254

Interactive content using TEX4ht
Richard Koch

Abstract

TEX4ht converts IMTEX source into web pages. This
article explains how to add interactive content to
these pages, using TEX4ht and straightforward copy-
ing from web sources. The techniques should work

on all computer platforms. Some refinements to the
TEX4ht methods are also discussed.

1 Introduction

Let me begin with three vignettes.

I started attending TUG conferences in 2001,
and along with expected talks there were a few sur-
prises. In 2005, an expert from England predicted
that TEX would survive for four more years and then
be replaced. He was teaching in the Open Univer-
sity system where students work remotely, and he
wanted to include interactive content in his lectures.
I thought the talk was nonsense. Then COVID hit.

The 2004 Practical TEX conference was held at
Fisherman’s Wharf in San Francisco, and included a
talk by Ernest Prabhakar, an Apple engineer. After
that talk, Prabhakar met with Mac users and others
including Hans Hagen, all sitting around a large
conference table. Hans was trying to convince Apple
to allow Java programs to run in their pdf viewer so
interactive elements could be added. I sat next to
Prabhakar and got to see how he operates. He was
fully engaged in the conversation, but simultaneously
he was surfing the web—the fastest surfer I have
ever seen. Eventually he said to Hans, “It appears
to me that you are the only one in the world writing
Java in pdf files.”

I'm one of those users who updates TEX Live
daily while drinking my morning coffee. Sometime
in 2022 I noticed that tex4ht was on every day’s
update list. So I wrote the TEX Live mailing list
asking that this bug be fixed. To my surprise, I was
told that the updates were genuine; Michal Hoftich,
who maintains TEX4ht, makes updates almost daily.

2 PDF and HTML fifteen years later

The Fisherman’s Wharf conference was 18 years ago,
and some issues are clearer with the passage of time.
Today every computer platform has excellent soft-
ware to display pdf files, and every computer plat-
form has an up-to-date web browser. It seems clear
that pdf is the right format for static documents,
and that html is the right format for documents with
interactive content. Other formats may emerge, but
that will only happen if an activity cannot be sup-

Richard Koch

doi.org/10.47397/tb/43-3/tb13bkoch-tex4ht

TUGhboat, Volume 43 (2022), No. 3

ported by pdf or html. (Although pdf has facilities
for interactivity, they are rather infrequently used
compared to interactive html.)

3 A TeXShop detour

I wrote TeXShop, a front end for TEX on the Mac-
intosh. TeXShop is relevant here only because it
explains how I was led to reexamine TEX4ht.

Typesetting in TeXShop is controlled by “engine
files”, small shell scripts that users can edit which call
TEX binaries. After typesetting, an engine searches
the source directory for a pdf file with the same
name as the source and opens it in a pdf preview
window if found. This August I added code which
searches for an html file with the same name as
the source, and opens it in an active web window if
found. These windows are created using the Cocoa
programming APIs, so they are part of TeXShop
rather than external Mac applications like Preview
and Safari.

With this change, it is easy to “typeset” html
files. Similarly, it is easy to support PreTEXt, a
project where authors write xml source and then
convert the source to pdf, html, and other formats.

So it was natural to try TEX4ht, which accepts
a IWTEX source file and outputs html (among other
things). TeXShop now has a typesetting engine
which typesets the source twice, once with TEX4ht
and once with pdflatex. The TEX4ht output is
opened in a web viewer and the pdf output is opened
in a pdf preview.

I had seen demonstrations of TEX4ht given by
Eitan Gurari, the original author of TEX4ht. Indeed
at that 2004 conference at Fisherman’s Wharf, Prab-
hakar’s talk was immediately followed by a talk by
Gurari on TEX4ht. At the time, TEX4ht was out-
putting mathematics using pictures, and the results
were a little crude.

In the years since then, MathML was invented,
and then MathJax was created and provided beau-
tiful rendering of MathML code. TEX4ht adopted
these technologies.

I selected a 20-page set of lecture notes, with
extensive mathematical equations and many illus-
trations. The document used hyperref, amsmath,
and other packages. I typeset it with TEX4ht, pro-
ducing html. Typesetting was fast —and the html
output was amazing! The mathematical equations
were crisp and clear, the illustrations were fine; to
tell the truth, I doubted that I was seeing html. As
a test, I resized both windows. The text in the pdf
window shrank since the pdf had been configured
to “fit in window”. The text in the html window
reflowed.

https://doi.org/10.47397/tb/43-3/tb135koch-tex4ht

TUGboat, Volume 43 (2022), No. 3

4 Interactive content

TEX4ht therefore allows you to convert old and new
IMTEX static documents into web documents. But
can you add interactive content to these documents?
Yes, as this article will demonstrate.

Select an old document you have lying around
the house. You'll be able to add interaction to it
by the end of the next two sections. Don’t typeset
immediately because a couple of steps are needed.
Both are given in these two sections.

First we need a method to write source code
which will only appear in the html version of the
document. The following code does the trick:

\ifx\HCode\undefined

% source for pdf document
\else

<!-- source for html document -->
\fi

The \HCode tested here is a command that appears
only in TEX4ht. Some web documents recommend
the ifpdf package, but that fails when typesetting
with XHTEX.

Next, we need to switch from writing ITEX
code to writing html code which TEX4ht will insert
verbatim into the final document without processing.
The following code suffices:

\ifx\HCode\undefined
% source for pdf document
\else
Initial words for html document.
\begin{html}
<!-- direct html input -->
\end{html}
\fi

Finally we need something interactive. We’ll
use a piece of SageMath code, which is explained in
a later section. Putting all this together, add the
following lines to your document, creating a new
section in the web version.

\ifx\HCode\undefined
\else
\section{An Experiment}
\begin{html}
<div class="compute">
<script type="text/x-sage">
plot(sin(x), (x, 0, 2%pi))
</script></div>
\end{html}
\fi

Running this, we discover a minor problem. TEX4ht
does not understand the command \begin{html},
and your web browser does not understand the lines
calling Sage.

255

5 The header

To solve the problem, we must add the following
header immediately after \begin{document}, before
any other code is inserted. (The columns in TUGboat
are narrow; the long sagemath.org url below needs
to be on one line, and other source lines would usually
be combined. Also, the source for this article is
available from the article’s web page.)

\ifx\HCode\undefined

\else

% declare environment html:

\ScriptEnv{html}

{\ifvmode\IgnorePar\fi\EndP
\NoFonts\hfill\break}

{\EndNoFonts}

\fi

\ifx\HCode\undefined
\else
% following url needs to be on one line, sorry:
\begin{html}
<script src="https://sagecell.sagemath.org/
static/embedded_sagecell.js">
</script>
<script>
// Make div with id “mycell' being a Sage cell
sagecell .makeSagecell ({
inputLocation: ‘'#mycell',
template: sagecell.templates.minimal,
evalButtonText: 'Activate'l});
// Make div with class ~compute' a Sage cell
sagecell .makeSagecell ({

inputLocation: 'div.compute',
evalButtonText: 'Evaluate'l});
</script>
\end{html}

\fi

This header is divided into two parts, each pre-
ceded by an \HCode test so it is only active when
typeset by TEX4ht. The first defines \begin{html}
for TEX4ht. The second defines the Sage commands
for the browser. Notice that the second command is
also preceded by \begin{html} and thus is inserted
directly into the final html document.

Now your source document has everything re-
quired for interaction, so go ahead and typeset it
with TEX4ht. The recommended way to typeset is

make4ht sourcefile.tex "mathjax"

In the pdf version of the document, nothing
changed. The html version will contain an additional
section pictured below. Notice the button labeled
“Evaluate” (fig. 1). When this button is pushed, the
display changes to the form shown on the second
image (fig. 2).

Interactive content using TEX4ht

256
@® @) Fourier.html
< > URL: <
9 An Experiment
plot(sin(x), (x, @, 2%pi)) _)n] |
's
Evaluate

Figure 1: Sage Evaluate button and editable function.

[XN] Fourier.htm|
< > URL: Q
9 An Experiment
1 plot(sin(x), (x, 0, 2%pi)) _,.I |
4
Evaluate

Share

104

0.51

—-1.0 4

Help | Powered by SageMath

Figure 2: Original plot results.

But there’s more. The SageMath code shown in
both images is editable. If this entry is changed to
plot(log(x), (x, .1, 10))

a graph of the logarithm is plotted, and if it is
changed to

plot(sin(x) + cos(3*x)/2, (x, 0, 2*pi))

an alternate periodic function is plotted. Therefore
the four lines of code we added for Sage did not just
provide a plot of the sine function. It provided a

plotting machine which readers can use to plot any
function!

6 SageMath

SageMath is an open source alternative to the com-
puter algebra systems Magma, Maple, Mathemat-
ica, and MATLAB. The project was created by
William Stein, a mathematician at the University of
Washington, and first released on February 24, 2005.

Richard Koch

TUGhboat, Volume 43 (2022), No. 3

See sagemath.org and wiki.sagemath.org. Sage
is mostly written in Python, but it integrates many
previous open source projects written in C, Lisp, and
Fortran. Among these are Gap, Macaulay, Maxima,
Octave, and R. The program has been used for se-
rious research on elliptic curves, finite groups, and
many other areas, and has an active support group.

Although the Sage web site has install packages
for major computer platforms, our use of Sage does
not depend on installing SageMath, either for the au-
thor or for the reader on the web. Instead, Sage main-
tains a server which can run Sage over the web. See
https://sagecell.sagemath.org and other links
from that page for details.

Our previous Sage example contains a single
line to plot a function. However, that line can be
replaced by an arbitrary Sage program, which can
be several pages long. We list several examples. All
of these examples come from web pages at the Sage
site; I have just copied and pasted code by others.

Here are two examples of calls to Sage:
\begin{html}
<div class="compute">
<script type="text/x-sage">
x, y = var('x,y")
plot3d(sin(x~2 - y~2), (x,-2, 2), (y,-2,2))
</script></div>
\end{html}
and
\begin{html}
<div class="compute">
<script type="text/x-sage">
u,v = var('u,v')

fx = (3+sin(v)+cos(u))*cos(2*v)
fy = (3+sin(v)+cos(u))*sin(2*v)
fz = sin(u)+2*cos(v)

parametric_plot3d([fx, fy, fz], (u, 0, 2xpi),
(v, 0, 2xpi), frame=False, color="red")

</script></div>

\end{html}

The output from executing these commands is shown

on the next page (fig. 3). However, this (pdf) article

doesn’t show the most amazing thing. If these objects

are grabbed with the mouse, they rotate and magnify

instantly in real time.

For the mathematically inclined, I’ll show two
more examples on the next page, without giving
the Sage code, which can be found on various Sage
web sites. Figure 4 illustrates numerical integration.
The function can be set by the reader, the number
of division points can be set, and the algorithm
determining the top of each rectangle can use the
value of the function at the left, right, or middle, or
the maximum or minimum value. Since Sage can
integrate symbolically, the exact value of the integral

https://sagemath.org
https://wiki.sagemath.org
https://sagecell.sagemath.org

TUGDboat, Volume 43 (2022), No. 3

Using Sage in 3D

‘Type your own Sage below and click Evaluate.
1 x, y =var('x,y")
2 plotad(sin(x*2 - y*2), (x,-2, 2), (y,-2,2)) 'f_’l ‘
Evaluate

Share

Help | Powered by SageMath

A Sage Computation
Type your own Sage ion below and click Evaluate.
1 u,v =var('uv')
2 fx = (3+sin(v)+cos(u))¥cos (2#v) Pl

3 fy = (3+sin(v)+cos(u))*sin(2kv)
4 fz = sin(u)+2*cos(v)
5 parametric_plot3d([fx, fy, fz], (u, 0, 2%pi), (v, 0, 2+pi), frame=False, color="red")

Evaluate

Share

Figure 3: Two fancy plots, which in html output can
be transformed in real time.

is shown at the bottom, and finally the numerical
approximation is computed and shown.

In figure 5 the Taylor series of a function selected
by the user is computed, and both the function and
its approximation are plotted.

7 YouTube videos

Did you know that if you right-click while playing a
YouTube video, a contextual menu appears allowing
you to “copy embed code”, which can be pasted into
a web page?

I found a lecture by John Maynard, one of
the four Field’s Prize winners at the International
Congress of Mathematicians for 2022. It is fun to
watch this video for the depth and clarity of his

257

f sin(x%2) +2

Interval (0, 4)

Number of
boxes

Endpoint

Midpoint
rule oolnt €

Numerical integral with the Midpoint rule

3.0 1

2.5

2.0

0.5

0.5 10 15 2.0 25 3.0 35 4.0

b
/ f(z) dz = 8.747133844648115

4
Z F(z:) Az = 1-[£(0.50000) + £(1.5000) + £(2.5000) + £(3.5000)]
=
=1-[2.2474 + 2.7781 + 1.9668 + 1.6889]
= 8.68117858461376.

Help | Powered by SageMath

Figure 4: Numerical integration example with Sage.

*

order 6 @

f(x) = e sin(z)

fl@;0) = &a2b— L b+ 1ad— 22+ 2+ O(7)
104
0.8
0.6 1

0.44

0.2

Help | Powered by SageMath

Figure 5: Taylor series of a user-selected function.

mathematics. I confess that I also watched because
Maynard is left-handed and we lefties need to stick
together. I don’t understand a word of the code
which YouTube provided when I clicked, but I added
it to a TEX4ht source page and it worked. Figure 7
shows a frame of the video, and here is some of the
source code, as copied from YouTube:

\begin{html}

Interactive content using TEX4ht

13. Large gaps between primes in subsets - James Maynard (University of Oxford) [2...

..'\

Watch on (8 Youlube

Figure 6: Frame from YouTube video, playable live in
html output.

<iframe width="928" height="522"
src="https://www.youtube.com/embed/kQqBeuk_xQw"
title="13. Large gaps between primes ..."
frameborder="0"

allow="accelerometer; autoplay; ..."
allowfullscreen></iframe>

\end{html}

8 Mathematics

Often authors ask a question of readers and pro-
vide a multiple choice answer. If the reader answers
correctly, they are told to go to the next section; oth-
erwise new text appears explaining why their answer
was incorrect.

In a mathematical text, both the question and
the various answers will likely contain mathematical
formulas. But recall that the interactive material
is being written in html and inserted directly in
the final document without processing. Are authors
expected to write the mathematics in MathML? If
they write in IWTEX, TEX4ht cannot convert the code
to MathML because it doesn’t touch the author’s
html blocks.

The happy answer is that, with MathJax, au-
thors can directly write ITEX math, even inside
the verbatim {html} environment we’ve defined (be-
cause MathJax recognizes the math). There is one
caveat: normally, inline math can be specified by
either a pair of $ signs or a \(and \) pair, but
inside {html} and when using MathJax, \(...\)
must be used (or extra MathJax configuration speci-
fied). $...$ works fine with MathJax outside of our
{html} environment.

Display math can be defined by a pair of $$
signs or a \[and \] pair; both these forms work
inside {html}, with MathJax and otherwise.

\ifx\HCode\undefined
\else

Richard Koch

TUGDboat, Volume 43 (2022), No. 3

\section{New Experiment}
\begin{html}
<p>This sentence has bold
and <i>italic</i> text.</p>
<p>Also math: \(y = \sqrt{x"2 + 1}\) and
$$\int_0"\infty e {-x"2} \ dx =
{{\sqrt{\pi}} \over 2}$$</p>
\end{html}
\fi
Typeset and you will see the output below (right
margin has been truncated).

10 New Experiment

This sentence has bold and italic text.

Alsoy = v/z2 4 1 and
‘/weiﬁ d:t: ﬁ
0 2

But how is this possible, since source inside an “html
pair” is inserted directly in the output without pro-
cessing?

9 Calling TEX4ht

Originally TEX4ht output small pictures for inline
and displayed mathematics. Eitan Gurari unexpect-
edly died in 2009, and TUG paid him the ultimate
compliment by keeping his program alive. Now it is
actively maintained by Michal Hoftich.

Due to new developments in MathML and Math-
Jax, there are many ways to call TEX4ht when it is
asked to typeset. Let us concentrate on the three
most important methods.

Calling TEX4ht using the call

maked4ht source.tex "mathml"

causes TEX4ht to insert MathML code for inline and
display equations. This MathML is then rendered by
the browser.

Calling TEX4ht using the call

maked4ht source.tex "mathml,mathjax"

causes TEX4ht to insert MathML code for inline and
display equations, but call MathJax to render the
resulting code.

Calling TEX4ht using the call

make4ht source.tex "mathjax"

causes TEX4ht to insert IATEX code for inline and
display equations, and call MathJax to render the
resulting code.

Note that MathJax can render both MathML
and TEX code when it discovers equations in an
html document.

On my computer, mathematical rendering using
the first method is not as clear as rendering with
the other two methods. Integral signs are too small

TUGboat, Volume 43 (2022), No. 3

and there are other minor flaws. The first and third
methods understand IATEX input for interactive con-
tent, but the second does not. These experiments
suggest that the third method is the most desirable
for interactive code.

My initial experiments did not go well with
the third method. Inline equations were fine, but
displayed equations were rendered with static images.
Then one day I tried the alternate \ [notation rather
than $$ and everything worked. I reported this to
Michal, and the very next day he fixed TEX4ht so
both notations are rendered with MathJax. (The
ETEX developers do recommend \[. . .], by the way.)
Please update your TEX Live distribution and typeset
using the third method.

10 A MathJax perk

By now, perhaps you have typeset your own docu-
ment with TEX4ht and MathJax. Select an equation
and right click on it. A contextual menu opens offer-
ing to copy the equation to the clipboard as either
“MathML” or “TeX Commands”. Here’s a picture:

Theorem 4 (Fourier) If f(z) takes real values and we write

f(z) = L z‘/,., el 4 b, cin(kg))
2 = showMathAs >

Copy to Clipboard »| MathML Code
then
Math Settings [TeX Commands

= Accessibilit >
= l/ f() cos(kz) ccessibility : (@) SImKT)
TS

About MathJax

and MathJax Help

o= ; (ax — ibx)

Select “TeX Commands”, copy, and paste some-
where else. You will obtain the IMTEX code for the
equation. This code can be copied into any other
IMTEX source document.

This remarkably useful feature comes from Math-
Jax and is not available if you call TEX4ht using the
first method. Moreover, the menu will offer MathML
code, but not IMTEX code, if you call TEX4ht using
the second method. But the third method of calling

TEX4ht gives ITEX code.

11 Installing documents on the server

Suppose you typeset a document named Sample with
TEX4ht and produce Sample.html. How should this
file be put on a server? The answer is tricky be-
cause Sample.html itself will not contain any im-
ages, so any needed image files must be provided
separately. Moreover, TEX4ht generates a support
file Sample.css, which is also required.

Thus it is convenient to put all illustrations in
a folder, named (say) Graphics, and refer to these
illustrations in the KTEX source using the pattern
Graphics/plotl (BTEX will automatically look for
usual image extensions, using whichever is found).

259

Then the web server should contain Sample.html,
Sample.css, and the Graphics folder.

12 Using the work of other people

Nothing in this document comes from me. When I
discovered that TEX4ht produces completely accept-
able web pages, I wondered if it would accept html
code and send it unmodified to the html document.
I asked Karl Berry, who thought it was possible and
asked Michal Hoftich. Michal sent the method de-
scribed here, but I didn’t believe it was sufficiently
general. So I started writing a sample document
showing that the method could not display math, or
handle YouTube videos, or accept Sage code. My
sample simply proved the opposite.

I do not know a single MathML tag. I knew
the American Mathematical Society recommended
MathJax, but didn’t know why. I don’t understand
how these technologies work.

Several years ago I downloaded Sage. But I
didn’t know that web pages could access a server so
students who had never installed Sage could still read
web pages with Sage content. When I realized that,
I used Sage to graph simple functions. When it dis-
played a 3D graph and let me rotate it interactively,
I almost fell off my chair.

It is strange that I had to learn these lessons
over again, because IATEX is a crucial tool for me and
yet I have never read The TEXbook; TEX macros are
crucial for my life and yet I don’t know how to write
a macro. We can do things in our lives because of
the independent work of thousands of people.

13 PDF and HTML in mathematics

When I was a college sophomore, I took an abstract
algebra course from W. Wistar Comfort. His lectures
were crystal clear; you could copy the board, read
the notes at home, and see every step in its proper
logical order.

Later I took courses with a more rough and
tumble atmosphere; the instructor seemed to be in-
venting right in front of our eyes, and sections of
the board would be crossed out when a better idea
presented itself.

Both lecture styles worked, showing the dual
nature of mathematics. To me, pdf is for the final
crystalline form of mathematics, and html is for the
rough and tumble way it is invented. Euclid is pdf,
but Legendre is html, and Euler is both.

¢ Richard Koch

koch (at) math dot uoregon dot edu
http://pages.uoregon.edu/koch/

Interactive content using TEX4ht

260

A Refinements for TEX4ht

(Everything in this section came from Michal Hoftich,
who we asked to review the above.)

A.1 \ifdefined\HCode

The main article uses

\ifx\HCode\undefined\else ... \fi

to insert material only when processing under TEX4ht.
This is fine, and is the general form. But when only
the html output needs the extra attention, it can be
simplified to:

\ifdefined\HCode ... \fi

(By the way, \ifdefined is an e-TEX primitive; BTEX
has required e-TEX, and some primitives beyond
e-TEX, for years now.)

A.2 \NewDocumentEnvironment{html}

The main article uses the {html} environment inside
\HCode conditionals, so that only TEX4ht sees it.
This is fine, but it is arguably nicer to define the
{html} environment in all cases, and make it a no-op
when being processed for pdf (or dvi, but we won’t
keep mentioning that).

Also, we may as well define an analogous envi-
ronment for material that should only be processed
in the pdf case.

This can most easily be done using the relatively
recent (2020) \NewDocumentEnvironment command.
The following two definitions in the preamble define
an {html} environment to ignore its contents (since
normally we are running KTEX, not TEX4ht), and
the {pdfenv} environment to typeset its contents
(for the same reason):

\documentclass{article}
\NewDocumentEnvironment{html}{+b}{}{}
\NewDocumentEnvironment{pdfenv}{}{}{}

Then, in a configuration file for TEX4ht (see next
section), we reverse the definitions so that {html} is
active and {pdfenv} is a no-op:

% (in a configuration file, see below)
\ScriptEnv{html}
{\ifvmode\IgnorePar\fi\EndP\NoFonts\hfill\break}
{\EndNoFonts}
\RenewDocumentEnvironment{pdfenv}{+b}{}{}

Then the environments can be used without any

conditionals. As a side benefit, the environments can
be nested. For example:

\begin{document}
\begin{html}
<p>This is output only in HTML, but can include

LaTeX math: \(a=b"2 \).</p>
\end{html}

Richard Koch

TUGhboat, Volume 43 (2022), No. 3

\begin{pdfenv}
Nested \LaTeX\ not in the HTML output.
\end{pdfenv}

\begin{html}
<p>Then we can have more HTML.</p>
\end{html}

A.2.1 \NewDocumentEnvironment explanations

You may be wondering what the +b means in the
\NewDocumentEnvironment call. If you’re not won-
dering, skip this section.

The environment name (e.g., html) is the first
argument to \NewDocumentEnvironment. The sec-
ond argument, with the +b, defines how arguments
should be handled. The third and fourth arguments,
empty for us, define the code which is run at the
beginning and end of the environment, respectively.

The b argument specification says to pass the
body of the environment as argument #2 to the code
blocks. (#1 is for the optional argument, which we
don’t use.) The + specifier allows multiple para-
graphs within the environment body.

Since we don’t specify any code to run, nothing
is done with the environment body, so it is effectively
discarded. On the other hand, when the argument
specification is empty, the environment body is pro-
cessed normally.

Many powerful argument specifiers are avail-
able, and they can be used when defining either en-
vironments or commands. See the ITEX usrguide3
document for details.

A.3 TgX4ht configuration files

TEX4ht supports configuration files, which are a con-
venient way to specify document-wide settings. The
environment redefinitions shown above are one ex-
ample. Here is another example, moving the Sage
specifications to the html page header (via @HEAD):
\Configure{@HEAD}{’

<script src="https://sagecell...\Hnewline

% must escape the # character:\Hnewline
inputLocation: '\#mycell',\Hnewline

</script>\Hnewline}

Because the configuration file is ultimately TEX code,
it is necessary to escape # with a backslash, and ex-
plicitly insert newlines in the output with \Hnewline,
as shown.

If the configuration file is saved as conf4ht.cfg
(the name can be anything), the make4ht call be-
comes:

make4ht --config confdht.cfg source.tex "mathjax"

	Introduction
	PDF and HTML fifteen years later
	A TeXShop detour
	Interactive content

	The header
	SageMath
	YouTube videos
	Mathematics
	Calling TeX4ht
	A MathJax perk
	Installing documents on the server
	Using the work of other people
	PDF and HTML in mathematics
	Refinements for TeX4ht
	\ifdefined\HCode
	\NewDocumentEnvironment{html}
	\NewDocumentEnvironment explanations

	TeX4ht configuration files

