
The PracTEX Journal
TPJ 2005 No 03, 2005-07-15
Rev. 2005-07-15

Strategies for including graphics in LATEX
documents

Klaus Höppner

Abstract

This article presents strategies for including graphics into LATEX documents.
It shows the usage of the standard graphics packages of LATEX as well as an in-
troduction to different graphics formats. Some external tools for converting
graphics formats are discussed.

1 Overview of graphics formats

In general, there exist two kinds of graphics formats: vector and bitmap graphics.
For bitmaps, there exist different flavors: no compression (which can make your
files truly huge, dependent on resolution and color depth, so I won’t cover them
from here on), compression methods which completely preserve the image quality
while reducing the data size, and “lossy” compression methods which cause a
consequent reduction in image quality.

So let’s go more into detail:

Vector graphics are set up by drawing or filling geometrical objects such as lines,
Bézier curves, polygons, circles and so on. The properties of these objects
are stored mathematically. Vector graphics are in general device indepen-
dent. It is easy to scale or rotate them without loss of quality, since the job of
rasterizing them into actual pixels is done by the printer or printer driver.

Bitmaps without lossy compression store the image information as pixels, each
pixel of a given color. In principle, the quality of a bitmap becomes better
with increased resolution and color depth (e. g. GIF files use a color depth of
8 bits, leading to 256 different indexed colors while a bitmap with 24 bit color
depth can have about 16 million colors). Scaling and rotating bitmap images
will yield a loss of quality, and printing bitmaps to a device with a different
resolution can produce bad results. Fig. 1 shows the difference between a
scaled image as vector and bitmap graphics.

Bitmaps with lossy compression use the fact that while the human eye is fairly
good at seeing small differences in brightness over a relatively large area, it is
not good at distinguishing brightness variations in a small area. Therefore,
the detail information in the latter case can be reduced, leading to smaller
file sizes. This works well for photographs that usually contain smooth tran-
sitions in color, but for graphics with a sharp border, artifacts can occur, as
shown in fig. 2. The most prominent graphics format using lossy compres-
sion is JPEG.

Figure 1: Zoomed view into a sample image as vector graphics (left) and bitmap
(right).

2

Figure 2: A low quality JPEG image
showing some artifacts at the transi-
tion between black and white.

2 Graphics formats in practice

There exist very many graphics formats, so I will concentrate on a few of those
most often used:

EPS is the encapsulated PostScript format. It is mostly used for vector graphics
but can also contain bitmaps.

PNG is the portable network graphics format. It was introduced due to the prob-
lem that Unisys claimed a patent for the compression algorithm used in GIF
format. For this reason, it is often used nowadays on web pages. PNG is
a bitmap format that supports compression both with and without loss of
image quality.

JPEG is a bitmap format with lossy compression and is often used for photographs
(e. g. most digital cameras produce JPEG files).

TIFF is a bitmap format sometimes used for high quality pictures—in part be-
cause it supports the CMYK color space important especially for commercial
printing.

Now the question is: What format shall I use for what purpose? Though there
is no one true answer to this question, my advice is as follows:

1. For drawings (e. g. technical drawings or data plots) use vector graphics. It
gives you maximum freedom to manipulate the image when including it into

3

a document where you often need to scale the image to fit into your layout.
Additionally, it is independent of the output device, and thus you can zoom
into the image in your document viewer without seeing single pixels.

Drawing tools offered by TEX distributions—notably PSTricks and META-
POST—can usually produce EPS output natively. Most vector drawing pro-
grams like xfig and Corel Draw also offer export functionality for producing
EPS output (though sometimes buggy).

2. If you are stuck with bitmaps, use PNG for images with sharp color transi-
tions, such as black and white boundaries.

3. For photographs, you can use JPEG in most cases, since the quality loss by
compression is normally imperceptible when printed. On most devices, a
resolution of 100 to 200 dpi will be sufficient (remember that screen resolu-
tion is normally about 75 to 100 dpi, and color printers claim to have high
resolutions but dither color prints, so you will hardly notice the difference
compared to JPEGs with higher resolution).

3 The LATEX graphics package

Since the introduction of LATEX 2ε, the graphics bundle is part of the standard
package set accompanying the LATEX base distribution [1]. It consists of two style
files, graphics.sty and graphicx.sty. While graphics.sty requires the use of
\scalebox and \rotatebox for scaling or rotating graphics, the extended style
graphicx.sty supports scaling and rotating using the keyval package, which pro-
vides a convenient interface for specifying parameters. In general, there is no rea-
son not to always use graphicx.sty.

So the first step is to load the graphicx style file after the \documentclass state-
ment:

\usepackage{graphicx}

In fact, the TEX compiler doesn’t know anything about graphics, and including
them is done by the DVI driver. So the graphicx package has to do two things:

1. find the bounding box of the image (this can be troublesome when you have
e. g. an EPS file created by an application that wrote a wrong BoundingBox

4

comment—in this case, it can be helpful to put the includegraphics com-
mand into an \fbox to find out what graphicx thinks about the bounding
box);

2. produce the appropriate \special for the output driver; thus, the usage of
the graphics bundle is driver dependent.

Nowadays, there are two main workflows for producing documents: using
latex to produce a DVI file and then dvips for converting it to PostScript, and
using pdflatex to produce a PDF file. Most modern TEX systems are configured
to automatically check whether you are using latex or pdflatex and producing
dvips \specials in the first case and the appropriate \pdfimage commands in the
second case. So if you are using one of the above workflows, you shouldn’t need
to specify your output backend explicitly. If you are using another backend you
have to specify it as an option, e. g.

\usepackage[dvipsone]{graphicx}

(for the Y&Y dvipsone driver), but be aware that other backends often don’t sup-
port scaling or rotating. For example, DVI previewers like xdvi or windvi try to
interpret the dvips specials, but rotations may not be displayed properly in DVI
preview.

After the package is loaded, to include an image simply use

\includegraphics{sample}

Please notice that no extension for the file was given. The explanation why will
follow later. In the case of using \includegraphics without options the image is
included at its natural size, as shown above. When using the graphicx style, you
can scale your image by a factor:

\includegraphics[scale=0.5]{sample}

\includegraphics[scale=1.2]{sample}

5

Another option supports rotating an image:

\includegraphics[angle=30]{sample}

\includegraphics[angle=-10]{sample}

Positive numbers lead to counterclockwise rotation, negative numbers to clock-
wise rotation. The origin for the rotation is the lower left corner of the image, so
in the clockwise rotation above the result has not only a height but also a depth
below the baseline (as shown by the rules).

Images can not only be scaled by a given factor, you can specify a height and/or
width for the resulting image instead:

\includegraphics[width=2cm]{sample}

\includegraphics[height=1.5cm]{sample}

height gives the height above the baseline. If your image has a depth, you can
use totalheight instead, i. e. the sum of height and depth will be scaled to the
given length.

\includegraphics[angle=-30,height=1cm]

{sample}

\includegraphics[angle=-30,

totalheight=1cm]{sample}

6

You can specify both width and height. In this case your image may be scaled
differently in horizontal and vertical direction, unless you use the keepaspectratio
option:

\includegraphics[width=1.5cm,height=1.5cm]

{sample}

\includegraphics[width=1.5cm,height=1.5cm,

keepaspectratio]{sample}

Please notice that usage of angle and width or height is sensitive to the order
in which the options are given. Specifying the angle first means that your image
is rotated first and then the rotated image is scaled to the desired width or height,
while specifying a width or height first will first scale the natural image and rotate
it afterwards.

4 Supported graphics formats

To make things a bit more complicated, latex with dvips and pdflatex support
different graphics formats:

latex+dvips: EPS

pdflatex: PDF, PNG, JPEG, MPS

Table 1 shows ways to convert the standard graphics formats to supported for-
mats. In particular, converting EPS graphics used with latex+dvips to PDF for
pdflatex workflow is quite easy; just run the epstopdf Perl script [2], which uses
Ghostscript to convert EPS to PDF. This conversion can be performed automati-
cally using Heiko Oberdiek’s epstopdf LATEX package [3] that calls the epstopdf

script on the fly when compiling the document.
This also explains why it is generally best to give the file names without ex-

tionsion in \includegraphics commands. In this case the graphics package look
for a supported graphics format automatically. So if you have an image both as

7

Source Target Tool

latex+dvips

EPS directly supported
PNG EPS ImageMagick/netpbm
JPEG EPS ImageMagick/netpbm
TIFF EPS ImageMagick/netpbm/tif2eps

pdflatex

PDF directly supported
EPS PDF epstopdf

PNG directly supported
JPEG directly supported
TIFF PNG ImageMagick/netpbm
TIFF PDF tif2eps+epstopdf

Table 1: Conversion of graphics formats supported by latex+dvips and pdflatex.

EPS and (e. g.) PDF, you can use both the latex+dvips and pdflatex workflows
without changing your source.

One other useful special case: including the output of METAPOST is also easy;
although it is technically an EPS file, it uses only a small set of commands. So
pdflatex can support the inclusion of METAPOST output directly. The only thing
you have to do is to change the file extension of the output file (e. g. .1) to .mps.

5 Tools for image conversion

There exist several tools for conversion of graphics formats, both free and commer-
cial. Besides free GUI-based tools like Gimp on Unix systems there are two com-
mand line tools available for Unix and Windows: ImageMagick [4] and netpbm [5].

ImageMagick can convert images directly, e. g. by typing

convert sample.gif sample.png

while netpbm uses the pnm format as intermediate format:

giftopnm sample.gif | pnmtopng - > sample.png

8

Another nice tool is tif2eps by Bogusław Jackowski et al. [6] which uses Ghost-
script to convert a TIFF file to EPS, e. g.

gs -- tif2eps.ps sample.tif sample.esp -rh

which produces a RLE compressed and hex encoded EPS file. In my experience
EPS files produced with tif2eps are smaller than those produced by ImageMag-
ick. Additionally it supports CMYK TIFF files smoothly.

6 Additional tools

There are many other helpful tools. I will mention two I use quite often.

6.1 overpic

is a LATEX package written by Rolf Niepraschk [7]. It includes an image into a LATEX
picture environment, giving you the opportunity to add new elements into the
image with normal LATEX picture commands. Fig. 3 shows a map overlaid with
symbols and text at some points. The source code for this picture looks like

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80
Windmühle

Mainzer Str.

7
Haus für

Industriekultur

A Fr
D

�
�

�
��

Figure 3: A map with additional
marks produced with overpic

9

\usepackage[abs]{overpic}

...

\begin{document}

\begin{overpic}[grid,tics=5]{map}

\put(32,74){\includegraphics[scale=.3]

{busstop.mps}}

\put(32,77){\llap{\scriptsize%

\colorbox{back}{Windm\"uhle}}}

\put(28,63){\small\textcolor{red}{%

\ding{55}}}

...

\put(17.5,11){\scriptsize\colorbox{back}%

{{\Pisymbol{ftsy}{65} Fr}}}

\put(6.3,13){\colorbox{back}%

{{\Pisymbol{ftsy}{68}}}}

\put(29.8,61.4){\color{blue}\vector(-1,-3){2}}

\put(38.6,63){\color{blue}\vector(1,3){2}}

\end{overpic}

\end{document}

6.2 potrace

is a tool to convert a pure black and white bitmap to vector graphics [8]. Fig. 4
shows a sample bitmap converted to a vector image.

Figure 4: Zoomed view: bitmap (left) converted to vector graphics (right)

10

References

[1] CTAN:macros/latex/required/graphics/

[2] CTAN:support/epstopdf/

[3] CTAN:macros/latex/contrib/oberdiek/epstopdf.sty

[4] http://www.imagemagick.org/

[5] http://netpbm.sourceforge.net/

[6] CTAN:support/pstools/tif2eps/

[7] CTAN:macros/latex/contrib/overpic/

[8] http://potrace.sourceforge.net/

[9] CTAN:info/epslatex/english/epslatex.pdf; a detailed document on includ-
ing EPS graphics with LATEX by Keith Reckdahl, focussed on dvips; quite old,
but still useful.

11

