Outline

1 Murphy’s Law

2 Implications for presentations
 2.1 Tables
 2.2 Figures

3 Address the audience

4 Conclusion
1 Murphy’s Law

The most common definition of Murphy’s Law is as follows.

Theorem (Murphy (1949))
Anything that can go wrong, will go wrong.

Proof
A special case of Theorem 1.1 is proven in Matthews (1995).
Historical background

Edward Aloysius Murphy, Jr. (an American Air Force engineer) was part of the team of Colonel John Paul Stapp who was looking for the maximum speed at which pilots could safely eject. Stapp used a rocket-sled to accelerate his own body. At one of their potentially lethal experiments, someone installed the sensors in a wrong way so that they were useless. This led Murphy to formulate his law, which was stated some days later by Stapp at a press conference.

Remark

Do not confuse Murphy’s Law with Muphry’s Law by John Bangsund which says that “if you write anything criticizing editing or proofreading, there will be a fault of some kind in what you have written.”
2 Implications for presentations

- The conference beamer says “no signal”.
- The presentation notebook does not accept your USB stick.
- The PDF reader does not open your presentation.
- After 30 seconds, the notebook’s display goes to sleep.
- Your audience gets tired and finally falls asleep.
- After the talk, there are only weird questions asked.

⇒ By the way, you should not use that many bullet points, see, e.g., Tufte (2007), Reynolds (2008), and Duarte (2008)!
Murphy’s Law for Presentations

2.1 Tables

How long does it take your eye to find the largest number? How often does this number appear? Seems **impossible** to decide during a talk . . .

<table>
<thead>
<tr>
<th>#</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7234</td>
<td>0.6243</td>
<td>0.7134</td>
<td>0.6143</td>
<td>0.7124</td>
<td>0.7142</td>
<td>0.7123</td>
</tr>
<tr>
<td>2</td>
<td>0.7123</td>
<td>0.6599</td>
<td>0.7289</td>
<td>0.6904</td>
<td>0.7344</td>
<td>0.7879</td>
<td>0.7888</td>
</tr>
<tr>
<td>3</td>
<td>0.7498</td>
<td>0.7659</td>
<td>0.7028</td>
<td>0.7728</td>
<td>0.7483</td>
<td>0.7980</td>
<td>0.7643</td>
</tr>
<tr>
<td>4</td>
<td>0.7919</td>
<td>0.7981</td>
<td>0.7976</td>
<td>0.7433</td>
<td>0.7728</td>
<td>0.7891</td>
<td>0.7141</td>
</tr>
<tr>
<td>5</td>
<td>0.7928</td>
<td>0.7452</td>
<td>0.7381</td>
<td>0.7948</td>
<td>0.7783</td>
<td>0.7981</td>
<td>0.7715</td>
</tr>
</tbody>
</table>

⇒ Reduce the information, group numbers, use **colors**, etc.
2.2 Figures

- Do you see at which x value the minimum is?
- Which value $f(x)$ does it take there?

⇒ Always label your axes, and use the correct label size!
3 Address the audience

Note:
- Make it as simple as somehow possible.
- Get the main idea across!
- Give references to more detailed explanations.

4 Conclusion

- Give a conclusion, where you recall the main points!
- This also gives the snoring persons time to wake up!
References

Time to say goodbye!