The PracIgX Journal, 2007, No. 3
Article revision 2007/08/17

TpX — I&IEX-oriented graphical editor
Alexander Tsyplakov

Email tsy@academ.org
Website http://www.nsu.ru/ef/tsy/about_en.htm
Address Novosibirsk, Russia

Abstract This article describes TpX, a lightweight, easy-to-use graphical editor for
Windows platform, presents guidelines for its use and discusses some fea-
tures and limitations.

1 Introduction

TpX is a lightweight, easy-to-use graphical editor for Windows! [4]. The tool
allows users to draw and include their drawings in IXTgX files. In addition, the
tool can be used as a stand-alone editor for vector graphics.?

The tool supports both the (pdf)IXIEX—DVI—PS and pdfIATEX—PDF ways
of producing documents. The choice between two regimes is governed by the
ifpdf package. Thus the same drawing can be used in a IXTgX document in both
regimes.

TpX can import EMF/WMF pictures created by other Windows applications,
including many applications producing scientific graphs. It also can import sim-
ple SVG pictures. So TpX can be used as an EMF-to-any and a SVG-to-any con-
verter.

2 How it came to be

I am engaged in writing a large microeconomics textbook (more than 1000 pages).
It is a long-term project of two co-authors and myself which has continued for

1. See below about the cross-platform version of TpX which is under development.
2. Vector graphics use geometric shapes based on analytical formulas to represent graphical
information, which is different to bitmap or raster graphics that represent arrays of pixels.

mailto:tsy@academ.org?subject=Re:%20PracTeX%20Journal%20article%20
http://www.nsu.ru/ef/tsy/about_en.htm

several years and is not finished yet. At one stage a decision was made to switch
from Word to I&TEX because of the high typesetting quality of IXTEX and the
preferences of a co-author. Consequently, there were two main problems. The
first one was to convert the documents from Word to I&IgX. The second one
was to include a large number of graphical illustrations into the resulting IXTEX
document in a form which allows further editing.

The graphic edition workflow using MS Word was relatively fast and easy.
Double click the picture, edit with the mouse, close and here you are. In IATEX, it
is a little bit different because it has no built-in WYSIWYG graphical capabilities
like MS Word. Thus, I was looking for some tool which would allow me to edit
illustrations in a similarly rapid manner with the mouse.

It turned out that there are many different choices of vector graphics programs
around. Some of them I knew when starting TpX (TeXCAD [7], jPicEdt [8] and
many others). Some alternatives came to my sight only recently (Ipe [9] and
LaTeXDraw [10]).

There exist several drawing programs based on the standard I£TgX picture en-
vironment (sometimes enhanced by additional packages). This environment pro-
duces what can be called pseudo-graphics. By default, the result is very primitive
and is not usually suitable for a published book. (However, it is quite portable, as
it uses only I&TEX fonts for rendering graphics and do not need special drivers.)

At the other extreme there is Inkscape [6]. It is a powerful vector graphics
program based on the SVG format, but it is large and not at all IXTgX-friendly.

jPicEdt is somewhere between these two extremes. As well as the IAIEX
picture environment enhanced by the eepics package it can also output PSTricks
code, which is suitable for use in a published book. However, jPicEdt is based on
Java, which is not very convenient (for example, it precludes use of the program
on computers which do not have Java installed). And most importantly, it is not
possible to use graphics produced by jPicEdt directly with pdfI&TEX to get PDE.

Thus, I decided to write my own tool. The following principles were behind
the development of TpX:

- tight integration with I&IEX (for example, use of IAIEX for rendering text
labels),

— support for multiple IXTgX-related formats (including formats compatible
with the pdfI&IEX—PDF way of producing documents),

small size and fast loading with a small memory footprint,

usability,

simple and open format for storing drawings,

easy import and export from/to important formats of vector graphics.

The development of TpX was very helpful for writing of the above-mentioned
textbook. TpX writes graphics in various formats and is very usable. After all,
converting the illustrations from MS Word to TpX® has provided advantages for
preparing the textbook for publication because MS Word encapsulates pictures
in the document. This is a problem when you need to unify their style and
appearance. I have used TpX for many other purposes. For example, I have
included statistical diagrams into beamer presentation or printed pictures for my
little daughter to colour.

3 The direct use of TpX

The TpX graphical user interface is similar to other Windows programs. Figure 1
shows a TpX screenshot. TpX allows you to do the most common vector drawing
tasks (like creating, moving, copying, reshaping of graphical objects, changing
colour and so on).

TpX is not fully WYSIWYG. The screen representation of a drawing is some-
what different from the resulting graphics included into IAIgX document. For
example, mathematical formulas would be seen only in the IXTEX document. Hav-
ing a system font with a rich set of symbols one can make text labels more similar
to IATEX output by including &#xHHHH; code into the label text where HHHH is hex-
adecimal unicode representation of a symbol.* Please, observe Greek letters and
degree symbols in Figure 1.

A TpX drawing is stored in a file (with extension .TpX), which is intended
for inclusion into a parent I£IEX document with the \input command. Figure 2
is the output from TpX drawing. It was included into this PracIgX article using

3. The illustrations were saved as RTF using a Visual Basic script. Then a Python script was
used to convert RTF to some XML representation and eventually to TpX.
4. This is important when exporting TpX drawings to non-IATgX formats like SVG or EME

=
Fle Edt Insert Transform Modfy Tocls View Help
D@ LE|sb@ -~ aQaQXE @[RE - &~ |
Line [{539 ~ || O Dot - [=] Hahing [None = |[Opefa + | Fil [D et~ |
— i =
of Jr042° =
o 13 6257 \ / ﬁ
s °
ap 4 \ \I) 74
I 569°] | o P
A e
) i el BEYey
3] = ~ ‘\ |
&> : v
o B /
Abfm
o =
& =
) 30 40 5
] 200 30 40 50 60 70 80| 90 100
3 Au, atomic % Au
_IH‘Z\U\HIIIH‘a\UH\HIH‘Q\UHHHI\‘SEﬁHHII|E\UHHHII|7IUI\HHII|EIUIH\HII|3IUIHH\II|1IUU
;78,443 %: 40.020 T Z

Figure 1: TpX screenshot

\input{AuAl.TpX}. Note that it uses the same URW Palladio font family as the
article itself.

Let me describe the workflow to use TpX for creating a drawing from scratch.
Suppose that one is going to create a drawing with the filename “Foo.TpX” in
subdirectory pics/.

— In the text editor used to edit the parent IAIEX document add the following
line to the document:
\input{pics/Foo.TpX}.
Save the document.

- Move the cursor to the added line and press the hot key.”> The TpX program
will be started with the following command-line parameters:

-i<filename> -1<line number>

where <filename> is the name of the parent IXTgX document and <line num-
ber> is the current line number. TpX will scan the IATEX document and find

5. T assume that there is already a hot key for running TpX. This requires an editor which can
have a hot key for running an external program and which is able to pass the current line number
as a command-line parameter to an external program. The TpX distribution includes support
macros for the popular WinEdt editor.

Au, weight %

—
20 40 60 70 80 8 90 95
T, OC T T T T T l T T
1200 = 25
§ <
1100 Z 1063°
T~

1000 \\ Tg
3 %
900 <

<
5| o
2 |s
800 / *gn—
700 . Y l
660 642 625 \ |V {
600 \ ' 57
569°| | o
500 [
0| n \
[\
400 oWy
300 %
0 10 20 30 40 50 60 70 80 90 100
Al Au, atomic % Au
—_—

Aluminium-gold compounds diagram
Figure 2: TpX output

the case of \input{<filename>.TpX} which is closest to the given line (that
is, \input{pics/Foo.TpX}). This will open Foo.TpX in TpX.

— Fill the newly created drawing with graphical content and save it in the
pics/ subdirectory.

— Close TpX and return to the editor.

The most time-consuming part of the procedure is preparation of the drawing.
The other operations are very fast. TpX in combination with a smart text editor
saves time which is typically spent on finding a graphic on the disk and opening
it in a graphical editor. Time savings are even more pronounced if only some
minor corrections are needed for an existing drawing.

The program’s own data are put into TgX comments (lines starting with “%”)
so that the drawing could be loaded into TpX and edited again. (The internal
TpX format is based on XML and can be understood and edited easily). These

5

data are not seen by the IXTEX program. After the comments TpX writes normal
commands that are seen by IXTEX. Depending on the required output format this
code would include direct drawing commands (like commands from the picture
environment, TikZ commands) or an \includegraphics link to an external file
created by the program.

Code inside a typical TpX file looks like this:

%<TpX v="4" ArrowsSize="0.7"
% <polygon fill="whitesmoke"

Y/ drawing data
Hh</TpX>
\begin{figure}

\centering \ifpdf
...... code for PDF

\else

...... code for DVI->PS
\fi
\end{figure}

The output format is chosen separately for PDF and DVI—PS. TpX provides
several output formats:

— Formats for which graphics are drawn using direct [4TgX code: IXTEX picture
environment, PSTricks [13], PGF and TikZ [14].

— Formats for which graphics from an external file generated by TpX is in-
cluded into the document with the help of the graphics package [5]: EPS,
PDF, MetaPost EPS [15] and PNG.°

EPS and PDF are TpX defaults for the DVI—PS and PDF regimes respectively.
With these output formats IXTEX text labels are overlaid above included EPS (PDF)
graphics using the IATgX picture environment.” This allows using the same font
for text labels as is used in the parent document. See TpX help for more informa-
tion about output formats.

6. Please note that PNG is, as opposed to all other formats mentioned, a bitmap (or raster)
format rather than a vector format.
7. This is similar to how the overpic package [11] works.

4 Porting graphics into IXIEX using TpX

It is common for a Windows program which produces some kind of vector graph-
ics to allow copying a metafile image (EMF) to the clipboard and/or exporting
it as an EMF file. TpX can import this (though not 100% correctly) for subse-
quent inclusion into IXIEX document. Old-style Windows Metafiles (WMF) are
imported by converting them to EMFE. In most cases the result of importing is
nice, though often the imported picture needs some manual editing. TpX can
also import SVG images. Note that the SVG format is extremely rich (see [1]), so
TpX can understand only a basic subset of it.

For example, in order to include an Excel diagram into a IXTEX document one
can do the following:

— Copy the Excel diagram to the Windows clipboard. This copies also an EMF
image representing the diagram.

— Use TpX to capture the EMF image from the clipboard (“Tools” > “Capture
EMP”) and save it to an EMF file.

— Import this EMF file into TpX.

- Edit the picture. Sometimes scaling of the picture’s physical size is needed
(for example, in order to satisfy page size constraints).

An example of such a use is given in Figure 3.

Of course, there are other ways to include external graphics into IXIEX doc-
ument. The most popular procedure is printing graphics to an EPS file with a
PostScript printer driver. However, the TpX way gives important advantages:

— TpX can add TgX formulas to graphs.®

- It is possible to edit imported images and correct their deficiencies. For
example, TpX can help to shift misplaced text labels.

— The graph imported through TpX uses the same fonts as IAIgX document
itself, which adds to the typographic quality of the document. (For example,
Figure 3 uses the sans serif font which is implied by the PracTgX article
style”).

8. Well-known alternatives are overpic [11] and psfrag [12] packages which allow adding text
labels to included EPS files by means of I£IEX commands.
9. The graph was included with {\sffamily\input{images/ExcelGraph.TpX}}.

7

90000
80000
70000
60000
50000
40000
30000
20000
10000

Figure 3: Excel graph imported into TpX

To see what the TpX capabilities and limitations are in this respect, have a
look at “‘Demonstration of TpX import capabilities” [2]. This document provides

examples of import from many well-known as well as lesser known Windows
programs.

5 Drawing with the mouse vs. drawing by code

Some people prefer to draw visually and interactively using the mouse while
others prefer to draw logically (programmatically) by providing coordinates of
graphic objects directly (or using geometric concepts like line crossing). TpX is
intended for people of the first type. TpX is most useful when one has some
visual scheme in one’s head and wants to implement this scheme quickly as a
sketch.

Figure 4 shows the typical task which is performed using the mouse and
which requires the human eye to control the accurateness. This is unlike a clever
graphical programming language which could make it possible to say: “Draw a
line of this length through these two points”.

Note that TpX’s viewport can be zoomed easily using the mouse wheel or hot
keys. This allows accurate visual placement of lines for most common purposes.
The human eye cannot distinguish small nuances in the positions of graphical

8

—_——
—~—_——

—_——

Figure 4: Passing a line through a point

0 A label

Figure 5: Simple drawing for TikZ example

objects anyway so it is not usually necessary to place them 100%-exactly.

For more accurate placement with the mouse additional features can be used:
snap to grid and angular snap. Snap to grid mode allows to restrict oneself to
“round” coordinates. Angular snap mode helps to restrict the angle when moving
something with mouse (to a multiple of 45° in TpX).

The fact that TpX is mouse-driven does not mean that it is impossible to spec-
ify exact coordinates in TpX. Open the properties window of a graphical object,
then press the “Points” button. This will open a table editor for editing coordi-
nates. Consider, for example, generating coordinates in a spreadsheet application
and then pasting them into this table editor.

An interesting point is that there is actually no antagonism between using
TpX and drawing by code. TpX can be used to generate PSTricks, METAPOST
or TikZ code. Generated code can then be included into IATEX documents and
edited with the keyboard in a text editor together with the document.

Figure 5 shows a simple example drawing. When saved in a TikZ format it
gives the following code:

\begin{tikzpicture}[x=1.00mm, y=1.00mm, inner xsep=Opt, inner ysep=-1.2pt]
\path[line width=Omm] (-2.00,8.00) rectangle +(44.00,24.00);
\definecolor{L}{rgb}{0.392,0.584,0.929%}

\path[line width=0.70mm, draw=L] (0.00,10.00) rectangle

+(40.00,20.00);
\definecolor{L}{rgb}{0.502,0,0}

\definecolor{F}{rgb}{0.941,0.502,0.502}

\path[line width=0.35mm, draw=L, fill=F] (10.00,20.00) circle

(1.00mm) ;

\draw(13.00,20.00) nodel[anchor=west]{\fontsize{11.38}{13.66}\selectfont
A~label\strut};

\end{tikzpicturel}’,

Of course, this is not very suitable for logical editing as it is. One would prefer
to do some further editing. First, it is better to replace \fontsize...\selectfont
with something like \large. Second, one should prefer the use of logical com-
mands for line width (like “very thin” or “ultra thick”) to the direct declaration
of physical size (like 1ine width=2mm). See [3] for more on TikZ.

TpX’s own data are in XML format and are written inside TEX comments as
plain text. This makes it straightforward to program a script to generate a TpX
drawing. I wrote a simple Python module, TpXpy, which can help generate TpX
drawings. Here is a sample TpXpy code:

pic = TpXpic(Q)

pic.addPolyline(((10,0), (30,-20), (15,-30)))

pic.fill(’mintcream’)

pic.1lw(1.5)

for i in range(5):
pic.addLine(i*10 + 50,-0.7,i*10 + 50,0.7)
pic.li(’dash’)

pic.SaveToFile(’Foo.TpX’)

Any other scripting language would be as good for the task as Python. Of course,
any of the formats produced by TpX can be generated using a script. However,
generating TpX code has some advantages. First, it is possible to obtain output in
many different formats from the same source. Second, the result can be further
edited by mouse if needed.

6 Ideas for automating editing tasks

If a document contains just a couple of illustrations then modifying them is not
a terrible problem. However, a document with dozens of illustrations requires
special attention. For example, one can come upon a need for uniform scaling
of the illustrations to fit a different paper size or changing colours throughout.

10

This section gives some ideas, from my own experience, to help you maintain
illustrations in such documents.

— One can write a script gathering all \input{<filename>.TpX} commands in
a temporary document. Then one can quickly revise all illustrations one by
one switching between IXTEX editor, DVI (PDF) previewer and TpX.

— In order to make some uniform correction in a series of drawings all one
needs to do is to use a simple search and replace utility. For example, one
can change output format for DVI from PGF to PSTricks by replacing all
cases of _TeXFormat="pgf" by _TeXFormat="pstricks".!’ The drawing has
to be refreshed to reflect changes. This can be done by running the following
command:

TpX.exe -f<filename>.TpX -o

A renew_all.py script which is distributed with TpX shows how one can
refresh all drawings in a specified directory.

- A more advanced way of automatically correcting a series of drawings is
to use a scripting language with an XML DOM library. As was already
mentioned, the TpX format for storing drawings is based on XML. To read
the corresponding XML document one has to read all lines staring with “%”
from the TpX file and strip the “%” symbol from each line. This will give
an XML document. The XML document is then converted to a DOM tree.
After editing the DOM representation one has to go this way backwards
by first getting XML document and then prepending each line by the “%”
symbol. Finally, the resulting TpX file has to be refreshed.

7 Further Improvements

Currently TpX is a one-man project. However it is placed at SourceForge!! under
the GNU Public License and anybody with sufficient knowledge of Object Pascal
is invited to participate.

10. Note the space char before TeXFormat; it is needed to distinguish TeXFormat and PdfTeXFor-
mat.
11. http://sourceforge.net/.

11

http://sourceforge.net/

Although TpX was originally created for the Windows platform using Delphi
I recently reshaped it for Lazarus, a cross-platform clone of Delphi. The Lazarus
variant of TpX is at alpha stage and lacks some functionality of the Delphi variant
(like export of PNG and EMF images). Also it was not yet fully adapted for other
platforms (Linux or OS X). In the future, this will hopefully result in a usable
product.

I conclude this section listing some of the planned enhancements from my
todo file: - group/ungroup; - grouping objects into compound paths (to get dis-
joint shapes and shapes with holes); - bitmap object; - diagram object for creating
simple plots; - adding custom graphical objects from a library; - additional proper-
ties for graphical objects (miter limit, line caps, etc.); - simplifying of Bezier paths;
- layers; - codepages.

References

[1] W3C. Scalable Vector Graphics (SVG). XML Graphics for the Web.
http://www.w3.org/Graphics/SVG/

[2] TsyrLAKOV, ALEXANDER. Demonstration of TpX import capabilities, January
31, 2006.
http://tpx.sourceforge.net/TpX-Demo.pdf

[3] TanTAu, TiLL. The TikZ and pgt Packages. Manual for Version 1.01.
http://sourceforge.net/projects/pgf

[4] TpX.
http://tpx.sourceforge.net/, CTAN:graphics/tpx/

[5] graphics and graphicx packages.
CTAN:macros/latex/required/graphics/

[6] Inkscape.
http://www.inkscape.org/

[7] TeXCAD.
http://homepage.sunrise.ch/mysunrise/gdm/texcad.htm

12

http://www.w3.org/Graphics/SVG/
http://tpx.sourceforge.net/TpX-Demo.pdf
http://sourceforge.net/projects/pgf
http://tpx.sourceforge.net/
http://www.ctan.org/tex-archive/graphics/tpx/
http://www.ctan.org/tex-archive/macros/latex/required/graphics/
http://www.inkscape.org/
http://homepage.sunrise.ch/mysunrise/gdm/texcad.htm

[8] jPicEdt.
http://jpicedt.sourceforge.net/site/index.php,
CTAN:graphics/jpicedt/

[9] Ipe.
http://tclab.kaist.ac.kr/ipe/

[10] LaTeXDraw.
http://latexdraw.sourceforge.net/

[11] overpic package.
CTAN:macros/latex/contrib/overpic/

[12] psfrag package.
CTAN:macros/latex/contrib/psfrag/

[13] PSTricks.
http://tug.org/PSTricks/, CTAN:graphics/pstricks/

[14] PGF/TikZ.
http://sourceforge.net/projects/pgf/, CTAN:graphics/pgf/

[15] METAPOST.
http://sarovar.org/projects/metapost/, CTAN:graphics/metapost/

13

http://jpicedt.sourceforge.net/site/index.php
http://www.ctan.org/tex-archive/graphics/jpicedt/
http://tclab.kaist.ac.kr/ipe/
http://latexdraw.sourceforge.net/
http://www.ctan.org/tex-archive/macros/latex/contrib/overpic/
http://www.ctan.org/tex-archive/macros/latex/contrib/psfrag/
http://tug.org/PSTricks/
http://www.ctan.org/tex-archive/graphics/pstricks/
http://sourceforge.net/projects/pgf/
http://www.ctan.org/tex-archive/graphics/pgf/
http://sarovar.org/projects/metapost/
http://www.ctan.org/tex-archive/graphics/metapost/

	Introduction
	How it came to be
	The direct use of TpX
	Porting graphics into LaTeX using TpX
	Drawing with the mouse vs. drawing by code
	Ideas for automating editing tasks
	Further Improvements

