
110 TUGboat, Volume 44 (2023), No. 1

Creating annotated Unicode-like font charts
Janusz S. Bień

Abstract
Printing annotated font tables in the layout following
the Unicode standard documentation is discussed.
Existing tools are presented and desirable but missing
features are proposed.

1 Unicode charts
In this article, we will discuss the primary Unicode
charts;1 the secondary charts describing the varia-
tion sequences, in particular those belonging to Ideo-
graphic Variation Database, are outside the scope of
our interest.

All the charts are produced with the Unibook
formatting software,2 supplied by ASMUS, Inc. (a
company owned by Asmus Freytag, Technical Vice
President of the Unicode Consortium from 1991 to
2007). A version of Unibook is available free of
charge (but with a rather complicated license); it is
used to prepare proposals of new characters, as well
as the full standard. The program runs on several
versions of MS Windows. The fonts used to print the
characters themselves in the charts come from many
sources and are not, in general, free in any sense.3

The charts proper are followed by various an-
notations. The source of annotations, at least in
principle, is the NamesList.txt4 file belonging to
the Unicode Character Database. Its header states:
This file is semi-automatically derived from Unicode-
Data.txt and a set of manually created annotations
using a script to select or suppress information from
the data file. The documentation of the format of
the file is provided.5 However, there are systematic
discrepancies between the content of the file and
the charts, so somewhere in the workflow additional
processing is performed.

As of the standard version 15.0, there are the fol-
lowing annotations used (examples are given later):

• Lines starting with • (U+2022 bullet) are just
comment lines.

• Lines starting with = (U+003D equals sign)
are alias lines.

• Lines starting with ※ (U+203B reference
mark) are formal alias lines.6

1 unicode.org/charts
2 unicode.org/unibook
3 unicode.org/charts/fonts.html
4 unicode.org/Public/UNIDATA/NamesList.txt
5 unicode.org/Public/UCD/latest/ucd/NamesList.html
6 Formal aliases are used for control characters, which have

no glyphs and official names. Another use is correcting name

• Lines starting with → (U+2192 rightwards
arrow) contain cross-references to related char-
acters.

• Lines starting with ≡ (U+2261 identical to)
are used for precomposed characters and contain
the list of characters which together compose
the character in question.7

• Lines starting with ≈ (U+2248 almost equal
to) are used for so-called compatibility charac-
ters8 and show the compatibility decomposition
of the character (this relation is defined by enu-
meration).

• Lines starting with ~ (U+007E tilde) describe
registered variation sequences.
The file also contain commands to control print-

ing titles, subtitles, block headers, various subheaders
and notices.

2 The fntsample tool and its extension
In 2007 Eugeniy Meshcheryakov (the original spelling
seems to be Евгений Мещеряков) released the first
version of the fntsample program.9 The tool was
developed for the DejaVu Fonts project.

The charts it generates resemble those of the
Unicode standard; see Fig. 1. In particular, they
include glyphs for the characters which are invisi-
ble by definition, such as ︀ (U+FE00 variation
selector-1), if the font contains them.

In 2013 a student of mine, Paweł Parafiński,
accepted the task to made the samples even more
similar to the Unicode charts by supplementing them
with annotations. He solved the problem in two steps.
First he created a parser for the NamesList.txt file
which converted it into simple XML. In the second
step he extended fntsample to print the additional
information from the XML file.

The program is orphaned, but the repositories
are still available;10 in particular, this allows report-
ing the issues. The most annoying problem is the
inability to break long character names. There was
also a problem with the parser, which was coded
in the now-obsolete Python 2. I managed to adapt
it to Python 3 (by trial and error, as I am not a
programmer).
mistakes; because of the stability principle, erroneous names
are not removed from the standard, but the correct names are
added as a formal alias.

7 Some characters ‘decompose’ into another single charac-
ter, but this is another story; the most well-known example
is U+212B angstrom sign, which ‘decomposes’ into U+00C5
latin capital letter a with ring above.

8 See en.wikipedia.org/wiki/Unicode_compatibility_
characters, for example.

9 github.com/eugmes/fntsample
10 Now at github.com/jsbien/fntsample-with-comments

and github.com/jsbien/ucd_xml_parser.

doi.org/10.47397/tb/44-1/tb136bien-unichart

Janusz S. Bień

https://unicode.org/charts
https://unicode.org/unibook
https://unicode.org/charts/fonts.html
https://unicode.org/Public/UNIDATA/NamesList.txt
https://unicode.org/Public/UCD/latest/ucd/NamesList.html
https://en.wikipedia.org/wiki/Unicode_compatibility_characters
https://en.wikipedia.org/wiki/Unicode_compatibility_characters
https://github.com/eugmes/fntsample
https://github.com/jsbien/fntsample-with-comments
https://github.com/jsbien/ucd_xml_parser
https://doi.org/10.47397/tb/44-1/tb136bien-unichart


TUGboat, Volume 44 (2023), No. 1 111

Junicode Two Beta Regular

Supplementary Private Use Area-A

󰀀

󰀁

󰀂

󰀃

󰀄

󰀅

󰀆

󰀇

󰀈

󰀉

󰀊

󰀋

󰀌

󰀍

󰀎

󰀏

󰀐

󰀑

󰀒

󰀓

󰀔

󰀕

󰀖

󰀗

󰀘

󰀙

󰀚

󰀛

󰀜

󰀝

󰀞

󰀟

󰀡
F0000

F0001

F0002

F0003

F0004

F0005

F0006

F0007

F0008

F0009

F000A

F000B

F000C

F000D

F000E

F000F

F0010

F0011

F0012

F0013

F0014

F0015

F0016

F0017

F0018

F0019

F001A

F001B

F001C

F001D

F001E

F001F

F0021

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

A A

B B

C C

D D

E E

F F

F000 F001 F002 F003 F004 F005 F006 F007 F008 F009 F00A F00B F00C F00D F00E F00F

Figure 1: Output of
fntsample -f JunicodeTwoBeta-Regular.ttf
-i 0xf0000- -o sample.pdf

Unfortunately the parser ignores some elements
of the NamesList.txt file, as at the time of its design
they seemed not to be needed.

3 Frank Mittelbach’s unicodefonttable
Frank Mittelbach’s unicodefonttable package is avail-
able from CTAN and the usual distributions; its
source repository is github.com/frankmittelbach/
fmitex-unicodefonttable. It provides a LATEX
style file to include a font table in a document and,
an interactive standalone version to produce a font
table as a separate document. Tables can be sup-
plemented by block names and user captions; tables
can be limited to selected blocks.

The unicodefonttable package is implemented
using the fontspec package, which is an advantage, as
this allows using all font features which the package
supports. The source of the Junicode font manual [1],
typeset with X ELATEX, gives extensive examples of
the usage of font features with the fontspec package.11

They are also discussed in the manual [1, p. 13]:

11 github.com/psb1558/Junicode-font

Supplementary Private Use Area-A
0 1 2 3 4 5 6 7 8 9 A B C D E F

U+F0000 - F000F 󰀀 󰀁 󰀂 󰀃 󰀄 󰀅 󰀆 󰀇 󰀈 󰀉 󰀊 󰀋 󰀌 󰀍 󰀎 󰀏
U+F0010 - F001F 󰀐 󰀑 󰀒 󰀓 󰀔 󰀕 󰀖 󰀗 󰀘 󰀙 󰀚 󰀛 󰀜 󰀝 󰀞 󰀟
U+F0020 - F002F - 󰀡 - - - - - - - - - - - - - -

Figure 2: unicodefonttable output for plane 15 in
JunicodeTwoBeta-Regular.ttf

Many OpenType features produce different
outcomes depending on an index passed to
an application’s layout engine along with the
feature tag. Different applications have differ-
ent ways of entering this index: consult your
application’s documentation. Here, the index
is recorded in brackets after the feature tag.
Users of fontspec (with X ELATEX or LuaTEX)
should also be aware that fontspec indexes
start at zero while OpenType indexes start
at one. Therefore all index numbers listed in
this document must be reduced by one for use
with fontspec.

For referencing a specific value of a feature we fol-
low [1], e.g., cv02[1] means the feature cv02 (character
variant number 2) with the index 1; on the other
hand ss10 is an example of a feature (stylistic set
number 10) which does not require an index but
which is just on or off.

It is worth noting that fontspec, and hence also
unicodefonttable, if used with LuaLATEX, allow for the
little known “raw feature” -invisible,12 allowing
printing glyphs for characters which are invisible in
principle (mentioned earlier; see also, for example,
[3]) if the font contains them.13

Figure 2 shows the output of the following:
\displayfonttable

[range-start=F0000,range-end=FFFFF,
nostatistics,noheader,hex-digits=block]

{JunicodeTwoBeta-Regular.ttf}

4 David M. Jones’ STIX charts
The charts for the STIX fonts (OpenType Unicode
fonts for Scientific, Technical, and Mathematical
texts14) are typeset by David M. Jones with X ELATEX
from source generated by a Perl script. The principal
part of the charts has the same layout as the Unicode
charts, so this technique could be used to replace
fntsample (the additional part of the charts describes
the OpenType features, which is only indirectly re-
lated to the present paper). Figure 3 shows the page
for the Greek and Coptic block, starting at U+037.

12 github.com/latex3/luaotfload/issues/63
13 I learned this from the author; see github.com/

FrankMittelbach/fmitex-unicodefonttable/issues/5.
14 github.com/stipub and www.stixfonts.org

Creating annotated Unicode-like font charts

https://github.com/frankmittelbach/fmitex-unicodefonttable
https://github.com/frankmittelbach/fmitex-unicodefonttable
https://github.com/psb1558/Junicode-font
https://github.com/latex3/luaotfload/issues/63
https://github.com/FrankMittelbach/fmitex-unicodefonttable/issues/5
https://github.com/FrankMittelbach/fmitex-unicodefonttable/issues/5
https://github.com/stipub
https://www.stixfonts.org


112 TUGboat, Volume 44 (2023), No. 10370 Greek and Coptic 03FF

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

037

0́374

;
037E

038

΄
0384

0̈́385

Ά
0386

·
0387

Έ
0388

Ή
0389

Ί
038A

Ό
038C

Ύ
038E

Ώ
038F

039

ΐ
0390

Α
0391

Β
0392

Γ
0393

Δ
0394

Ε
0395

Ζ
0396

Η
0397

Θ
0398

Ι
0399

Κ
039A

Λ
039B

Μ
039C

Ν
039D

Ξ
039E

Ο
039F

03A

Π
03A0

Ρ
03A1

Σ
03A3

Τ
03A4

Υ
03A5

Φ
03A6

Χ
03A7

Ψ
03A8

Ω
03A9

Ϊ
03AA

Ϋ
03AB

ά
03AC

έ
03AD

ή
03AE

ί
03AF

03B

ΰ
03B0

α
03B1

β
03B2

γ
03B3

δ
03B4

ε
03B5

ζ
03B6

η
03B7

θ
03B8

ι
03B9

κ
03BA

λ
03BB

μ
03BC

ν
03BD

ξ
03BE

ο
03BF

03C

π
03C0

ρ
03C1

ς
03C2

σ
03C3

τ
03C4

υ
03C5

φ
03C6

χ
03C7

ψ
03C8

ω
03C9

ϊ
03CA

ϋ
03CB

ό
03CC

ύ
03CD

ώ
03CE

03D

ϐ
03D0

ϑ
03D1

ϒ
03D2

ϓ
03D3

ϔ
03D4

ϕ
03D5

ϖ
03D6

Ϙ
03D8

ϙ
03D9

Ϛ
03DA

ϛ
03DB

Ϝ
03DC

ϝ
03DD

Ϟ
03DE

ϟ
03DF

03E

Ϡ
03E0

ϡ
03E1

03F

ϰ
03F0

ϱ
03F1

ϴ
03F4

ϵ
03F5

϶
03F6

STIX Two Text Regular, Version 2.13 b169 9

Figure 3: A page from STIXTwoText-Regular.pdf
(headers and footers are omitted).

These charts use some additional conventions, e.g.,
red (grayscaled for print) is used for characters not
directly supported but synthesized by a Unicode-
aware shaping engine; this is shown with characters
U+03D3 and U+03D4 in the figure; U+0374 is another
example of a character which “decomposes” into (is
substituted by) another single character.15

At present neither the X ELATEX source nor the
Perl script are available publicly.16

15 github.com/stipub/stixfonts/issues/248
16 github.com/stipub/stixfonts/issues/247

5 Typesetting character annotations
Although in the Unicode standard the character an-
notations occur immediately after the relevant glyph
tables, it is not necessary to follow the standard in
this respect. Separately provided annotations can be
even more convenient.

Typesetting individual annotations in a way ap-
proximating the Unicode charts is not difficult. After
some research I decided to use xltabular, which han-
dles multipage tables (unfortunately it doesn’t work
in a multicolumn environment). The examples in
figures 4–6 are typeset using code like this (show-
ing just the first line; formatting has been slightly
changed):
\begin{xltabular}{1.0\linewidth}%

{lll>{\raggedright}X}
0000 & &\multicolumn{2}{l}{<control>}\\
& & &※& NULL\\

The Unicode conventions can be used easily to
describe Private Use Area characters, e.g., those from
Medieval Unicode Font Initiative17 (other interesting
initiatives are CONSCRIPT18 and LINCUA19), or
from a specific font. Fig. 5 shows some examples.

The line format for the registered variation se-
quences can be easily adapted to tag variation se-
quences (see, for example, [2]) and font specific in-
formation, as shown in Fig. 6.

The information about the font can be skipped
when not needed.

6 Providing character annotations
In addition to the ttx program discussed later, the
other tool I know of to list font features in a human-
readable form is layout-features.py,20 but its simple
output does not contain the information needed for
our purposes (see Fig. 7).

In 2018 a feature request was submitted to the
fntsample repository entitled Suggestion: enable print-
ing glyphs not assigned to a unicode slot,21 but there
was no follow up. In 2021 a similar feature request
was made for unicodefonttable.22 The answer, in
my view correct, was that this should be a separate
project.

We focus here on discussing the annotations in
ttx’s XML form (but the fork of layout-features.py may

17 mufi.info
18 www.kreativekorp.com/ucsur
19 bit.ly/2XVTzRL-LINCUA
20 github.com/fonttools/fonttools/blob/

8ab6af03c89726cf80ca3c4b755ae1bd0038b5da/
Snippets/layout-features.py; see also
github.com/fonttools/fonttools/discussions/2873.

21 github.com/eugmes/fntsample/issues/11
22 github.com/FrankMittelbach/

fmitex-unicodefonttable/issues/2

Janusz S. Bień

https://github.com/stipub/stixfonts/issues/248
https://github.com/stipub/stixfonts/issues/247
https://mufi.info
https://www.kreativekorp.com/ucsur
https://bit.ly/2XVTzRL-LINCUA
https://github.com/fonttools/fonttools/blob/8ab6af03c89726cf80ca3c4b755ae1bd0038b5da/Snippets/layout-features.py
https://github.com/fonttools/fonttools/blob/8ab6af03c89726cf80ca3c4b755ae1bd0038b5da/Snippets/layout-features.py
https://github.com/fonttools/fonttools/blob/8ab6af03c89726cf80ca3c4b755ae1bd0038b5da/Snippets/layout-features.py
https://github.com/fonttools/fonttools/discussions/2873
https://github.com/eugmes/fntsample/issues/11
https://github.com/FrankMittelbach/fmitex-unicodefonttable/issues/2
https://github.com/FrankMittelbach/fmitex-unicodefonttable/issues/2


TUGboat, Volume 44 (2023), No. 1 113

0000 <control>
※ null

0030 0 digit zero
~ 0030 FE00 0 short diagonal stroke form

0040 @ commercial at
= at sign

0104 Ą latin capital letter a with ogonek
≡ 0041 A 0328 ◌̨

2105 ℅ care of
≈ 0063 c 002F / 006F o

2B7A ⭺ leftwards triangle-headed arrow with double horizontal stroke
※ leftwards triangle-headed arrow with double vertical stroke

A7C1 ꟁ latin small letter old polish o
• used in Old Polish as a nasal vowel
→ 00F8 ø latin small letter o with stroke

Figure 4: Typesetting standard character annotations.

F1C8 ◌� combining abbreviation mark zigzag above curly form
• MUFI since v.2

E8AF � latin small ligature long s l with stroke
• MUFI in v.4 at E8DF, later moved to E8AF
• used in old Polish

F0001 󰀁 latin small letter a with stroke through terminal
• supported in Junicode Beta since Jun. 30, 2020
• used in old Polish
→ 0105 ą latin small letter a with ogonek
→ 2C65 ⱥ latin small letter a with stroke

Figure 5: Some examples from Unicode’s Private Use Area.

0062 b latin small letter b
~ supported in Junicode Beta since Aug. 25, 2022 with ss10 on: 0062 b E0070 p E0073 s

b old Polish b quadratum
0105 ą latin small letter a with ogonek

• Polish, Lithuanian, . . .
≡ 0061 a 0328 ◌̨
~ supported in Junicode Beta since Jun. 30, 2020:

0104 ą cv02[1] 󰀁 latin small letter a with stroke through terminal
Figure 6: Adapting output to tag variation sequences.

also be considered). How to process this information
further is another question outside the scope of this
note. One possible approach is to continue the work
on the fntsample fork. Another possibility is to use
XSLT to convert to LATEX (running under X ETEX or
LuaTEX); this is a general recommendation of David
Carlisle, the author of xmltex.23

The Unicode standard is updated every year, so
we need a way to handle the update conveniently.
Conversion to XML with Parafiński’s parser, after

23 tex.stackexchange.com/questions/562856

some minor improvements of the program, seems a
satisfactory solution.

In the Private Use Area, the updates to Me-
dieval Unicode Font Initiative recommendation, for
example, don’t have a stable specific form. The data,
e.g., as prepared for Parafiński’s program, have to
be updated by hand.

One way to extract the interesting information
from the font which seems to be worth consideration

Creating annotated Unicode-like font charts

https://tex.stackexchange.com/questions/562856


114 TUGboat, Volume 44 (2023), No. 1

Table: GSUB
Script: DFLT

Language: default
Feature: aalt

Lookups: 0,1
Feature: c2sc

Lookups: 204
...

Feature: ccmp
Lookups: 50,53,55,56,57,58,59,60,61,...

Feature: cv01
Lookups: 110

Feature: cv02
Lookups: 111

...

Figure 7: Some of the output from
layout-features.py JunicodeTwoBeta-Regular.ttf

consists of using the ttx plain text format of Open-
Type/TrueType fonts produced by the program of
the same name.24

To make the output more human readable, by
default ttx uses the character names from the file
UnicodeData.txt belonging to the Unicode Char-
acter Database. There is, however, an option to
provide a different file for the data. One occasion for
this is a new version of the standard which has not
yet migrated to the relevant software libraries. The
second, more important for us, is to provide names
of the PUA characters, including MUFI, prepared
already in the appropriate format by Rebecca G.
Bettencourt25 (updates are probably needed).

OpenType/TrueType fonts consist of several
tables and subtables, which ttx converts to XML
(in the examples below, the formatting is slightly
changed). Variation and tag sequences are repre-
sented in the same way as other ligatures. For ex-
ample, in NotoSans-Regular.ttf the slashed zero
variation sequence (surprisingly few fonts support
this variation sequence), stored in the GSUB (Glyph
Substitution) table, looks like this:
<GSUB>

<Version value="0x00010000"/>
...
<LookupList>

<!-- LookupCount=43 -->
<Lookup index="2">

...
<!-- SubTableCount=1 -->
<LigatureSubst index="0" Format="1">

<LigatureSet glyph="zero">
<Ligature components="uniFE00"

glyph="zero.slash"/>

24 github.com/fonttools/fonttools; see also [4, p. 22].
25 kreativekorp.com/charset/PUADATA/PUBLIC/MUFI

</LigatureSet>
</LigatureSubst>

</Lookup>
...

</LookupList>
</GSUB>

To discover what uniFE00 definitively means,
we consult the cmap (Character to Glyph Index Map-
ping) table:
<cmap>
<tableVersion version="0"/>
<cmap_format_4 platformID="0" platEncID="3"

language="0">
...

<map code="0xfe00" name="uniFE00"/>
<!-- VARIATION SELECTOR-1 -->

</cmap_format_4>
...

</cmap>

The comments are provided by the ttx program.
As for zero.slash, we can use the auxiliary

table GlyphOrder produced by ttx to find the font
slot number of the character:

<GlyphOrder>
<!-- The 'id' attribute is only for humans;

it is ignored when parsed. -->
...
<GlyphID id="2581" name="zero.slash"/>
...

</GlyphOrder>

The slot number can be used to typeset the
character; in X ETEX the appropriate command is
\XeTeXglyph.26

Let’s now consider another example, namely
b quadratum from the Junicode font mentioned above.
The tag sequence is active only when stylistic set 10
is selected, so the ligature has to be embedded in the
appropriate FeatureElement:
<GSUB>

<Version value="0x00010000"/>
...
<FeatureList>

<!-- FeatureCount=155 -->
...
<FeatureRecord index="140">

<FeatureTag value="ss10"/>
<!-- Character Entities

for Combining Marks -->
<Feature>

<FeatureParamsStylisticSet>
<Version value="0"/>

26 This was kindly pointed out to me by Ulrike
Fischer on the X ETEX mailing list (tug.org/pipermail/
xetex/2022-October/028105.html). [Editor’s note: For
LuaTEX, some Lua code can achieve the same result; see
tex.stackexchange.com/questions/120736.]

Janusz S. Bień

https://github.com/fonttools/fonttools
https://kreativekorp.com/charset/PUADATA/PUBLIC/MUFI
https://tug.org/pipermail/xetex/2022-October/028105.html
https://tug.org/pipermail/xetex/2022-October/028105.html
https://tex.stackexchange.com/questions/120736


TUGboat, Volume 44 (2023), No. 1 115

<UINameID value="256"/>
<!-- Entities -->

</FeatureParamsStylisticSet>
<!-- LookupCount=3 -->
...
<LookupListIndex index="2"

dopiskivalue="71"/>
</Feature>

</FeatureRecord> ...
</FeatureList>
<LookupList>

<!-- LookupCount=234 -->
...
<Lookup index="71">

<LookupType value="4"/>
<LookupFlag value="16"/>

<!-- useMarkFilteringSet -->
<!-- SubTableCount=1 -->
<LigatureSubst index="0" Format="1">

...
<LigatureSet glyph="b">

<Ligature components="e.tag,n.tag"
glyph="b.enlarged"/>

<Ligature components="p.tag,l.tag"
glyph="b.p02"/>

<Ligature components="p.tag,s.tag"
glyph="b.p01"/>

</LigatureSet>
...

</LigatureSubst>
<MarkFilteringSet value="1"/>

</Lookup> ...
</LookupList>

</GSUB>

In general the glyph selection can depend on a
script, a language, and user-selected features, which
make the font structure quite complicated. A pro-
gram intended to extract all the information about
a font has to take everything into account.

7 Final remark
I hope this note will provide inspiration to a reader
or readers with appropriate skills and in some future
we will see a tool for printing annotated font tables
in a nice fashion.

References
[1] P. Baker. Junicode — the font for medievalists.

specimens and user manual for version 2, 2022.
github.com/psb1558/Junicode-font/

[2] J.S. Bień. Representating Parkosz’s alphabet in
the Junicode font. TUGboat 43(3):247–251, 2022.
tug.org/TUGboat/tb43-3/tb135bien-parkosz.pdf

[3] M. Davis, K. Whistler. Default ignorable issues.
L2/02-368, 2002. unicode.org/L2/L2002/
02368-default-ignorable.pdf

[4] Y. Haralambous. Fonts & Encodings. From
Advanced Typography to Unicode and Everything in
Between. O’Reilly Media, 2007.

� Janusz S. Bień
Warsaw, Poland
jsbien (at) uw.edu.pl
sites.google.com/view/jsbien
ORCID 0000-0001-5006-8183

TUGboat, Volume 44 (2023), No. 1 115

Production notes
Karl Berry

Almost all of the characters in Janusz’s article could
be typeset with no particular trouble. But two needed
special attention: the character 󰀁 (U+F0001 latin small
letter a with stroke through terminal) and the
visible glyph ︀ (U+FE00 variation selector-1).

For the former, X ELATEX has no problems typeset-
ting U+F0001 from the Junicode font:
\newfontfamily{\Junicode}

{JunicodeTwoBeta-Regular.ttf} % for XeTeX
\newcommand{\sgl}[1]

{{\Junicode #1}}
\newcommand{\Fzerosone}{\sgl{...}}

However, I wanted to use LuaLATEX to typeset the
article, because its support for microtype’s font expan-
sion feature avoided several overfull lines, and it typeset
some other character. It turns out (github.com/latex3/
luaotfload/issues/244) that setting the HarfBuzz ren-
dering mode is what’s needed. (This is not the default
in lualatex, even though it uses the luahbtex engine.)
% For LuaTeX:
\newfontfamily{\Junicode}

[Renderer=HarfBuzz]{JunicodeTwoBeta-Regular.ttf}

For the latter character: ordinarily, Unicode pre-
scribes that variation selectors are invisible, but a few
fonts also provide a visible glyph; the one here (found
by Janusz) is from NotoSansManichaean-Regular.ttf,
following what is printed in the Unicode font charts.

X ELATEX could handle this with its \XeTeXglyph
primitive, which can be used to typeset any glyph from a
font, whether mapped to an input character or not; in this
case, \XeTeXglyph 58. (The ttx program can be used
to discern such internal information in any OpenType or
TrueType font.)

For LuaLATEX, however, it was necessary both to use
the Base rendering mode, and a bit of Lua code devised
by Henri Menke (thank you Henri, and thank you search
engines), which emulates many X ETEX primitives in
LuaTEX (gist.github.com/hmenke/6e8ff7c90a5e5df3
c4895f60059a2ef7):
\ifx\undefined\XeTeXglyph % LuaTeX case:

\def\XeTeXglyph{%
\directlua{...}}%

\fi
\newfontfamily{\NSM}

[Renderer=Base]{NotoSansManichaean-Regular.ttf}
\newcommand{\VSone}{{\NSM\XeTeXglyph 58}}

Happy Unicode typesetting.

� Karl Berry
github.com/TeXUsersGroup

doi.org/10.47397/tb/44-1/tb136prod

https://github.com/psb1558/Junicode-font/
https://tug.org/TUGboat/tb43-3/tb135bien-parkosz.pdf
https://unicode.org/L2/L2002/02368-default-ignorable.pdf
https://unicode.org/L2/L2002/02368-default-ignorable.pdf

	Unicode charts
	The fntsample tool and its extension
	Frank Mittelbach's unicodefonttable
	David M. Jones' STIX charts
	Typesetting character annotations
	Providing character annotations
	Final remark

