlanguage{ngerman}
\begin{verbatim}
1 kg \cunum{1}{kg}\\
1/2 kg \cunum{1/2}{kg}\\
1–2 kg \cunum{1--2}{kg}\\
\cusetup{amount-unit-space={\hspace{1em}}} \cunum{1}{kg}\\
1/2 kg \cunum{1/2}{kg}\\
1–2 kg \cunum{1--2}{kg}\\
\cusetup{amount-unit-space=} \cunum{1}{kg}\\
1/2 kg \cunum{1/2}{kg}\\
1–2 kg \cunum{1--2}{kg}\\
\cusetup{amount-unit-space=qwe} \cunum{1}{kg}\\
1/2 qwe kg \cunum{1/2}{kg}\\
1–2 qwe kg \cunum{1--2}{kg}\\
\end{verbatim}
\end{verbatim}
```

9.2.8 label & refs

recalculate-amount = \{true/false\}

Set this option to \texttt{true} if you want to change your recipes to the given number of people set by \texttt{set-number-of-persons}. Note that only those values who have a label are changed.

set-number-of-persons = \{\text{integer}\}

With this option you can determine the number of people your recipes are for. Note that this option only has an effect on those who have a \langle label \rangle given. It is set to 4 by default. Please also note the use of \texttt{recalculate-amount}.

27
\text{Ducks} \quad 2 \text{ persons} \quad 1 \text{ kg} \quad 1 \text{ kilogramme} \quad 2 \text{ persons} \quad \text{Ducks} \quad 4 \text{ persons} \quad 2 \text{ kg} \quad 2 \text{ kilogramme} \quad 20 \text{ kilogramme} \quad \text{Ducks} \quad 3 \text{ persons} \quad 1.5 \text{ kg} \quad 1.5 \text{ kilogramme} \quad 15 \text{ kilogramme} \quad \text{Ducks} \quad 2 \text{ persons} \quad 1 \text{ kg} \quad 1 \text{ kilogramme} \quad 10 \text{ kilogramme} \quad \text{Ducks} \quad 1 \text{ person} \quad 0.5 \text{ kg} \quad 0.5 \text{ kilogramme} \quad 5 \text{ kilogramme} \quad \text{Toast} \quad \text{set-number-of-persons=2} \quad 2 \text{ dag} \quad \text{Toast} \quad \text{set-number-of-persons=3} \quad 8 \text{ dag} \quad \text{Toast} \quad \text{set-number-of-persons=1} \quad 28

current\text{label}\{\text{anotherrecipe}\}\{2\}
current\text{ref}\{\text{anotherrecipe}\}\text{-persons}\\
current\text{am}\{\text{anotherrecipe}\}\{1\}
current\text{text}\{\text{anotherrecipe}\}\{1\}\{\text{kg}\}
current\text{ref}\{\text{anotherrecipe}\}\text{-persons}\\
current\text{setup}\{\text{recalculate-amount=true}\}
current\text{ref}\{\text{anotherrecipe}\}\text{-persons}\\
current\text{am}\{\text{anotherrecipe}\}\{1\}
current\text{text}\{\text{anotherrecipe}\}\{1\}\{\text{kg}\}
current\text{setup}\{\text{set-number-of-persons=3}\}
current\text{ref}\{\text{anotherrecipe}\}\text{-persons}\\
current\text{am}\{\text{anotherrecipe}\}\{1\}
current\text{text}\{\text{anotherrecipe}\}\{1\}\{\text{kg}\}
current\text{setup}\{\text{set-number-of-persons=2}\}
current\text{ref}\{\text{anotherrecipe}\}\text{-persons}\\
current\text{am}\{\text{anotherrecipe}\}\{1\}
current\text{text}\{\text{anotherrecipe}\}\{1\}\{\text{kg}\}
current\text{setup}\{\text{set-number-of-persons=1}\}
current\text{ref}\{\text{anotherrecipe}\}\text{-person}\\
current\text{am}\{\text{anotherrecipe}\}\{1\}
current\text{text}\{\text{anotherrecipe}\}\{1\}\{\text{kg}\}
current\text{ref}\{\text{Toast}\}\{2\}\{\text{dag}\}
current\text{setup}\{\text{recalculate-amount=true}\}
current\text{ref}\{\text{Toast}\}\text{-persons}\\
current\text{am}\{\text{Toast}\}\{2\}
current\text{text}\{\text{Toast}\}\{2\}\{\text{dag}\}
current\text{text}\{\text{Toast}\}\{2\}\{\text{kg}\}
get-label = {⟨label⟩}

The key-value version of \texttt{\curef}. Note that this key doesn’t save the value inside a macro but rather prints it directly into the document.

\texttt{\cusetup{get-label=Schinken}\curef{Schinken}}\cusetup{recalculate-amount=true}\curef{Schinken}

\textbf{Note:} \texttt{\curef} is expendable.

\texttt{ref = {⟨label⟩}}

Instead of using the first optional arguments of the commands in section 2 you may use this option. It requires a valid value and throws an error if ⟨label⟩ is not defined.

\texttt{\cusetup{get-label=Kaese}\cunum<Kaese>[m=dm]{1}{m}\cunum[ref=Kaese,m=dm]{1}{m}\cusetup{recalculate-amount=true}\cunum[ref=Kaese,m=dm]{1}{m}}

curef-add-forbidden-unit = {⟨unit list⟩}
curef-remove-forbidden-unit = {⟨unit list⟩}
curef-clear-forbidden-units = {true/false}

curef-add-forbidden-unit curef-remove-forbidden-unit curef-clear-forbidden-units

There are units which do not depend on the number of folks you are cooking for, units measuring the temperature are for example some of them. Changing those units with the label & ref system would be accidental and in the best case throw an error. With the following options you can add units to the “forbidden unit list”, remove them and clear the whole list entirely.

By default the list contains C, F, K and Re.
9.3 Weird options

\begin{itemize}
 \item \textbf{check-temperature} = \{true/false\}
 Checks if the used temperature is below absolute zero. Currently C, F, K and Re are supported. While \texttt{\cunum{0}{K}} is ok, \texttt{\cunum{-1}{K}} raises an error, same for the others. Is set to \texttt{false} by default. To add new units see add-temperature-to-check.
 \item \textbf{add-temperature-to-check} =
 \begin{verbatim}
 \{ (unit-key-1) = (minimum-value-1) ,
 (unit-key-2) = (minimum-value-2) ,
 ...
 \}
 \end{verbatim}
 This option adds \texttt{(unit-key-1)} and so on to the list of units to be checked if check-temperature is active. The argument can be a comma-separated list of \texttt{(unit-key) = (minimum-value)}. This sets the allowed minimum value of \texttt{(unit-key)} to \texttt{(minimum-value)}.
\end{itemize}

\textbf{Example:} This package implements the allowed minimum values for the temperatures C, F, K and Re to be checked if check-temperature is active using:

\begin{verbatim}
\cusetup
\{ add-temperature-to-check =
\{
 K = 0,
 C = -273.15,
 F = -459.67,
 Re = -218.52
\}
\}
\end{verbatim}
If you want to add a new value, for example degree Rømer (which has be defined in another example) you can write:

\cusetup
{
 add-temperature-to-check = { Ro = -135.90375 }
}

\cusetup{convert-to-eV=true}

\cunum{1}{kg}\n\cunum[kg=g]{1}{kg}\n\cunum{1.5}{J}\n\cunum{180}{C}\n\cunum{15}{s}

convert-to-eV convert-to-eV = \{true/false\}

Converts (nearly) every unit in table 1 to electron volt or the respective derivative (if possible). Note that this option is: a) experimental and probably will forever be and b) just a joke, you are not supposed to use this units in a cookery book (and as you see this package doesn’t support the arrangement of such huge numbers). Also you may want to check the values if you really want to use them, just to be sure (I’ve checked them several times and hope they are finally correct, but mistakes happen).

\cunum{560958650000000000000000000000000000 eV}{c^2}\n\cunum{130148929500000000 \textit{c}^3}{\hbar^3/\textit{eV}^3}\n\cunum{624150912600000000 \textit{eV}}{\textit{c}^3} \hbar^3/\textit{eV}^3\n\cunum{0.02 \textit{eV}}{\textit{c}^2} \hbar/\textit{eV}\n\cunum{1519267461000000 \hbar/\textit{eV}}

add-natural-unit add-natural-unit = \{unit-key\}

This option adds \{unit-key\} to the list of units convert-to-eV uses to determine how a unit is transformed if set to \textbf{true}.

\cusetup{42=true}

42 kg
42 g
42 J
42 °C
42 s

10 Bugs & Feedback

Bug reports are always welcome. If you are sending a bug report please include a minimal working example showing the bug and a short description. If you use mail please add cooking-units to the e-mail header. GMX has the habit of putting e-mails into the spam account and adding cooking-units to the header makes it easier to recognize those e-mails. It can also take longer of GitHub, but I hope I figured out how to get a mail if a new issue is created (by not me).

Feedback and requests (commands, units, etc.) are also welcome. Please also add (if possible) an example of the desired output into the minimal example (and – if by mail – add cooking-units to the header).
Furthermore, as you can see I am not able to speak too many languages (German and English to be precise; I managed to add French with the help of the internet, which is not optimal) so if you are able to speak a language not yet implemented and would like to help you can send me the translations known to you. A list of all units (and their current translations) is given in appendix A.
11 Bens Einheitensammelsurium (Bens unit Almanac)

Units are a fascinating mess. There are so many different ones which are different and the few ones which are the same (in name at least) are also different, depending on geographical position, time period and probably pure spite. We can be glad that SI-units exist.

So for those units which didn’t make it into table 1 and table 2, this section exists. Please note that this list is intended to be a just-for-fun list and not a compilation of every unit in existence with its exact value ordered by geographical and chronological position. I am sadly neither a historian nor very good in regards to languages. It would sound like fun, but ultimately, I wouldn’t have the time. Therefore I am only taking units into account which I either found in literature (stone, canna, etc.), are well known (foot) or have some other experience with them (ell) (exception: Batman). The reason I am not including units which I found in the internet is that I would like to see those units in their “natural environment”.

<table>
<thead>
<tr>
<th>unit (translation) [abbreviation]</th>
<th>Description, containing a quote or not. Please note that most of the units are country dependent! So the translation may not have the same amount as the word it is translated to.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batman</td>
<td>So ... You wanna be Batman? Be like Bruce Wayne? Having a secret identity? Then congratulations! You are Batman! How much Batman depends on the location, but Wikipedia is your friend in this matter.</td>
</tr>
<tr>
<td>Rotolo</td>
<td>Around 0.850 kg</td>
</tr>
<tr>
<td>Canna</td>
<td>About 2 m bzw. about 6 foot.</td>
</tr>
<tr>
<td>Stone</td>
<td>6.35 kg. According to a fellow student this unit is still used in Great Britain. I’ve also recently found it in a video game; in the german translation of said video game to be precise. Why is the german translation using stone and not kilogram (at least in braces)?</td>
</tr>
<tr>
<td>Foot</td>
<td>Equals exactly 0.3048 m or 12 in.</td>
</tr>
<tr>
<td>degree Réamur</td>
<td>Like degree Celsius, but instead of having the water boiling at 100° (Celsius), water boils at 80°. Water thankfully still freezes at 0°. Don’t think that this unit is used anymore. I think I learned about in physics.</td>
</tr>
</tbody>
</table>

Rotolo_{sicilian} (Rottel_{de})

Around 0.850 kg

Auf den Fußboden lagen vier ungereifte Käse zu je zwölf Rottel, jeder ungefähr zehn Kilo schwer. (see [1] page 51)

Canna_{sicilian} (Rute_{de}, rod_{en})

About 2 m bzw. about 6 foot.

“Unsinn, Stella, Unsinn; was soll mir zustoßen? Sie kennen mich alle: Männer, die eine Rute lange sind, gibt es wenige in Palermo.” (see [1] page 25)

Stone [st]

6.35 kg. According to a fellow student this unit is still used in Great Britain. I’ve also recently found it in a video game; in the german translation of said video game to be precise. Why is the german translation using stone and not kilogram (at least in braces)?

As we had expected, the telegramm was soon followed by its sender, and the card of Mr. Cyril Overton, Trinity College, Cambridge, announced the arrival of an enormous young man, sixteen stone [101.6 kg] of solid bone and muscle, who spanned the doorway with his broad shoulders [...] (see [2] page 988)

(Story “The missing Three Quarters”)

Foot [ft]

Equals exactly 0.3048 m or 12 in.

A bit of a strange unit (for me at least). Where I am from, people tend to have different feet sizes. Also present in the german translation of the video game that uses “Stone”.

degree Réamur [°Ré]

Like degree Celsius, but instead of having the water boiling at 100° (Celsius), water boils at 80°. Water thankfully still freezes at 0°. Don’t think that this unit is used anymore. I think I learned about in physics.
Ell Just read the Wikipedia article.

Fun Fact: At the Stephansdom in Vienna left of the main entrance are two metal bars. One is the “Tuchelle” (drapery ell, circa 78 cm), the other the “Leinenelle” (linen ell, around 89.6 cm).

cup I think the idea of having a “cup” and it not being equal to 250 ml is a bit strange, for me at least. What other sizes can a cup have? I can imagine 500 ml, but are there other sizes?

stick A unit I’ve made fun of because it is quite regional and doesn’t make any sense for foreigners. Then I realized that I am using the unit “Packerl” in my cookery book which is also quite locally⁹ and – even worse – the weight changes depending the content (See Packerl).

Packerl⁹ de (small bag) I’m a bit split on this unit as I don’t actually know if it exists. The reason I have the unit Packerl for my cookery book is that in Austria you can buy baking powder, (dry) Germ, Natrium, etc. in small bags (similar to stick). The problem: Depending on the content, the weight of Packerl differs. Not only that, but it can also differ between different producers (but not more than 2 g bzw. 0.07 oz). Here is a table:

<table>
<thead>
<tr>
<th>Packerl (baking powder)</th>
<th>16 g</th>
<th>0.56 oz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natrium</td>
<td>14 g</td>
<td>0.49 oz</td>
</tr>
<tr>
<td>Vanillin(-zucker)</td>
<td>8 g</td>
<td>0.28 oz</td>
</tr>
<tr>
<td>Germ*</td>
<td>7 g</td>
<td>0.25 oz</td>
</tr>
</tbody>
</table>

*Trockengerm (dry Germ) to be precise

For what kind of thing do I need Natrium for?

⁹And maybe doesn’t even exist outside my family
A Translations

This section contains the list of available translations. Each table shows the available translations regarding the unit symbol, the unit name (printed if \texttt{cutext} or \texttt{Cutext} is used) and the plural form (if different from the singular form). A second table shows the translations used for phrases (if given).

If a translation is not available a “—” is shown.
A.1 English

<table>
<thead>
<tr>
<th>unit-key</th>
<th>printed unit</th>
<th>unitname</th>
<th>(plural)</th>
<th>gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg</td>
<td>kg</td>
<td>kilogramme</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>dag</td>
<td>dag</td>
<td>decagramme</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>g</td>
<td>g</td>
<td>gramme</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>oz</td>
<td>oz</td>
<td>ounce</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>lb</td>
<td>lb</td>
<td>pound</td>
<td>(pounds)</td>
<td>m</td>
</tr>
<tr>
<td>°C</td>
<td>°C</td>
<td>degree Celsius</td>
<td>(degrees Celsius)</td>
<td>m</td>
</tr>
<tr>
<td>°F</td>
<td>°F</td>
<td>degree Fahrenheit</td>
<td>(degrees Fahrenheit)</td>
<td>m</td>
</tr>
<tr>
<td>°Ré</td>
<td>°Ré</td>
<td>degree Réaumur</td>
<td>(degrees Réaumur)</td>
<td>m</td>
</tr>
<tr>
<td>K</td>
<td>K</td>
<td>kelvin</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>day</td>
<td>(days)</td>
<td>m</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>hour</td>
<td>(hours)</td>
<td>m</td>
</tr>
<tr>
<td>min</td>
<td>min</td>
<td>minute</td>
<td>(minutes)</td>
<td>m</td>
</tr>
<tr>
<td>s</td>
<td>s</td>
<td>second</td>
<td>(seconds)</td>
<td>m</td>
</tr>
<tr>
<td>m</td>
<td>m</td>
<td>metre</td>
<td>(metres)</td>
<td>m</td>
</tr>
<tr>
<td>dm</td>
<td>dm</td>
<td>decimetre</td>
<td>(decimetres)</td>
<td>m</td>
</tr>
<tr>
<td>cm</td>
<td>cm</td>
<td>centimetre</td>
<td>(centimetres)</td>
<td>m</td>
</tr>
<tr>
<td>mm</td>
<td>mm</td>
<td>millimetre</td>
<td>(millimetres)</td>
<td>m</td>
</tr>
<tr>
<td>in</td>
<td>in</td>
<td>inch</td>
<td>(inches)</td>
<td>m</td>
</tr>
<tr>
<td>l</td>
<td>ℓ</td>
<td>litre</td>
<td>(litres)</td>
<td>m</td>
</tr>
<tr>
<td>dl</td>
<td>dl</td>
<td>decilitre</td>
<td>(decilitres)</td>
<td>m</td>
</tr>
<tr>
<td>cl</td>
<td>cl</td>
<td>centilitre</td>
<td>(centilitres)</td>
<td>m</td>
</tr>
<tr>
<td>ml</td>
<td>ml</td>
<td>millilitre</td>
<td>(millilitres)</td>
<td>m</td>
</tr>
<tr>
<td>cal</td>
<td>cal</td>
<td>calorie</td>
<td>(calories)</td>
<td>m</td>
</tr>
<tr>
<td>kcal</td>
<td>kcal</td>
<td>kilocalorie</td>
<td>(kilocalories)</td>
<td>m</td>
</tr>
<tr>
<td>J</td>
<td>J</td>
<td>joule</td>
<td>(joules)</td>
<td>m</td>
</tr>
<tr>
<td>kJ</td>
<td>kJ</td>
<td>kilojoule</td>
<td>(kilojoules)</td>
<td>m</td>
</tr>
<tr>
<td>eV</td>
<td>eV</td>
<td>electron volt</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>pn</td>
<td>pinch</td>
<td>pinch</td>
<td>(pinches)</td>
<td>m</td>
</tr>
<tr>
<td>EL</td>
<td>tbsp.</td>
<td>tablespoon</td>
<td>(tablespoons)</td>
<td>m</td>
</tr>
<tr>
<td>TL</td>
<td>tsp.</td>
<td>teaspoon</td>
<td>(teaspoons)</td>
<td>m</td>
</tr>
<tr>
<td>csp</td>
<td>csp.</td>
<td>coffeespoonful</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>dsp</td>
<td>dsp.</td>
<td>dessertspoonful</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>ssp</td>
<td>ssp.</td>
<td>saltspoonful</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>Msp</td>
<td>Msp.</td>
<td>—</td>
<td></td>
<td>m</td>
</tr>
<tr>
<td>decimal-mark</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>m</td>
</tr>
<tr>
<td>one(m)</td>
<td>—</td>
<td>one</td>
<td>—</td>
<td>m</td>
</tr>
<tr>
<td>one(f)</td>
<td>—</td>
<td>one</td>
<td>—</td>
<td>m</td>
</tr>
<tr>
<td>one(n)</td>
<td>—</td>
<td>one</td>
<td>—</td>
<td>m</td>
</tr>
</tbody>
</table>
A.2 american

<table>
<thead>
<tr>
<th>(unit-key)</th>
<th>printed unit</th>
<th>unitname</th>
<th>(plural)</th>
<th>gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg</td>
<td>kg</td>
<td>kilogram</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>dag</td>
<td>dag</td>
<td>decagram</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>g</td>
<td>gram</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>oz</td>
<td>oz</td>
<td>ounce</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>lb</td>
<td>lb</td>
<td>pound</td>
<td>(pounds) m</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>°C</td>
<td>degree Celsius</td>
<td>(degrees Celsius) m</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>°F</td>
<td>degree Fahrenheit</td>
<td>(degrees Fahrenheit) m</td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td>°Ré</td>
<td>degree Réaumur</td>
<td>(degrees Réaumur) m</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>K</td>
<td>kelvin</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>day</td>
<td>(days) m</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>hour</td>
<td>(hours) m</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>min</td>
<td>minute</td>
<td>(minutes) m</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>s</td>
<td>second</td>
<td>(seconds) m</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>m</td>
<td>meter</td>
<td>(meters) m</td>
<td></td>
</tr>
<tr>
<td>dm</td>
<td>dm</td>
<td>decimeter</td>
<td>(decimeters) m</td>
<td></td>
</tr>
<tr>
<td>cm</td>
<td>cm</td>
<td>centimeter</td>
<td>(centimeters) m</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>mm</td>
<td>millimeter</td>
<td>(millimeters) m</td>
<td></td>
</tr>
<tr>
<td>in</td>
<td>in</td>
<td>inch</td>
<td>(inches) m</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>ℓ</td>
<td>liter</td>
<td>(liters) m</td>
<td></td>
</tr>
<tr>
<td>dl</td>
<td>dl</td>
<td>deciliter</td>
<td>(deciliters) m</td>
<td></td>
</tr>
<tr>
<td>cl</td>
<td>cl</td>
<td>centiliter</td>
<td>(centiliters) m</td>
<td></td>
</tr>
<tr>
<td>ml</td>
<td>ml</td>
<td>milliliter</td>
<td>(milliliters) m</td>
<td></td>
</tr>
<tr>
<td>cal</td>
<td>cal</td>
<td>calorie</td>
<td>(calories) m</td>
<td></td>
</tr>
<tr>
<td>kcal</td>
<td>kcal</td>
<td>kilocalorie</td>
<td>(kilocalories) m</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>J</td>
<td>joule</td>
<td>(joules) m</td>
<td></td>
</tr>
<tr>
<td>kJ</td>
<td>kJ</td>
<td>kilojoule</td>
<td>(kilojoules) m</td>
<td></td>
</tr>
<tr>
<td>eV</td>
<td>eV</td>
<td>electron volt</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>pn</td>
<td>pn.</td>
<td>pinch</td>
<td>(pinches) m</td>
<td></td>
</tr>
<tr>
<td>EL</td>
<td>tbsp.</td>
<td>tablespoon</td>
<td>(tablespoons) m</td>
<td></td>
</tr>
<tr>
<td>TL</td>
<td>tsp.</td>
<td>teaspoon</td>
<td>(teaspoons) m</td>
<td></td>
</tr>
<tr>
<td>csp</td>
<td>csp.</td>
<td>coffeespoonful</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>dsp</td>
<td>dsp.</td>
<td>dessertspoonful</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>ssp</td>
<td>ssp.</td>
<td>saltspoonful</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Msp</td>
<td>Msp.</td>
<td>—</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>decimal-mark</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>one(m)</td>
<td>—</td>
<td>one</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>one(f)</td>
<td>—</td>
<td>one</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>one(n)</td>
<td>—</td>
<td>one</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
A.3 German

<table>
<thead>
<tr>
<th>(unit-key)</th>
<th>printed unit</th>
<th>unitname</th>
<th>(plural)</th>
<th>gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg</td>
<td>kg</td>
<td>Kilogramm</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>dag</td>
<td>dag</td>
<td>Dekagramm</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>g</td>
<td>Gramm</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>oz</td>
<td>oz</td>
<td>Unze</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>lb</td>
<td>lb</td>
<td>Pfund</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>°C</td>
<td>Grad Celsius</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>°F</td>
<td>Grad Fahrenheit</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Ré</td>
<td>°Ré</td>
<td>Grad Réamur</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>K</td>
<td>Kelvin</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>Tag (Tage)</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>Stunde (Stunden)</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>min</td>
<td>Minute (Minuten)</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>s</td>
<td>Sekunde (Sekunden)</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>m</td>
<td>Meter</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>dm</td>
<td>dm</td>
<td>Dezimeter</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>cm</td>
<td>cm</td>
<td>Centimeter</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>mm</td>
<td>Millimeter</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>in</td>
<td>in</td>
<td>Zoll</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>l</td>
<td>Liter</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>dl</td>
<td>dl</td>
<td>Deziliter</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>cl</td>
<td>cl</td>
<td>Centiliter</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>ml</td>
<td>ml</td>
<td>Milliliter</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>cal</td>
<td>cal</td>
<td>Kalorie (Kalorien)</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>kcal</td>
<td>kcal</td>
<td>Kilokalorie (Kilokalorien)</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>J</td>
<td>Joule</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>kJ</td>
<td>kJ</td>
<td>Kilojoule</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>eV</td>
<td>eV</td>
<td>Elektronenvolt</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>pn</td>
<td>Prise</td>
<td>Prise (Prisen)</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>EL</td>
<td>EL</td>
<td>Esslöffel</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>TL</td>
<td>TL</td>
<td>Teelöffel</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>csp</td>
<td>KL</td>
<td>Mokkalöffel</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>dsp</td>
<td>dsp. —</td>
<td>—</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>ssp</td>
<td>ssp. —</td>
<td>—</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Msp</td>
<td>Msp. —</td>
<td>Messerspitze (Messerspitzen)</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>decimal-mark</td>
<td>—</td>
<td>,</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>one(m)</td>
<td>—</td>
<td>ein</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>one(f)</td>
<td>—</td>
<td>eine</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>one(n)</td>
<td>—</td>
<td>ein</td>
<td>m</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(Phrase-key)</th>
<th>phrase</th>
<th>(plural)</th>
<th>gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Dutzend</td>
<td></td>
<td>n</td>
</tr>
</tbody>
</table>
Some further phrases, just to write them down (they are not implemented, as they are barely used).

<table>
<thead>
<tr>
<th>number</th>
<th>name</th>
<th>Note</th>
<th>(plural)</th>
<th>gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Schock</td>
<td>(5 Dutzend, 12 * 5)</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Gros</td>
<td>(12 Dutzend, 12 * 12)</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>1728</td>
<td>Großgros</td>
<td>(12 Groß, 12 * 144)</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>

Note that Großgros has other (probably more common) synonyms.
A.4 French

<table>
<thead>
<tr>
<th>(unit-key)</th>
<th>printed unit</th>
<th>unitname</th>
<th>(plural)</th>
<th>gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg</td>
<td>kg</td>
<td>kilogramme</td>
<td>(kilogrammes)</td>
<td>m</td>
</tr>
<tr>
<td>dag</td>
<td>dag</td>
<td>décagramme</td>
<td>(décagrammes)</td>
<td>m</td>
</tr>
<tr>
<td>g</td>
<td>g</td>
<td>gramme</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>oz</td>
<td>oz</td>
<td>once</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>lb</td>
<td>lb</td>
<td>livre</td>
<td>(livres)</td>
<td>f</td>
</tr>
<tr>
<td>C</td>
<td>°C</td>
<td>degré Celsius</td>
<td>(degrés Celsius)</td>
<td>m</td>
</tr>
<tr>
<td>F</td>
<td>°F</td>
<td>kelvin</td>
<td>(kelvins)</td>
<td>m</td>
</tr>
<tr>
<td>Re</td>
<td>°Ré</td>
<td>échelle Réaumur</td>
<td>(degrés Réaumur)</td>
<td>m</td>
</tr>
<tr>
<td>K</td>
<td>K</td>
<td>degré Fahrenheit</td>
<td>(degrés Fahrenheit)</td>
<td>m</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>jour</td>
<td>(jours)</td>
<td>m</td>
</tr>
<tr>
<td>h</td>
<td>h</td>
<td>heure</td>
<td>(heures)</td>
<td>f</td>
</tr>
<tr>
<td>min</td>
<td>min</td>
<td>minute</td>
<td>(minutes)</td>
<td>f</td>
</tr>
<tr>
<td>s</td>
<td>s</td>
<td>seconde</td>
<td>(secondes)</td>
<td>f</td>
</tr>
<tr>
<td>m</td>
<td>m</td>
<td>mètre</td>
<td>(mètres)</td>
<td>m</td>
</tr>
<tr>
<td>dm</td>
<td>dm</td>
<td>décimètre</td>
<td>(décimètres)</td>
<td>m</td>
</tr>
<tr>
<td>cm</td>
<td>cm</td>
<td>centimètre</td>
<td>(centimètres)</td>
<td>m</td>
</tr>
<tr>
<td>mm</td>
<td>mm</td>
<td>millimètre</td>
<td>(millimètres)</td>
<td>m</td>
</tr>
<tr>
<td>in</td>
<td>po</td>
<td>pouce</td>
<td>(pouces)</td>
<td>m</td>
</tr>
<tr>
<td>l</td>
<td>L</td>
<td>litre</td>
<td>(litres)</td>
<td>m</td>
</tr>
<tr>
<td>dl</td>
<td>dL</td>
<td>décilitre</td>
<td>(décilitres)</td>
<td>m</td>
</tr>
<tr>
<td>cl</td>
<td>cL</td>
<td>centilitre</td>
<td>(centilitres)</td>
<td>m</td>
</tr>
<tr>
<td>ml</td>
<td>mL</td>
<td>millilitre</td>
<td>(millilitres)</td>
<td>m</td>
</tr>
<tr>
<td>cal</td>
<td>cal</td>
<td>calorie</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>kcal</td>
<td>kcal</td>
<td>kilocalorie</td>
<td>(kilocalories)</td>
<td>m</td>
</tr>
<tr>
<td>J</td>
<td>J</td>
<td>joule</td>
<td>(joules)</td>
<td>m</td>
</tr>
<tr>
<td>kJ</td>
<td>kJ</td>
<td>kilojoule</td>
<td>(kilojoules)</td>
<td>m</td>
</tr>
<tr>
<td>eV</td>
<td>eV</td>
<td>électron-volt</td>
<td>(électron-volts)</td>
<td>m</td>
</tr>
<tr>
<td>pn</td>
<td>pinch</td>
<td>pincée</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>EL</td>
<td>c.à.s.</td>
<td>cuillère à soupe</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>TL</td>
<td>c.à.c.</td>
<td>cuillère à café</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>csp</td>
<td>csp.</td>
<td>—</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>dsp</td>
<td>dsp.</td>
<td>—</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>ssp</td>
<td>ssp.</td>
<td>—</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Msp</td>
<td>Msp.</td>
<td>—</td>
<td>m</td>
<td></td>
</tr>
</tbody>
</table>

decimal-mark — — — m

one(m) — un — m

one(f) — une — m

one(n) — un — m

If the spoons should be extra full:

- cuillère à soupe rase
- cuillère à café rase
References

Change History

2016/06/11
General: Added the package option to load 'intcount'. 1

2016/08/31
General: Fixed calculation: degree
 Reamur to eV 1
 Initial version 1

2016/09/03
General: Added units 'ssp', 'csp', 'dsp'
 British English: 'pinch' is written in full 1
 English unit: litre (and only litre) uses the curly l ℓ now 1
 Separated Messerspitze and pinch 1

2016/09/05
General: New message:
 'obsolete-command' 1
 Replaced \cufrac by \cuam 1

2016/09/09
General: \@@_calculate_input_and_store_in:nN optimiert durch neue property-key: single. 1
Add 'single' to property list of singlekeys. 1
Changed name from \@@_cunum_parse_range (and derivatives) to \@@_cutext_parse_range. 1
Changed name from \@@_parse_fraction_in_input:ww to \@@_parse_mixed_fraction_in_input:ww. 1
Corrected mistake: 'ELektronenvolt'
 (note uppercase L) to 'Elektronenvolt' in german. 1
Delete 'single' from property lists of singlekeys cause it is not as safe as I thought. 1
In \@@_cutext_default:nnn it is only checked once if a range is inside. 1

2016/09/16
General: Only use \phantom if the argument (for \phantom) is not empty. 1

2016/09/26
General: \cuaddsinglekeys now tests
 if the unit exists (it didn’t before). 1
New option (and needed macros):
 add-temperature-to-check. 1
New option: 'round-half'. 1
Recalculated all electron volt values for conversion (as 'kg' was wrong before). Let’s hope they are correct this time. 1
Replaced \prop_clear_new:c by \prop_clear:c. 1

2016/10/19
General: 'convert-to-eV' now also as optional argument available. 1
Option 'load-time-option' now spells 'available' correct. 1
Update of documentation. 1
Use \keys_set:nn only if second argument is not empty. 1

2016/10/28
General: \cutext (and \Cutext) and \cuam now parse their input like \cunum. This is needed as they also need to be changed. 1
Start implementation of “Change recipe from \n to \m persons.”. 1

2016/10/29
General: Tiding code: Now every command is separated into a “calc” function, a “print numeric value” and a “print unit” (if there)
 function. At least, that’s the plan. 1
2016/10/30
General: Fractions should now deal correctly with minus signs.
1
2016/11/07
General: Finished writing v1.10.
1
2016/11/13
General: \cutext, \Cutext and \cuam check their input, allows conversion of units.
1
Change amounts for specific number of persons.
1
New commands: \curef, \curef
1
New commands: \declarecookingunit and \providecookingunit.
1
New options: cuam-version and cutext-version.
New options: cutext-to-cumum, cutext-change-unit and cutext-space.
1
New options: recalculate-amount and set-number-of-persons, label, get-label, ref.
1
2017/03/10
General: \curef is now defined by \NewExpandableDocumentCommand instead of the Declare variant.
1
Removed \translate and others from code and replaced them with wrapper-macros.
1
Removed things like 'cu-unit' from translate input and placed them into separate t's.
1
2017/10/23
General: Added "phrases".
1
Added unit "stick" (of butter).
1
New option: amount-unit-space.
1
New option: phrase-space.
1
New option: print-numerals.
1
New option: set-cutext-translation-message.
1
New option: use-phrase.
1
Now checks for ranges if both values can be printed as numerals (if activated) (bug fix).
1
Replaced translator by translations.
1
Reworked quite a lot of code.
1
2018/04/20
General: Add "Division-by-zero" error.
1
Allow round precision to be negative.
1
Change large portions of code.
1
Cooking Units-keys are not allowed to contain either "," or "/".
1
Fix argument specifiers.
1
Introduce key-groups (weight, volume, etc.).
1
New feature: Hooks
1
New Option: 42.
1
New option: add-unit-to-group
1
New option: erase-all-options-for
1
New options: expand-both, expand-amount, expand-unit.
1
New options: set-option-for & add-option-for.
1
New parsing algorithm. Hopefully better error recovery (if signs for fractions are in wrong order e.g.)
1
Option: add-natural-unit.
1
2018/06/05
General: set-unknown-message: Fix default value.
1
Add "range-sign" for translations (not usable yet).
1
Bugfix (phrases): Use the phrase from the first amount to check the second (and don't parse through the second amount).
1
Bugfix (unit-change): convert-to-eV can be again used as a local argument.
1
true) will print the second word small.
1
Change (amount-not-known): Change message a bit.
1
Convert cclist to seq if possible.
1
Fix some more argument specifiers.
1
Improve error-recovery by a lot!emptyindex.
1
Remove unnecessary variants.
1
Renaming of some internal commands.
1
Rework parsing code (again). As this is basically an improved version of the old parsing algorithm, there is no huge version change.
1
This version introduces mayor internal changes. For users not many things change.
1
2018/09/24
General: Changes prefix from cooking_units to cookingunits.
1
Improved french (not in general, only for this package).
1
42
New language symbols:
 cutext-range-sign 1
New section in documentation. 1

Remove exhaustive expansion from internals (shouldn't change anything for users). 1

Index

The italic numbers denote the pages where the corresponding entry is described, numbers underlined point to the definition, all others indicate the places where it is used.

Symbols
<group> 17
<unit> 17
@@ commands:
\@@_calculate_input_and_store_in:nN 41
\@@_cuaddkeys 9, 11, 12
\@@_cuaddtokeys 9, 12
\@@_cuam . 3, 6, 7, 15, 15, 19, 20, 20, 22, 23, 27
\@@_cudefinename 13
\@@_cudefinephrase 15
\@@_cudefinesinglekey 9, 10
\@@_cudefinesymbol 14
\@@_cuaddkeys 9, 11
\@@_cuaddtokeys 9, 12
\@@_cuaddkeys 9, 11
\@@_cuaddtokeys 9, 12
\@@_cuam . 3, 6, 7, 15, 15, 19, 20, 20, 22, 23, 27
\@@_cudefinename 13
\@@_cudefinephrase 15
\@@_cudefinesinglekey 9, 10
\@@_cudefinesymbol 14
\@@_cutext . 3, 4, 6, 8, 13, 16, 19, 19, 19, 20, 20, 21, 21, 23, 25, 35
\@@_cutext . 3, 4, 6, 8, 13, 16, 19, 19, 19, 20, 20, 21, 21, 23, 25, 35
\@@_cutext_default:nnn 41
\@@_cutext_range-sign 13
\@@_cutext_change-unit 19
\@@_cutext-change-unit 19
\@@_cutext-range-sign 13
\@@_cuaddkeys 11
\@@_cuaddtokeys 12
\@@_cuaddkeys 11, 41
\@@_cuaddtokeys 12
\@@_cuam 41, 42
cuam-add-hook 20
cuam-version 19
\@@_cudefinename 13
\@@_cudefinephrase 15
cudefsingelkeykey 10
cudefinesymbol 14
\@@_cufrac 41
cufrac 41
cudedefinekeys 10
\@@_cufr-label 42
cufr-label 42
cunum 41
cunum 41
cunum-add-unit-space 20
curef 42
curef 42
curef-add-forbidden-unit 29
curef-clean-forbidden-units 29
curef-remove-forbidden-unit 29
\@@_cudefsingelkeykey 10
cudefinekeys 10
cudefinesymbol 14
\@@_cufrac 41
cufrac 41
cudedefinekeys 10
cudefinesymbol 14
\@@_cufr-label 42
cufr-label 42
cunum 41
cunum 41
cunum-add-unit-space 20
curef 42
curef 42
curef-add-forbidden-unit 29
curef-clean-forbidden-units 29
curef-remove-forbidden-unit 29
\@@_cudefsingelkeykey 10
cudefinekeys 10
cudefinesymbol 14
\@@_cutext 41, 42
cutext 41, 42
\@@_cutext 41, 42
Cutext-add-hook 20
cutext-add-hook 20
cutext-change-unit 19
cutext-range-sign 13
cutext-space 26
cutext-to-cunum 19
cutext-version 19

Numbers
42 31

A
add-natural-unit 31
add-option-for 18
add-option-for-<unit-key> 18
add-special-sign 20
add-temperature-to-check 30

D
decimal-mark 13
\declarecookingunit 9, 42