
TUGboat, Volume 43 (2022), No. 3 351

LaTeX2Nemeth and the amsmath package
Andreas Papasalouros, Antonis Tsolomitis

1 Introduction
LaTeX2Nemeth is a software package written in Java that converts LATEX files written in the
UTF-8 encoding to Braille using the Nemeth standard for mathematics. It has supported more
than 800 mathematics symbols up to now and a great amount of mathematics structures from
simple exponents to multiline equation arrays.

Recently the project attracted the attention of the TEX development fund, and additional
support was given to cover the American Mathematical Society (AMS) packages and extended
Unicode mathematics support, including all symbols found in unimath-symbols.pdf, to the
extent that this is possible by the structure of the Nemeth standard.

The current version of latex2nemeth found on CTAN incorporates these additions. If
something fails to work and is neither described here nor is a capability of the AMS packages
that has only a visual effect (and hence irrelevant to the blind), it should be considered a bug,
and it should be reported to the authors as such.

As for languages, it supports the Latin alphabet (so English is supported in grade1 Braille)
and it also supports the Greek language, both monotonic and polytonic.

2 Extended Unicode mathematics support
All symbols in Will Robertson’s unimath-symbols.pdf file are supported with the exception
of the symbols found in the table at the end of the article. We found no way to support those
in the Nemeth standard. If someone knows how to support them we will gladly add them.
Please contact us in such a case.

The unsupported symbols listed at the end of the article (in Section 13) are only 95 out
of the 2441 symbols found in unimath-symbols.pdf. So more than 96% of the symbols are
supported. In practice the number is even higher, since out of those unsupported symbols, the
ones at the beginning of the table that are used to compose large operators or delimiters are
either irrelevant to the blind (such as the pieces of the parenthesis) or both irrelevant to the
blind and unsupported by xelatex/lualatex, such as the pieces that compose large integrals
or sums.

3 Support for the amsmath package
Most structures of the amsmath package are supported. Unsupported features are those ir-
relevant to the blind (things that have only visual interest), for example options that set the
placement of tags (e.g., centertags), and the commands provided by the amscd and amsxtra
packages.

3.1 Displayed equations
All of the environments below are supported:

equation equation* align align*
gather gather* alignat alignat*
multline multline* flalign flalign*
split

Let us take an example from the AMS documentation. The code
𝑎1 = 𝑏1 + 𝑐1 (1)
𝑎2 = 𝑏2 + 𝑐2 − 𝑑2 + 𝑒2 (2)

will produce
⠁⠼⠂⠐ ⠨⠅ ⠃⠼⠂⠐⠬⠉⠼⠂⠐ ⠷⠼⠂⠾
⠁⠼⠆⠐ ⠨⠅ ⠃⠼⠆⠐⠬⠉⠼⠆⠐⠤⠙⠼⠆⠐⠬⠑⠼⠆⠐ ⠷⠼⠆⠾
Notice that latex2nemeth will always use the number indicator ⠼ before a number even if the
Nemeth standard allows its absence in some cases, as in indices, to save space. Also notice

doi.org/10.47397/tb/43-3/tb135papasalouros-amsmath

LaTeX2Nemeth and the amsmath package

352 TUGboat, Volume 43 (2022), No. 3

that commands that modify the spacing (like \multlinegap) are not supported as they are of
no use for the blind and embossers.

Another example taken from the amsmath documentation is

𝐻𝑐 =
1
2𝑛

𝑛
∑
𝑙=0

(−1)𝑙(𝑛 − 𝑙)𝑝−2 ∑
𝑙1+⋯+𝑙𝑝=𝑙

𝑝

∏
𝑖=1

(𝑛𝑖
𝑙𝑖
)

⋅ [(𝑛 − 𝑙) − (𝑛𝑖 − 𝑙𝑖)]𝑛𝑖−𝑙𝑖 ⋅ [(𝑛 − 𝑙)2 −
𝑝

∑
𝑗=1

(𝑛𝑖 − 𝑙𝑖)2].
(3)

with code
\begin{equation}\label{e:barwq}\begin{split}
H_c&=\frac{1}{2n} \sum^n_{l=0}(-1)^{l}(n-{l})^{p-2}

\sum_{l _1+\dots+ l _p=l}\prod^p_{i=1} \binom{n_i}{l _i}\\
&\quad\cdot[(n-l)-(n_i-l _i)]^{n_i-l _i}\cdot

\Bigl[(n-l)^2-\sum^p_{j=1}(n_i-l _i)^2\Bigr].
\end{split}\end{equation}
works and will give
⠷⠼⠂⠾⠠⠓⠰⠉⠐ ⠨⠅ ⠹⠼⠂⠌⠼⠆⠝⠼⠨⠠⠎⠩⠝⠣⠇ ⠨⠅
⠼⠴⠻⠷⠤⠼⠂⠾⠘⠇⠐⠷⠝⠤⠇⠾⠘⠏⠤⠼⠆⠰⠨⠠⠎⠩⠇⠰⠰⠼⠂⠰⠬⠄⠄⠄
⠬⠇⠰⠰⠏⠰ ⠨⠅ ⠇⠨⠠⠏⠩⠏⠣⠊ ⠨⠅ ⠼⠂⠻⠷⠝⠰⠊⠐⠩⠇⠰⠊⠐⠾
⠡⠈⠷⠷⠝⠤⠇⠾⠤⠷⠝⠰⠊⠐⠤⠇⠰⠊⠐⠾⠈⠾⠘⠝⠘⠰⠊⠘⠤⠇⠘⠰⠊⠐⠡⠈
⠠⠷⠷⠝⠤⠇⠾⠘⠼⠆⠐⠤⠨⠠⠎⠩⠏⠣⠚ ⠨⠅ ⠼⠂⠻⠷⠝⠰⠊⠐⠤⠇⠰⠊⠐⠾⠘⠼⠆⠐⠈⠠⠾⠲
where we added some line breaks by hand to help typeset the Braille dots for this article.

The “-ed” environments such as aligned and cases etc are also supported (notice that
\(and \) are supported as well as single dollar signs, and \[and \] as well as double dollars):

Code TEX
$$ P_{r-j}=\begin{cases}

0& \text{if $r-j$ is odd},\\
r!\,(-1)^{(r-j)/2}&

\text{if $r-j$ is even}.
\end{cases}
$$

𝑃𝑟−𝑗 = {0 if 𝑟 − 𝑗 is odd,
𝑟! (−1)(𝑟−𝑗)/2 if 𝑟 − 𝑗 is even.

Braille
⠠⠏⠰⠗⠤⠚⠐ ⠨⠅
⠠⠨⠷⠼⠴ ⠊⠋ ⠗⠤⠚ ⠊⠎ ⠕⠙⠙ ⠠ ⠠
⠠⠨⠷⠗⠖ ⠷⠤⠼⠂⠾⠷⠗⠤⠚⠾⠌⠼⠆⠐ ⠊⠋
⠗⠤⠚ ⠊⠎ ⠑⠧⠑⠝ ⠲⠠

3.2 Display interruption
\intertext (as well as \shortintertext, from mathtools) is supported:
Code:
\begin{align}
A_1&=N_0(\lambda;\Omega')-\phi(\lambda;\Omega'),\\
A_2&=\phi(\lambda;\Omega')-\phi(\lambda;\Omega),\\
\intertext{and}
A_3&=\mathcal{N}(\lambda;\omega).
\end{align}

TEX:
𝐴1 = 𝑁0(𝜆; Ω′) − 𝜙(𝜆;Ω′), (4)
𝐴2 = 𝜙(𝜆;Ω′) − 𝜙(𝜆;Ω), (5)

Andreas Papasalouros, Antonis Tsolomitis

TUGboat, Volume 43 (2022), No. 3 353

and

𝐴3 = 𝒩(𝜆; 𝜔). (6)

Braille:

⠠⠁⠼⠂⠐ ⠨⠅ ⠠⠝⠼⠴⠐⠷⠨⠇⠢⠨⠠⠺⠄⠾⠤⠨⠋⠷⠨⠇⠢⠨⠠⠺⠄⠾⠠
⠠⠁⠼⠆⠐ ⠨⠅ ⠨⠋⠷⠨⠇⠢⠨⠠⠺⠄⠾⠤⠨⠋⠷⠨⠇⠢⠨⠠⠺⠾⠠
⠁⠝⠙ ⠠⠁⠼⠒⠐ ⠨⠅ ⠈⠰⠠⠝⠷⠨⠇⠢⠨⠺⠾⠲

3.3 Equation numbering
Equation numbering with the standard \label and \ref mechanism is supported as well as
with \eqref. Commands that modify the style of the references (such as a change of fonts)
make no sense for the blind and are not supported.

4 Miscellaneous mathematical features
4.1 Matrices
Matrix environments as well as \hdotsfor are supported

Code TEX output Braille
$$ \begin{matrix} a&b&c&d\\

e&\hdotsfor{3} \end{matrix}$$
𝑎 𝑏 𝑐 𝑑
𝑒

⠁ ⠃ ⠉ ⠙
⠑ ⠄⠄⠄⠄⠄

Small matrices (smallmatrix) too:
Code TEX output Braille

$\bigl(\begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)$

(𝑎 𝑏
𝑐 𝑑) ⠠⠷

⠁ ⠃
⠉ ⠙
⠠⠾

Parenthesized matrices (pmatrix), as well as bmatrix and Bmatrix too:
Code TEX output

$$\begin{pmatrix}
D_1t&-a_{12}t_2&\dots&-a_{1n}t_n\\
-a_{21}t_1&D_2t&\dots&-a_{2n}t_n\\
\hdotsfor[2]{4}\\
-a_{n1}t_1&-a_{n2}t_2&\dots&D_nt
\end{pmatrix}$$

⎛⎜⎜⎜
⎝

𝐷1𝑡 −𝑎12𝑡2 … −𝑎1𝑛𝑡𝑛
−𝑎21𝑡1 𝐷2𝑡 … −𝑎2𝑛𝑡𝑛
. .
−𝑎𝑛1𝑡1 −𝑎𝑛2𝑡2 … 𝐷𝑛𝑡

⎞⎟⎟⎟
⎠

Braille
⠠⠷⠠⠙⠼⠂⠐⠞ ⠤⠁⠼⠂⠆⠐⠞⠼⠆⠐ ⠄⠄⠄ ⠤⠁⠼⠂⠝⠐⠞⠝⠐⠠⠾
⠠⠷⠤⠁⠼⠆⠂⠐⠞⠼⠂⠐ ⠠⠙⠼⠆⠐⠞ ⠄⠄⠄ ⠤⠁⠼⠆⠝⠐⠞⠝⠐⠠⠾
⠠⠷⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠠⠾
⠠⠷⠤⠁⠝⠼⠂⠐⠞⠼⠂⠐ ⠤⠁⠝⠼⠆⠐⠞⠼⠆⠐ ⠄⠄⠄ ⠠⠙⠝⠐⠞ ⠠⠾

4.2 Math spacing commands
Math spacing commands are irrelevant to the blind so they are ignored. However, a warning
will be printed on standard output about unknown math symbols.

4.3 Dots
All dot commands \dotsc, \dotsb, \dotsm, \dotsi, and \dotso are supported.

4.4 Nonbreaking dashes
Nonbreaking dashes are irrelevant to the blind so they are ignored.

LaTeX2Nemeth and the amsmath package

354 TUGboat, Volume 43 (2022), No. 3

4.5 Accents in math
All accents are supported but commands related to better positioning of the accents are irrel-
evant to the blind.

̂̂𝐴 is $\hat{\hat{A}}$ and gives ⠠⠁⠣⠸⠣⠣⠸⠣

4.6 Roots
Any kind of root is supported but \leftroot and \uproot are irrelevant to the blind and
ignored.

𝛽√𝑘 is $\sqrt[\leftroot{-2}\uproot{2}\beta]{k}$ and gives ⠣⠨⠃⠜⠅⠻

4.7 Boxed formulas
Boxes around formulas are irrelevant to the blind and ignored. However, the contents of
\boxed will be transcribed provided that the whole \boxed command is inside math mode.
So $\boxed{x=1}$ will work, but \boxed{x=1} will fail (although LATEX works with both).

4.8 Over and under arrows
All over and under arrows are supported. For example,

𝑥⃮ is \underleftarrow{x} and gives ⠭⠩⠫⠪⠒⠒⠻

4.9 Extensible arrows
\xleftarrow and \xrightarrow are supported:

𝐴
𝑛+𝜇−1
←−−−− 𝐵

𝑛±𝑖−1
−−−−→

𝑇
𝐶 is $A\xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1}C$ and

gives ⠠⠁⠫⠪⠒⠒⠣⠝⠬⠨⠍⠤⠼⠂⠻⠠⠃⠫⠒⠒⠕⠩⠠⠞⠣⠝⠬⠤⠊⠤⠼⠂⠻⠠⠉

4.10 Affixing symbols to other symbols
\overset, \underset, and \overunderset are supported:

∗
Γ Γ

∘

∗
Γ
∘
is $\overset{*}{\Gamma}$

$\underset{\circ}{\Gamma}$ $\overunderset{*}{\circ}{\Gamma}$
and gives ⠨⠠⠛⠣⠈⠼⠻ ⠨⠠⠛⠩⠨⠡⠻ ⠨⠠⠛⠩⠨⠡⠣⠈⠼⠻

4.11 Fractions and related constructions
4.11.1 The \frac, \dfrac, and \tfrac commands
All these commands are supported:

1
𝑛+2 ,

1
𝑛 + 2

, and 1
𝑛+2 which is

$\frac{1}{n+2}$, $\dfrac{1}{n+2}$, and $\tfrac{1}{n+2}$
gives ⠹⠼⠂⠌⠝⠬⠼⠆⠼⠂ ⠹⠼⠂⠌⠝⠬⠼⠆⠼⠂ ⠁⠝⠙ ⠹⠼⠂⠌⠝⠬⠼⠆⠼

Notice that display and text fractions have the same output as there is no reason to differentiate
them for the blind.

4.11.2 The \binom, \dbinom, and \tbinom commands
All these commands are supported:

2𝑘 − (𝑘1)2
𝑘−1 + (𝑘2)2

𝑘−2 is $2^k-\binom{k}{1}2^{k-1}+\binom{k}{2}2^{k-2}$
and gives ⠼⠆⠘⠅⠐⠤⠷⠅⠩⠼⠂⠾⠼⠆⠘⠅⠤⠼⠂⠐⠬⠷⠅⠩⠼⠆⠾⠼⠆⠘⠅⠤⠼⠆⠐

4.11.3 The \genfrac command
The \genfrac command relates only to visual issues so it is not supported.

4.12 Continued fractions
Continued fractions are supported using the \cfrac command. This is one of the few cases
where latex2nemeth produces two-dimensional output:

Andreas Papasalouros, Antonis Tsolomitis

TUGboat, Volume 43 (2022), No. 3 355

Code TEX output Braille

$$\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+\dotsb
}}}
$$

1
√
2 +

1
√
2 +

1
√
2 + ⋯

⠼⠂
⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒

⠼⠂
⠜⠼⠆⠻⠬⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒

⠼⠂
⠜⠼⠆⠻⠬⠒⠒⠒⠒⠒⠒⠒⠒

⠜⠼⠆⠻⠬⠄⠄⠄

4.13 Smash options
\smash is visual and ignored.

5 Delimiters
All sizing commands for delimiters are supported. Both \left and \right commands as well
as all variants of \big.

5.1 Vertical bar notations
All commands \lvert, \rvert, \lVert, \rVert are supported.

6 Operator names
6.1 Defining new operator names
\DeclareMathOperator and \DeclareMathOperator* are supported in the preamble. For
example, placing \DeclareMathOperator*{\Lim}{Lim} in the preamble allows for

Lim𝑛 which is \Lim_n and gives ⠠⠇⠊⠍⠩⠝
Moreover \operatorname and \operatorname* in math formulæ are supported.

In addition to the above, predefined operator names are supported:
lim←− which is \varprojlim and gives ⠇⠊⠍⠩⠫⠪⠒⠒⠻

6.2 \mod and relatives
\mod, \bmod, \pmod, \pod also work:

gcd(𝑛,𝑚 mod 𝑛); 𝑥 ≡ 𝑦 (mod 𝑏); 𝑥 ≡ 𝑦 mod 𝑐; 𝑥 ≡ 𝑦 (𝑑)

which is
$\gcd(n,m\bmod n);\quad x\equiv y\pmod b;
\quad x\equiv y\mod c;\quad x\equiv y\pod d$

gives
⠛⠉⠙⠷⠝⠠⠍ ⠍⠕⠙ ⠝ ⠾⠢ ⠭ ⠸⠇ ⠽⠷ ⠍⠕⠙ ⠃⠾⠢ ⠭ ⠸⠇ ⠽ ⠍⠕⠙ ⠉ ⠢ ⠭ ⠸⠇ ⠽ ⠷⠙⠾

7 The \text command
The \text command is supported. For example:

𝜕𝑠𝑓(𝑥) =
𝜕

𝜕𝑥0
𝑓(𝑥) for 𝑥 = 𝑥0 + 𝐼𝑥1.

which is
$$\partial_s f(x) = \frac{\partial}{\partial x_0} f(x)\quad
\text{for $x= x_0 + I x_1$.}
$$

gives
⠈⠙⠰⠎⠐⠋⠷⠭⠾ ⠨⠅ ⠹⠈⠙⠌⠈⠙⠭⠰⠼⠴⠐⠼⠋⠷⠭⠾ ⠋⠕⠗ ⠭ ⠨⠅ ⠭⠰⠼⠴⠐⠬⠠⠊⠭⠰⠼⠂⠐⠲

LaTeX2Nemeth and the amsmath package

356 TUGboat, Volume 43 (2022), No. 3

8 Integrals and sums
8.1 Multiline subscripts and superscripts
Work has been done to support multiline subscripts and superscripts. Again, let’s look at
examples from the AMS documentation:

Code TEX output Braille

$$\sum_{\substack{
0\le i\le m\\
0<j<n}}

P(i,j)
$$

∑
0≤𝑖≤𝑚
0<𝑗<𝑛

𝑃(𝑖, 𝑗)
⠨⠠⠎⠩⠼⠴ ⠐⠅ ⠚ ⠐⠅ ⠝⠩⠼⠴⠐⠅⠱⠊⠐⠅⠱⠍⠻⠠⠏⠷⠊⠠⠚⠾

Notice that the Braille substack is produced from bottom up. That is, 0 < 𝑗 < 𝑛 is
written first and then 0 ≤ 𝑖 ≤ 𝑚, as is typical in the Nemeth standard.

Code TEX output Braille

$$\sum_{\begin{subarray}{l}
i\in\Lambda\\ 0<j<n
\end{subarray}}

P(i,j)
$$

∑
𝑖∈Λ
0<𝑗<𝑛

𝑃(𝑖, 𝑗)
⠨⠠⠎⠩
⠊ ⠈⠑ ⠨⠠⠇
⠼⠴ ⠐⠅ ⠚ ⠐⠅ ⠝
⠠⠏⠷⠊⠠⠚⠾

Here we notice that since an array is used the output is two-dimensional.

8.2 The \sideset command
The \sideset command is supported. An example:

Code TEX output Braille

$$\sideset{}{'}
\sum_{n<k,\;\text{n odd}}

nE_n
$$

∑
′

𝑛<𝑘, 𝑛 odd
𝑛𝐸𝑛

⠐⠨⠠⠎⠩⠝ ⠐⠅ ⠅⠠ ⠝ ⠕⠙⠙ ⠘⠄⠐⠻⠝⠠⠑⠰⠝⠐

Another example:
Code TEX output Braille

$$\sideset{_*^*}{_*^*}\prod$$
∗

∗
∏

∗

∗

⠐⠰⠈⠼⠘⠈⠼⠐⠨⠠⠏⠰⠈⠼⠘⠈⠼⠐⠻

8.3 Placement of subscripts and limits
\limits and \nolimits are supported but \displaylimits is ignored as it is of no use to
the blind.

8.4 Multiple integral signs
Multiple integral signs are all supported:

∫⋯∫
𝐴

which is $$\idotsint\limits_A$$ gives ⠮⠄⠄⠄⠮⠩⠠⠁

9 Commutative diagrams
Commutative diagrams are not supported; they must be produced as tactile graphics.

10 Using math fonts
All \mathbf, \mathsf, \mathcal, \mathrm, \mathsf, \mathtt are supported.

11 A short guide for conversion to Braille and Nemeth
To convert TEX to Braille is impossible! There is a mathematical proof for this, but the short
reason is the macro capabilities of TEX. So you can not convert arbitrary code to Braille. But

Andreas Papasalouros, Antonis Tsolomitis

TUGboat, Volume 43 (2022), No. 3 357

on the other hand you do not want to either, because many things are done for visual results
that the blind do not need. So some minimal editing of the TEX file is unavoidable.

First, all pictures must be removed from the TEX file because pictures need another
procedure to produce tactile graphics. However, latex2nemeth supports pstricks. So if your
pictures are in the form
\begin{figure}[ht]
\begin{pspicture}(-2,-2)(2,3)
⟨ps picture commands⟩
\end{pspicture}
\caption{A picture}\label{mypic1}
\end{figure}

The program, while running, will:
• move the contents from \begin{pspicture} to \end{pspicture} to a separate file

in your working directory,
• leave a comment in place of the figure to “see figure label”,
• change all pstricks labels to Braille in the new picture files.

So while your file has been transcribed, you now have to modify the picture files it produced to
give them proper characteristics for the blind. This part is discussed below with an example.

Assume now that we have a file.tex without any pictures in it. We start by simplifying
the preamble. We should not have complicated macros. For example, running heads’ configu-
ration must be removed. It makes no sense for the blind. Customization of sections, chapter
heads, etc., make no sense and must be removed.

Any \tableofcontents or similar is also removed; this needs some explanation. Braille
files are not in a typeset format such as pdf files. They are simple text files. In order to predict
the page of, say, the chapter of a book one needs to know how many lines will be embossed per
page and how many braille characters per line. This information is not a standard. Embossers
have different settings and it is only the driver of the embosser that could know this informa-
tion. So a conversion program such as latex2nemeth cannot have access to such information.
This is one of the reasons that the output of the program is split into chapters— to give the
opportunity to the blind to organize in different folders (or to use tabs) the material of the book.

Latex2nemeth will not parse your \usepackage commands but will mostly ignore them.
\newtheorem and simple \newcommand (with or without arguments) are supported. Finally
the file must be in UTF-8 encoding. We now start the attempt to convert.

Run xelatex or lualatex in order to check that your file compiles and produces the
file.aux file which is needed for the references mechanism.

Now run
latex2nemeth file.tex file.aux

Most of the time the first run will fail. Typically the user has forgotten to remove visual
parts from the preamble. The program will inform you of the line and column of the problem
it encountered. Fix it and re-run the above command. After enough corrections of your .tex
file, the program will succeed. It will produce a .nemeth file for each chapter. These are plain
text Braille files but in UTF-16 encoding. We need to convert them to UTF-8 and then either
import them to LibreOffice for embossing or convert them to LibreOffice automatically.

Let’s see the manual procedure first. Conversion to UTF-8 can be done with iconv:
iconv -f utf-16 -t utf-8 file0.nemeth > file0-u8.txt

Now convert to a LibreOffice .odt file:
libreoffice --headless --convert-to odt file0-u8.txt >/dev/null

This will produce file0-u8.odt. LibreOffice has a builtin default for the font. But we need
a font that has Braille characters, such as DejaVu-Serif. So the final step is to open the .odt
file, select the whole text (Control-a) and change the font to DejaVu Serif. Save the file.

LaTeX2Nemeth and the amsmath package

358 TUGboat, Volume 43 (2022), No. 3

LibreOffice has a plugin called odt2braille. This plugin must be installed in order
to be able to drive the embosser. With the plugin installed, open the odt file and choose
File→Emboss.

The whole process can be automated by a simple script such as this
#!/bin/sh
#get a random name first of 8 chars
tmpdir=`cat /dev/urandom | tr -cd 'a-f0-9' | head -c 8`

#make a folder
mkdir $tmpdir

#get the base name of the file to convert
file=`basename "$1" .nemeth`

#convert nemeth from utf16 to utf8
iconv -f utf-16 -t utf-8 "$1" >$file.txt

#convert txt file to odt
libreoffice --headless --convert-to odt $file.txt >/dev/null

odt is setup with a bultin template for conversions
from text that uses Liberation Mono font.
we need DejaVu Serif. We change the font and repack
the odt file.
unzip -qq -d $tmpdir $file.odt
rm -f $file.odt
find $tmpdir -type f | xargs sed -i 's/Liberation Mono/DejaVu Serif/g'
(cd $tmpdir; zip -qq -r ../$file.odt .)

#cleanup
/bin/rm -rf $tmpdir $file.txt

11.1 Conversion of pictures
Now let us turn to pictures. This is most of the work because we have to replace all labels
in the picture with Braille (unless you used pstricks in which case the program automatically
transcribes the labels) and make new placement decisions, since the Braille is usually long and
will not fit in the original position of the label. The easy part is to make the picture lines
wider so they can be detected by the hands of the blind. All lines should vary from 1.2mm
minimum to 1.8mm. We can use this range to distinguish between logically different lines. For
example, suppose we want to graph the function 𝑓(𝑥) = 𝑥2 from −2 to 2. The original graph
may look like the one in Figure 1. The Braille for 𝑓(𝑥) = 𝑥2 is ⠋⠷⠭⠾ ⠨⠅ ⠭⠘⠼⠆ (we will
come to this soon). We will change the axis width to 1.2mm and the graph of the function to
1.8mm. Since the file will be a pdf file produced in a tactile printer on micro-capsule paper,
the Braille is not embossed. So we need to increase its character size to at least 24pt in order
to be readable. Moreover the font must be a font such as NewCMSans10-Book.otf so that the
Braille dots are for blind and not for sighted persons (as is the case with NewCM10-Book.otf).
So the final graph will be as in Figure 2.

Finally we need an easy way to get the labels into Braille if we used a system other than
pstricks for our graphics (e.g., tikz). An easy way, although time-consuming, is to use a
command-line script for this. Create a script, say l2n.sh, with contents:
#!/bin/bash
echo "\documentclass{article}\usepackage{amsfonts}\begin{document}" \

> ~/tmp/l2n.tex
echo "$1" >> ~/tmp/l2n.tex

Andreas Papasalouros, Antonis Tsolomitis

TUGboat, Volume 43 (2022), No. 3 359

𝑓(𝑥) = 𝑥2

Figure 1: The 𝑓(𝑥) = 𝑥2 function for sighted persons.

⠋⠷⠭⠾ ⠨⠅ ⠭⠘⠼⠆

Figure 2: The 𝑓(𝑥) = 𝑥2 function for the blind

echo "\end{document}" >> ~/tmp/l2n.tex
touch ~/tmp/l2n.aux
cd ~/tmp/
latex2nemeth l2n.tex l2n.aux 2>/dev/null
iconv -f utf-16 -t utf8 l2n0.nemeth

echo " "
rm -f l2n.tex l2n0.nemeth l2n.aux

Then on the command-line, to get the Braille string for 𝑓(𝑥) = 𝑥2 run this
sh l2n.sh "\$f(x)=x^2\$"

and copy the output to your picture file at the proper label place. Produce the pdf file as
you would normally (say with xelatex1 or lualatex) and proceed to the tactile printer with
micro-capsule paper. Pictures go as pdfs to tactile printers and the Braille text of the TEX
files go as odt files to embossers.

12 Implementation
Latex2nemeth is written in Java using the JavaCC compiler construction tool. Its design is
based on object-oriented techniques such as the Interpreter and Composite design patterns [1]
for the representation of mathematical expressions. In order to support spatial aligned struc-
tures, as in the case of the \cfrac command, a two-dimensional buffer is created for every
Braille expression, which is filled in a bottom-up fashion, so as to correctly calculate the dimen-
sions of containing boxes, for example, the width and height of numerator and denominator
in a fraction expression. In this way, a generic mechanism for two-dimensional structures was
implemented. However, in expressions such as fractions (command \frac) which can be ex-

1 You may need xelatex-unsafe if you are using pstricks

LaTeX2Nemeth and the amsmath package

360 TUGboat, Volume 43 (2022), No. 3

pressed in Nemeth code in both linear and two-dimensional arrangements, the current version
of the program only provides the linear form of the output.

13 Symbols included in unimath-symbols.pdf but unsupported in Nemeth

\arabicmaj 𞻰 arabic mathematical operator meem with hah with tatweel

\arabichad 𞻱 arabic mathematical operator hah with dal

\inttop ⌠ top half integral

\intbottom ⌡ bottom half integral

\varhexagonlrbonds ⌬ six carbon ring, corner down, double bonds lower right etc

\lparenuend ⎛ left parenthesis upper hook

\lparenextender ⎜ left parenthesis extension

\lparenlend ⎝ left parenthesis lower hook

\rparenuend ⎞ right parenthesis upper hook

\rparenextender ⎟ right parenthesis extension

\rparenlend ⎠ right parenthesis lower hook

\lbrackuend ⎡ left square bracket upper corner

\lbrackextender ⎢ left square bracket extension

\lbracklend ⎣ left square bracket lower corner

\rbrackuend ⎤ right square bracket upper corner

\rbrackextender ⎥ right square bracket extension

\rbracklend ⎦ right square bracket lower corner

\lbraceuend ⎧ left curly bracket upper hook

\lbracemid ⎨ left curly bracket middle piece

\lbracelend ⎩ left curly bracket lower hook

\vbraceextender ⎪ curly bracket extension

\rbraceuend ⎫ right curly bracket upper hook

\rbracemid ⎬ right curly bracket middle piece

\rbracelend ⎭ right curly bracket lower hook

\intextender ⎮ integral extension

\harrowextender ⎯ horizontal line extension (used to extend arrows)

\sumtop ⎲ summation top

\sumbottom ⎳ summation bottom

\sqrtbottom ⎷ radical symbol bottom

\lvboxline ⎸ left vertical box line

Andreas Papasalouros, Antonis Tsolomitis

TUGboat, Volume 43 (2022), No. 3 361

\rvboxline ⎹ right vertical box line

\elinters ⏧ electrical intersection

\blocklefthalf ▌ left half block

\blockrighthalf ▐ right half block

\circlelefthalfblack ◐ circle, filled left half [harvey ball]

\circlerighthalfblack ◑ circle, filled right half

\circlebottomhalfblack ◒ circle, filled bottom half

\circletophalfblack ◓ circle, filled top half

\circleurquadblack ◔ circle with upper right quadrant black

\blackcircleulquadwhite ◕ circle with all but upper left quadrant black

\blacklefthalfcircle ◖ left half black circle

\blackrighthalfcircle ◗ right half black circle

\invwhiteupperhalfcircle ◚ upper half inverse white circle

\invwhitelowerhalfcircle ◛ lower half inverse white circle

\ularc ◜ upper left quadrant circular arc

\urarc ◝ upper right quadrant circular arc

\lrarc ◞ lower right quadrant circular arc

\llarc ◟ lower left quadrant circular arc

\lrblacktriangle ◢ lower right triangle, filled

\llblacktriangle ◣ lower left triangle, filled

\ulblacktriangle ◤ upper left triangle, filled

\urblacktriangle ◥ upper right triangle, filled

\squareleftblack ◧ square, filled left half

\squarerightblack ◨ square, filled right half

\squareulblack ◩ square, filled top left corner

\squarelrblack ◪ square, filled bottom right corner

\triangleleftblack ◭ up-pointing triangle with left half black

\trianglerightblack ◮ up-pointing triangle with right half black

\squareulquad ◰ white square with upper left quadrant

\squarellquad ◱ white square with lower left quadrant

\squarelrquad ◲ white square with lower right quadrant

\squareurquad ◳ white square with upper right quadrant

\circleulquad ◴ white circle with upper left quadrant

\circlellquad ◵ white circle with lower left quadrant

\circlelrquad ◶ white circle with lower right quadrant

\circleurquad ◷ white circle with upper right quadrant

\ultriangle ◸ upper left triangle

\urtriangle ◹ upper right triangle

\lltriangle ◺ lower left triangle

LaTeX2Nemeth and the amsmath package

362 TUGboat, Volume 43 (2022), No. 3

\lrtriangle ◿ lower right triangle

\quarternote ♩ music note (sung text sign)

\eighthnote ♪ eighth note

\twonotes ♫ beamed eighth notes

\iinfin ⧜ incomplete infinity

\laplac ⧠ square with contoured outline

\downtriangleleftblack ⧨ down-pointing triangle with left half black

\downtrianglerightblack ⧩ down-pointing triangle with right half black

\squaretopblack ⬒ square with top half black

\squarebotblack ⬓ square with bottom half black

\squareurblack ⬔ square with upper right diagonal half black

\squarellblack ⬕ square with lower left diagonal half black

\diamondleftblack ⬖ diamond with left half black

\diamondrightblack ⬗ diamond with right half black

\diamondtopblack ⬘ diamond with top half black

\diamondbotblack ⬙ diamond with bottom half black

\mttzero 𝟶 mathematical monospace digit 0

\mttone 𝟷 mathematical monospace digit 1

\mtttwo 𝟸 mathematical monospace digit 2

\mttthree 𝟹 mathematical monospace digit 3

\mttfour 𝟺 mathematical monospace digit 4

\mttfive 𝟻 mathematical monospace digit 5

\mttsix 𝟼 mathematical monospace digit 6

\mttseven 𝟽 mathematical monospace digit 7

\mtteight 𝟾 mathematical monospace digit 8

\mttnine 𝟿 mathematical monospace digit 9

References
[1] E. Gamma, R. Helm, et al. Design Patterns: Elements of Reusable Object-oriented Software.

Addison-Wesley, Boston, MA, USA, 1994.

⋄ Andreas Papasalouros
University of the Aegean
Department of Mathematics
832 00 Karlovassi
Samos, Greece
http://www.samos.aegean.

gr/math/andpapas/cv_en.html

⋄ Antonis Tsolomitis
University of the Aegean
Department of Mathematics
832 00 Karlovassi
Samos, Greece
http://myria.math.aegean.gr/~atsol

Andreas Papasalouros, Antonis Tsolomitis

