
The PracTEX Journal, 2007, No. 3
Article revision 2007/08/28

Tools for Collaborative Writing of Scientific
LATEX Documents
Arne Henningsen

Abstract Collaborative writing of documents requires a strong synchronisation
among authors. This paper describes a possible way to organise the collab-
orative preparation of scientific LATEX documents. The presented solution
is primarily based on the version control system Subversion. The paper
describes how Subversion can be used together with several other software
tools and LATEX packages to organise the collaborative preparation of LATEX
documents.

1 Introduction

Many scientific articles, reports, and books are written by more than one author.
The collaborative preparation of documents requires a considerable amount of
coordination among the authors. This coordination can be organised in many
different ways, where the best way depends on the specific circumstances.

In this paper, I describe how the collaborative writing of LATEX documents is
organised at our department1. I present our software tools, and describe how we
use them. Thus, this paper provides some ideas and hints that will be useful for
other LATEX users who prepare documents together with their co-authors.

2 Interchanging Documents

There are many ways to interchange documents among authors. One possibility
is to compose documents by interchanging e-mail messages. This method has
the advantage that common users generally do not have to install and learn the
usage of any extra software, because virtually all authors have an e-mail account.

1. Division of Agricultural Policy, Department of Agricultural Economics, University of Kiel,
Germany.

Arne Henningsen

Furthermore, the author who has modified the document can easily attach the
document and explain the changes by e-mail as well. Unfortunately, there is a
problem when two or more authors are working, at the same time, on the same
document. So, how can authors synchronise these files?

A second possibility is to provide the document on a common file server,
which is available in most departments. The risk of overwriting each others’ mod-
ifications can be eliminated by locking files that are currently edited. However,
generally the file server can be only accessed from within a department. Hence,
authors, who are out of the building, cannot use this method to update/commit
their changes. In this case, they will have to use another way to contour this
problem. So, how can authors access these files?

A third possibility is to use a version control system. A comprehensive list of
version control systems can be found at [32]. Version control systems keep track
of all changes in files in a project. If many authors modify a document at the
same time, the version control system tries to merge all modifications automati-
cally. Only if two (or more) authors have modified the same line, the modifica-
tions cannot be merged automatically, but the user has to resolve this “conflict”
by deciding manually, which of the two changes should be kept. Authors can
also comment their modifications so that the co-authors can easily understand
the workflow of this file. As version control systems generally communicate over
the internet (e.g. through TCP/IP connections), they can be used from different
computers with internet connection.2 The internet is only used for synchronis-
ing the files. Hence, a permanent internet connection is not required. The only
drawback of a version control system could be that a it has to be installed and
configured.3

2. A restrictive firewall policy might prevent the version control system from connecting to the
internet. In this case, the network administrator has to be asked to open the appropriate port.
3. A version control system is useful even if a single user is working on a project. First, the
user can track (and possibly revoke) all previous modifications. Second, this is a convenient way
to have a backup of the files on other computers (e.g. on the version control server). Third, this
allows the user to easily switch between different computers (e.g. office, laptop, home).

2

3 The Version Control System Subversion

At our department, we decided to use the open source version control system
Subversion [26]. This software is considered as an improvement of the popu-
lar version control system CVS. The Subversion (SVN) version control system is
based on a central Subversion server that hosts the “repositories”.4 Each user
has a local “working copy” of (a part of) a remote “repository”. For instance,
users can “update” changes from the repository to their working copy, “commit”
changes from their own working copy to the repository, or (re)view the differ-
ences between working copy and repository.

To set up a Subversion version control system, the Subversion server software
has to be installed on a (single) computer with permanent internet access.5 It can
run on many Unix, modern MS Windows, and Mac OS X platforms.

Users do not have to install the Subversion server software, but a Subversion
client software. This is the unique way to access the “repositories” on the server.
Besides the basic Subversion command-line client, there are several Graphical
User Interface Tools (GUIs) and plug-ins for accessing the Subversion server (see
[27]). Additionally, there are very good manuals about Subversion freely avail-
able on the internet (e.g. [3]).

At our department, we run the Subversion server on a GNU-Linux system,
because most Linux distributions include it. In this sense, installing, configuring,
and maintaining Subversion is a very simple task.

Most MS Windows users access the Subversion server by the TortoiseSVN
client [29], because it provides the most usual interface for common users. Linux
users usually use the Subversion command-line client or eSvn GUI [15] with
KDiff3 [7] for showing complex differences.

4. A Repository can be thought of as a library, where authors keep successive revisions of one
or more documents. The version control systems acts as the librarian between the author and the
repository. For instance, the authors can ask the librarian to get the latest version of their projects
or to commit a new version to the librarian. [5, modified]
5. If this computer has no static IP address, one can use a service like DynDNS [6] to be able to
access the server with a static hostname.

3

4 Hosting LATEX files in Subversion

On our Subversion server, we have one repository for a common texmf tree. Its
structure complies with the “TEX Directory Structure” guidelines (TDS, [21], see
figure 1). This repository provides LATEX classes, LATEX styles, and BibTEX styles

Figure 1: Common texmf tree shown in eSvn’s Repository Browser

that are not available in the LATEX distributions of the users, e.g. because they
were bought or developed for the internal use at our department. All users have a
working copy of this repository and have configured LATEX to use this as their per-
sonal texmf tree.6 If a new class or style file has been added (but not if these files
have been modified), the users have to update their “file name data base” (FNDB)

6. For instance, teTEX [8] users can edit their TEX configuration file (e.g.
/etc/texmf/web2c/texmf.cnf) and set the variable TEXMFHOME to the path of the working
copy of the common texmf tree (e.g. by TEXMFHOME = $HOME/texmf); MiKTEX [20] users can
add the path of the working copy of the common texmf tree in the “Roots” tab of the MiKTEX
Options.

4

before they can use these classes and styles.7 Furthermore, the repository con-
tains manuals explaining the specific LATEX software solution at our department
(e.g. this document).

The Subversion server hosts a separate repository for each project of our de-
partment. Although branching, merging, and tagging is less important for writ-
ing text documents than for writing source code for software, our repository
layouts follow the recommendations of [3]. In this sense, each repository has the
three directories /trunk, /branches, and /tags.

The most important directory is /trunk. If a single text document belongs
to the project, all files and subdirectories of this text document are in /trunk.
If the project yields two or more different text documents, /trunk contains a
subdirectory for each text document. A slightly different version (a branch) of a
text document (e.g. for presentation at a conference) can be prepared either in an
additional subdirectory of /trunk or in a new subdirectory of /branches. When
a text document is submitted to a journal or a conference, we create a tag in the
directory /tags so that it is easy to identify the submitted version of the document
at a later date. This feature has been proven very useful. When creating branches
and tags, it is important always to use the Subversion client (and not the tools of
the local file system) for these actions, because this saves disk space on the server
and it preserves information about the same history of these documents.

Often the question arises, which files should be put under version control.
Generally, all files that are directly modified by the user and that are necessary
for compiling the document should be included in the version control system.
Typically, these are the LATEX source code (*.tex) files (the main document and
possibly some subdocuments) and all pictures that are inserted in the document
(*.eps, *.jpg, *.png, and *.pdf files). All LATEX classes (*.cls), LATEX styles
(*.sty), BibTEX data bases (*.bib), and BibTEX styles (*.bst) generally should be
hosted in the repository of the common texmf tree, but they could be included in
the respective repository, if some (external) co-authors do not have access to the
common texmf tree. On the other hand, all files that are automatically created or
modified during the compilation process (e.g. *.aut, *.aux, *.bbl, *.bix, *.blg,
*.dvi, *.glo, *.gls, *.idx, *.ilg, *.ind, *.ist, *.lof, *.log, *.lot, *.nav,
*.out, *.pdf, *.ps, *.snm, and *.toc files) or by the (LATEX or BibTEX) editor

7. For instance, teTEX [8] users have to execute texhash; MiKTEX [20] users have to click on the
button “Refresh FNDB” in the “General” tab of the MiKTEX Options.

5

(e.g. *.bak, *.bib~, *.kilepr, *.prj, *.sav, *.tcp, *.tmp, *.tps, and *.tex~
files) generally should be not under version control, because these files are not
necessary for compilation and generally do not include additional information.
Furthermore, these files are regularly modified so that conflicts are very likely.

5 Subversion really makes the difference

A great feature of a version control system is that all authors can easily trace the
workflow of a project by viewing the differences between arbitrary versions of the
files. Authors are primarily interested in “effective” modifications of the source
code that change the compiled document, but not in “ineffective” modifications
that have no impact on the compiled document (e.g. the position of line breaks).
Software tools for comparing text documents (“diff tools”) generally cannot dif-
ferentiate between “effective” and “ineffective” modifications; they highlight both
types of modifications. This considerably increases the effort to find and review
the “effective” modifications. Therefore, “ineffective” modifications should be
avoided.

In this sense, it is very important not to change the positions of line breaks
without cause. Hence, automatic line wrapping of the users’ LATEX editors should
be turned off and line breaks should be added manually. Otherwise, if a single
word in the beginning of a paragraph is added or removed, all line breaks of
this paragraph might change so that most diff tools indicate the entire paragraph
as modified, because they compare the files line by line. The diff tools wdiff
[10] and dwdiff [11] are not effected by the positions of line breaks, because they
compare documents word by word.8 However, their output is less clear so that
modifications are more difficult to track.

A reasonable convention is to add a line break after each sentence and start
each new sentence in a new line.9 Furthermore, we split long sentences into

8. These tools cannot be used directly with the Subversion command-line switch --diff-cmd,
but a small wrapper script has to be used. [1]
9. This also has an advantage beyond version control: if you want to find a sentence in your
LATEX code that you have seen in a compiled (DVI, PS, or PDF) file or on a printout, you can easily
identify the first few words of this sentence and screen for these words on the left border of your
editor window.

6

several lines so that each line has at most 80 characters,10 because it is rather
inconvenient to search for (small) differences in long lines. We find it very useful
to introduce the additional line breaks at logical breaks of the sentence, e.g. before
a relative clause or a new part of the sentence starts. An example LATEX code that
is formatted according to these guidelines is the source code of this document,
which is available on PracTEX’s website.

There is also another important reason for reducing the number of “ineffec-
tive” modifications: if several authors work on the same file, the probability that
the same line is modified by two or more authors at the same time increases with
the number of modified lines. Hence, “ineffective” modifications unnecessarily
increase the risk of conflicts (see section 2).

Furthermore, version control systems allow a very effective quality assurance
measure: all authors should critically review their own modifications before they
commit them to the repository (see figure 2). The differences between the user’s
working copy and the repository can be easily inspected with a single Subversion
command or with one or two clicks in a graphical Subversion client. Furthermore,
authors should verify that their code can be compiled flawlessly before they com-
mit their modifications to the repository. Otherwise, the co-authors have to pay
for these mistakes when they want to compile the document. However, this direc-
tive is not only reasonable for version control systems but also for all other ways
to interchange documents among authors.

Subversion has a feature called “Keyword Substitution” that includes dy-
namic version information about a file (e.g. the revision number or the last author)
into the contents of the file itself [3, chapter 3]. Sometimes, it is useful to include
these information not only as a comment in the LATEX source code, but also in
the (compiled) DVI, PS, or PDF document. This can be achieved with the LATEX
packages svn [16], svninfo [2], or svn-multi [19] (preferably).

The most important directives for collaborative writing of LATEX documents
with version control systems are summarised in box 1.

10. For instance, the LATEX editor Kile [14] can assist the user in this task when it is configured to
add a vertical line that marks the 80th column.

7

Figure 2: Reviewing modifications in KDiff3

6 Bibliography

Writing of scientific articles, reports, and books requires the citation of all relevant
sources. BibTEX is an excellent tool for citing references and creating bibliogra-
phies [17, 9]. Many different BibTEX styles can be found on CTAN [23] and on the
LATEX Bibliography Styles Database [12]. If no suitable BibTEX style can be found,
most desired styles can be conveniently assembled with custombib/makebst [4].
Furthermore, BibTEX style files can be created or modified manually; however
this action requires knowledge of the (unnamed) postfix stack language that is
used in BibTEX style files [18].

At our department, we have a common bibliographic data base in the BibTEX
format (.bib file). It resides in our common texmf tree (see section 4) in the subdi-
rectory /bibtex/bib/ (see figure 1). Hence, all users can specify this bibliography

8

1. Avoid “ineffective” modifications.

2. Do not change line breaks without good reason.

3. Turn off automatic line wrapping of your LATEX editor.

4. Start each new sentence in a new line.

5. Split long sentences into several lines so that each line has at
most 80 characters.

6. Put only those files under version control that are directly mod-
ified by the user.

7. Verify that your code can be compiled flawlessly before commit-
ting your modifications to the repository.

8. Use Subversion’s diff feature to critically review your modifica-
tions before committing them to the repository.

9. Add a meaningful and descriptive comment when committing
your modifications to the repository.

10. Use the Subversion client for copying, moving, or renaming
files and folders that are under revision control.

Box 1: Directives for using LATEX with version control systems

by only using the file name (without the full path) — no matter where the user’s
working copy of the common texmf tree is located.

All users edit our bibliographic data base with the graphical BibTEX editor
JabRef [24]. As JabRef is written in Java, it runs on all major operating systems.
As different versions of JabRef generally save files in a slightly different way (e.g.
by introducing line breaks at different positions), all users should use the same
(e.g. last stable) version of JabRef .11

11. Otherwise, there would be many differences between different versions of .bib files that
solely originate from using different version of JabRef . Hence, it would be hard to find the real
differences between the compared documents. Furthermore, the probability of conflicts would be
much higher (see section 5).

9

JabRef is highly flexible and can be configured in many details. We make the
following changes to the default configuration of JabRef to simplify our work.
First, we specify the default pattern for BibTEX keys so that JabRef can automati-
cally generate keys in our desired format. This can be done by selecting Options
→ Preferences → Key pattern and modifying the desired pattern in the field
Default pattern. For instance, we use [auth:lower][shortyear] to get the last
name of the first author in lower case and the last two digits of the year of the
publication (see figure 3).

Figure 3: Specify default key pattern in JabRef

Second, we add the BibTEX field location for information about the location,
where the publication is available as hard copy (e.g. a book or a copy of an article).
This field can contain the name of the user who has the hard copy and where he
has it or the name of a library and the shelf-mark. This field can be added in
JabRef by selecting Options → Set up general fields and adding the word
location (using the semicolon (;) as delimiter) somewhere in the line that starts

10

with General: (see figure 4).

Figure 4: Set up general fields in JabRef

Third, we put all PDF files of publications in a specific subdirectory in our file
server, where we use the BibTEX key as file name. We inform JabRef about this
subdirectory by selecting Options → Preferences → External programs and
adding the path of the this subdirectory in the field Main PDF directory (see
figure 5). If a PDF file of a publication is available, the user can push the Auto
button left of JabRef’s Pdf field to automatically add the file name of the PDF
file. Now, all users who have access to the file server can open the PDF file of a
publication by simply clicking on JabRef’s PDF icon.

If we send the LATEX source code of a project to a journal, publisher, or some-
body else who has no access to our common texmf tree, we do not include our
entire bibliographic data base, but extract the relevant entries with the Perl script
aux2bib [13].

7 Conclusion

This paper describes a possible way to efficiently organise the collaborative prepa-
ration of scientific LATEX documents. The presented solution is based on the
Subversion version control system and several other software tools and LATEX
packages. However, there are still a few issues that can be improved.

11

Figure 5: Specify “Main PDF directory” in JabRef

First, we plan that all users install the same LATEX distribution. As the “TEX
Live” distribution [28] is available both for Unix and MS Windows operating sys-
tems, we might recommend our users to switch to this LATEX distribution in the
future.12

Second, we consider to simplify the solution for a common bibliographic data
base. Currently it is based on the version control system Subversion, the graph-
ical BibTEX editor JabRef , and a file server for the PDF files of publications in
the data base. The usage of three different tools for one task is rather challenging
for infrequent users and users that are not familiar with these tools. Further-
more, the file server can be only accessed by local users. Therefore, we consider
to implement an integrated server solution like WIKINDX [30], Aigaion [22], or
refBASE [25]. Using this solution only requires a computer with internet access
and a web browser, which makes the usage of our data base considerably eas-
ier for infrequent users. Moreover, the stored PDF files are available not only

12. Currently, our users have different LATEX distributions that provide a different selection of
LATEX packages and different versions of some packages. We solve this problem by providing
some packages on our common texmf tree.

12

from within the department, but throughout the world.13 Even Non-LATEX users
of our department might benefit from a server-based solution, because it should
be easier to use this bibliographic data base in (other) word processing software
packages, because these servers provide the data not only in BibTEX format, but
also in other formats.

Based on this paper, I have created a “Wikibook” on this subject [31]. All
readers are encouraged to contribute to this book by adding further hints or ideas
or by providing further solutions to the problem of collaborative writing of LATEX
documents.

Acknowledgements

I thank Francisco Reinaldo and Géraldine Henningsen for comments and sug-
gestions that helped me to improve and clarify this paper, Karsten Heymann for
many hints and advices regarding LATEX and Subversion, and Christian Henning
as well as my colleagues for supporting my intention to establish LATEX and Sub-
version at our department.

References

[1] Mark James Adams. wdiff wrapper for svn. http://textsnippets.com/
posts/show/1033.

[2] Achim D. Brucker. LaTeX package ’svninfo’. http://www.ctan.org/
tex-archive/macros/latex/contrib/svninfo/.

[3] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version
Control with Subversion. O’Reilly Media, 2007. http://svnbook.red-bean.
com/.

[4] Patrick W. Daly. LaTeX package ’custom-bib’. http://www.ctan.org/
tex-archive/macros/latex/contrib/custom-bib/.

13. Depending on the copy rights of the stored PDF files, the access to the server — or least the
access to the PDF files — has to be restricted to members of the department.

13

http://textsnippets.com/posts/show/1033
http://textsnippets.com/posts/show/1033
http://www.ctan.org/tex-archive/macros/latex/contrib/svninfo/
http://www.ctan.org/tex-archive/macros/latex/contrib/svninfo/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://www.ctan.org/tex-archive/macros/latex/contrib/custom-bib/
http://www.ctan.org/tex-archive/macros/latex/contrib/custom-bib/

[5] Aidan Delaney. Writing academic papers using Latex and Subversion
(part 1). http://blogs.linux.ie/balor/2007/05/23/ [accessed 18-July-
2007], May 2007.

[6] Dynamic Network Services, Inc. DynDNS – dynamic DNS service. http:
//www.dyndns.com/.

[7] Joachim Eibl. KDiff3. http://kdiff3.sourceforge.net/.

[8] Thomas Esser. teTeX. http://www.tug.org/tetex/.

[9] Jürgen Fenn. Managing citations and your bibliography with BibTeX. The
PracTEX Journal, 4, 2006. http://www.tug.org/pracjourn/2006-4/fenn/.

[10] Free Software Foundation. wdiff. http://www.gnu.org/software/wdiff/.

[11] Gertjan P. Halkes. dwdiff. http://os.ghalkes.nl/dwdiff.html.

[12] Jean-Olivier Irisson. LaTeX bibliography styles database. http://jo.
irisson.free.fr/bstdatabase/.

[13] Vivek Khera. BibTeX tool ’aux2bib’. http://www.ctan.org/tex-archive/
biblio/bibtex/utils/bibtools/aux2bib, 1992.

[14] Kile Team. Kile – an integrated LaTeX environment. http://kile.
sourceforge.net/.

[15] Igor V. Kovalenko and Julien Dumont. eSvn – a cross-platform GUI frontend
for the Subversion revision system. http://zoneit.free.fr/esvn/.

[16] Richard Lewis. LaTeX package ’svn’. http://www.ctan.org/tex-archive/
macros/latex/contrib/svn/.

[17] Nicolas Markey. Tame the BeaST. the B to X of BibTeX. http://www.ctan.
org/tex-archive/info/bibtex/tamethebeast/ttb_en.pdf, 2005. Version
1.3.

[18] Oren Patashnik. Designing BibTeX styles. http://www.ctan.org/
tex-archive/info/biblio/bibtex/contrib/doc/btxhak.pdf [accessed 18-
July-2007], February 1988.

14

http://blogs.linux.ie/balor/2007/05/23/
http://www.dyndns.com/
http://www.dyndns.com/
http://kdiff3.sourceforge.net/
http://www.tug.org/tetex/
http://www.tug.org/pracjourn/2006-4/fenn/
http://www.gnu.org/software/wdiff/
http://os.ghalkes.nl/dwdiff.html
http://jo.irisson.free.fr/bstdatabase/
http://jo.irisson.free.fr/bstdatabase/
http://www.ctan.org/tex-archive/biblio/bibtex/utils/bibtools/aux2bib
http://www.ctan.org/tex-archive/biblio/bibtex/utils/bibtools/aux2bib
http://kile.sourceforge.net/
http://kile.sourceforge.net/
http://zoneit.free.fr/esvn/
http://www.ctan.org/tex-archive/macros/latex/contrib/svn/
http://www.ctan.org/tex-archive/macros/latex/contrib/svn/
http://www.ctan.org/tex-archive/info/bibtex/tamethebeast/ttb_en.pdf
http://www.ctan.org/tex-archive/info/bibtex/tamethebeast/ttb_en.pdf
http://www.ctan.org/tex-archive/info/biblio/bibtex/contrib/doc/btxhak.pdf
http://www.ctan.org/tex-archive/info/biblio/bibtex/contrib/doc/btxhak.pdf

[19] Martin Scharrer. LaTeX package svn-multi. http://www.ctan.org/
tex-archive/macros/latex/contrib/svn-multi.

[20] Christian Schenk. MiKTeX. http://www.miktex.org.

[21] TeX Users Group. A directory structure for TeX files. http://www.tug.org/
tds/tds.html [accessed 18-July-2007], 2004. version 1.1.

[22] The Aigaion Developers. Aigaion – a web based bibliography management
system. http://www.aigaion.nl/.

[23] The CTAN team. CTAN – The Comprehensive TeX Archive Network. http:
//www.ctan.org.

[24] The JabRef Developers. JabRef – an open source bibliography reference man-
ager. http://jabref.sourceforge.net/.

[25] The refBASE Developers. refBASE – web reference database. http://
refbase.sourceforge.net/.

[26] The Subversion developers. Subversion. http://subversion.tigris.org/.

[27] The Subversion developers. Subversion: Clients and plugins. http://
subversion.tigris.org/links.html.

[28] The TeX Live Developers. TeX Live. http://www.tug.org/texlive/.

[29] The TortoiseSVN developers. TortoiseSVN – a subversion client imple-
mented as a windows shell extension. http://tortoisesvn.tigris.org/.

[30] The WIKINDX Developers. WIKINDX. http://wikindx.sourceforge.net/.

[31] Wikibooks. Collaborative writing of LaTeX documents. http://en.
wikibooks.org/wiki/LaTeX/Collaborative_Writing_of_LaTeX_Documents.

[32] Wikipedia. List of revision control software. http://en.wikipedia.org/w/
index.php?title=List_of_revision_control_software&oldid=145420234
[accessed 19-July-2007], 2007.

15

http://www.ctan.org/tex-archive/macros/latex/contrib/svn-multi
http://www.ctan.org/tex-archive/macros/latex/contrib/svn-multi
http://www.miktex.org
http://www.tug.org/tds/tds.html
http://www.tug.org/tds/tds.html
http://www.aigaion.nl/
http://www.ctan.org
http://www.ctan.org
http://jabref.sourceforge.net/
http://refbase.sourceforge.net/
http://refbase.sourceforge.net/
http://subversion.tigris.org/
http://subversion.tigris.org/links.html
http://subversion.tigris.org/links.html
http://www.tug.org/texlive/
http://tortoisesvn.tigris.org/
http://wikindx.sourceforge.net/
http://en.wikibooks.org/wiki/LaTeX/Collaborative_Writing_of_LaTeX_Documents
http://en.wikibooks.org/wiki/LaTeX/Collaborative_Writing_of_LaTeX_Documents
http://en.wikipedia.org/w/index.php?title=List_of_revision_control_software&oldid=145420234
http://en.wikipedia.org/w/index.php?title=List_of_revision_control_software&oldid=145420234

	Introduction
	Interchanging Documents
	The Version Control System Subversion
	Hosting LaTeX files in Subversion
	Subversion really makes the difference
	Bibliography
	Conclusion

