130

Using knitr and IXTEX for literate
laboratory notes

Boris Veytsman

1 Introduction

Many years ago I worked in a lab that hired a new
student. His assignment seemed to be easy: to repro-
duce the results of another student and to expand
on them. The work in question included mathemati-
cal modeling, computer simulations, and so on. To
his dismay, the new student found out that the pro-
grams used undocumented libraries, the scripts had
incomprehensible options, and the models had un-
stated assumptions. Deciphering all this turned out
to be very difficult. While the original author was
willing to help, he could not do much: the author
started to forget the details of his research soon after
graduation.

This experience had a profound influence on me.
The question of whether I would be able to under-
stand my own research in a decade or two became an
obsession. Being a scientist, I asked myself how the
problem was solved elsewhere. In experimental and
applied sciences the research may cost millions of dol-
lars. To preserve it, the researchers are required to
keep detailed logs of their activity in the laboratory
notes. The notes include the details of the exper-
iments and their results, and also the hypotheses
tested. There are courses [14] and books [6] about
laboratory notes. It is fascinating to study laboratory
notes of great scientists, for example, Linus Paul-
ing. Pauling’s notes comprise 46 notebooks spanning
from 1922 to 1992, digitized by Special Collections
& Archives of the Oregon State University [13]|. His
beautiful notes have a definite aesthetic value.

I would argue that the concept behind the prac-
tice of laboratory note keeping is somewhat akin
to the concept of literate programming [8]. Knuth
understood that code is just part of a programmer’s
output. The programmer’s thoughts about these
programs are even more important. Similarly, an im-
portant insight for science is that papers, preprints,
presentations are not the research, but “an adver-
tisement of the research” [15]. We must preserve
the research itself [11, 15]. Laboratory notes are the
means for this preservation.

Classic laboratory notes are physical notebooks
like those of Linus Pauling. Unfortunately, this for-
mat has a number of flaws:

1. Physical notes are not searchable. While it is
recommended to add a table of contents to a
notebook [6, 14], it is time-consuming to keep it
current, and has only limited value for a search.

Boris Veytsman
doi.org/10.47397/tb/43-2/tb134veytsman-labnotes

TUGDboat, Volume 43 (2022), No. 2

2. Copying from physical notes is not easy. This is
especially frustrating with code: retyping from
the printouts pasted to the notebook pages is
time-consuming and error-prone.

3. Physical notebooks are bulky.

Electronic notebooks may be searchable, allow easy
copying and pasting, can be stored infinitely (if the
proper backups are kept), and take miniscule space.
On the other hand, physical notebooks are versa-
tile, and one can write and doodle in them very
quickly. It is difficult to match their convenience for
the laboratory record keeping.

2 What should electronic laboratory notes
store?

Electronic laboratory notes should allow the user
to easily store a number of disparate items. As a
theoretician, I put in my notes:

1. Prose. Sometimes short texts, sometimes longer
paragraphs.

2. Equations, both inline and displayed.
3. Code snippets of various length.

4. Tables, sometimes produced automatically by
code.

5. Plots, often produced automatically by code.
6. Sketches, doodles, diagrams, etc.
7. Bibliographies.

The standard KTEX features like automatic number-

ing of objects, font changes, etc., may help to make
the notes more readable and expressive.

3 Examples of notebook interfaces

Many commercial and free programs have so-called
“notebook interfaces” for exploratory studies. These
interfaces try to solve the same problem as labo-
ratory notebooks: documentation of research. In
this section we discuss two free programs. The first,
wxMaxima [20], is a document-based interface for
the famous computer algebra system Maxima [10].
The second, Jupyter notebooks [7], is intended “to
support interactive data science and scientific com-
puting”. Jupyter notebooks were initially developed
for Python programming, but have been extended
to more than 40 computer languages.

Both these solutions are based on similar ideas,
which are also used in many other notebook inter-
faces. They have a linear sequence of “cells” of dif-
ferent kinds. A text cell contains documentation.
A code cell contains a program snippet. This cell
could be “run”: the program snippet is executed, and
an output cell is added to the notebook. There are
other types of cell to introduce metadata, section


https://doi.org/10.47397/tb/43-2/tb134veytsman-labnotes

TUGboat, Volume 43 (2022), No. 2

131

(% 12)

Jjupyter
July 17, 2022
1 Example of jupyter notebook
Let us make a graph of

sin(z)

(3]: | import numpy as np
import matplotlib.pyplot as plt
01, 20, 0.01)

¥y = np.sin(x)/x
plt.plot(x, y)

(3]: [<matplotlib.lines.Line2D at 0x10e239£10>]

00 25 50 75 100 125 150 175 200

Figure 1: Examples of the output of wxMaxima and Jupyter notebooks

headers, etc. The text cells in Jupyter notebooks use
the Markdown language [4], including XTEX math
syntax. These programs can export a document with
the record of the session in either PDF or TEX format
(Figure 1).

These notebooks are useful, and they are much
better than no documentation at all. However, they
do not satisfy many of the requirements stated in
Section 2. We cannot easily number and reference ob-
jects. The output cells are not typically rendered as
Markdown code, so we cannot typeset tables created
by the code.

There are two reasons for these deficiencies.
First, Markdown is not as expressible as IATEX.
There are extensions like bookdown [22] which alle-
viate this problem. However, as far as I know, most
notebook interfaces do not support these extensions.
Also, Markdown extensions make the language more
IATEX-like, which questions the whole premise of a
simple typesetting language. Some readers may re-
call the famous phrase by Henry Spencer about the
people who are condemned to reinvent Unix [19].

The second reason is more deep. The notebook
interfaces are primarily records of the interaction
between the user and the computer. The ideas of
literate science, like the ideas of literate programming,
suggest the centrality of the interaction between the
user and other humans. Notebooks are basically code

with text inserts. A literate interface should be the
opposite: text with code inserts. This approach is
discussed in the next session.

4 Kknitr-based notebooks

It is interesting that most notebook interfaces use
TEX as the back end typesetting engine, even when
Markdown is the front end. This leads to the idea
of ITEX as the laboratory notebook language. A
set of TEX files is easily searchable with standard
utilities such as grep and find, while PDF output
provides readable documents. This approach satisfies
almost all requirements listed in Section 2, with one
exception: we want to add both snippets of programs
and their output as tables and plots. While adding
program code can be achieved within BTEX (using,
for example, the listings package [5]), the automatic
addition of its output requires other means. The
knitr package [21], based on the ideas of Sweave [9],
can be used to create literate science [18].

A document in this case is a IMTEX file (with
extension .rnw) that contains “chunks” of code. Ini-
tially, only R code was supported by knitr. Now
knitr, like Jupyter notebooks, has been extended to
other program languages, including Python. When
processed by knitr, the chunks are typeset and their
output is added to the document.

Using knitr and I2TEX for literate laboratory notes



132

<<plot, dev='tikz', message=F>>=

library(tidyverse)

library(ggthemes)

theme_set (theme_bw())

data <-
tibble(x=seq(0.01, 20, by=0.01)) %>%
mutate (y=sin(x)/x)

ggplot(data) + geom_line(aes(x,y)) +
xlab("$x$") +
ylab("$\\sin(x)/x$")

Figure 2: knitr chunk (in R) for plotting sin(z)/z

For example, consider the chunk in Figure 2. It
programs a plot. When processed by knitr, both the
typeset code and the plot are included in the TEX
file (Figure 3). There are options to suppress the
typeset code, change the graphics format, ete. [21].
For example, the chunk in Figure 2 uses the tikz
format, so the plot has math typeset by TEX.

An interesting feature of knitr is the ability to re-
render the output in TEX. This feature can be used to
automatically produce tables. Consider, for example,
the extrema of the function f(z) = sin(z)/x. We can
calculate them by solving numerically the equation
x cos(x) — sin(x) = 0, obtained by differentiating
f(x). The R program in Figure 4 calculates the
first six extrema at x > 0. It outputs six lines (for
example: 5 & 14.07 & 0.07). To typeset the table
we output these lines as raw TEX code (with the
chunk options result=’asis’, echo=F), and wrap
it in a tabular environment. The result is shown in
Table 1.

5 Problems with the knitr-based solution

The solution based on knitr is powerful. However, it
has its own problems.

The first set of problems is related to the de-
ficiencies of PDF format. This format is static by
design. Sometimes we want to include movies, an-
imation or interactive plots. It is possible to do

Number x f(z)
1 0 1
2 449 -0.22
3 7.73 0.13
4 10.9  —-0.09
) 14.07 0.07
6 17.22  —0.06

Table 1: First six extrema of f(z) = sin(z)/x (see the
code in Figure 4)

Boris Veytsman

TUGboat, Volume 43 (2022), No. 2

library(tidyverse)

library(ggthemes)

theme_set (theme_bw())

data <-
tibble(x=seq(0.01, 20, by=0.01)) %>%
mutate (y=sin(x)/x)

ggplot(data) + geom_line(aes(x,y)) +
x1lab("$x$") + ylab("$\\sin(x)/x$")

1.00 4

0.00

<)

o

St
i

0 5 10 15 20

x

Figure 3: The typeset code (grayscaled for print) and
plot produced by the chunk on Figure 2

find_extremum <- function(number) {
result <-
uniroot (
function(x) {
x*xcos(x) - sin(x)
Fe
c((number-1) *pi,
number*pi))
x <- result$root
f <- ifelse(x==0, 1,
sin(x)/x)
cat (number, "&", round(x, 2),
"&", round(f, 2),
"\\\\\n")

}

walk(1:6, find_extremum)

Figure 4: Code for calculation of extrema of sin(x)/x.
The results are shown in Table 1.



TUGboat, Volume 43 (2022), No. 2

this using packages like media9 [3|, animate [2], and
FigPut [1]. However, the recent debacle of Adobe
Flash [12] makes one wary of PDF extensions.

Another problem is related to the speed of writ-
ing laboratory notes. I personally type prose and
equations in IMTEX with the same speed I produce
them. The same can be said about programming.
However, doodling with a pen and paper is substan-
tially faster than writing code in PSTricks [17] or
TikZ [16]. Thus sketching may require different solu-
tions: from scanning handwritten images to the use
of special programs for fast doodling.

6 Conclusions

IMTEX allows the production of detailed laboratory
notebooks, that can be easily read, searched and
indexed. The addition of knitr helps to integrate the
notebooks with the inclusion of typeset code and its
output, such as plots, tables, etc.

This has been my preferred format of laboratory
notebooks for several decades. It is quite versatile,
reasonably fast and provides notes of archival quality.

References

[1] R. Fairman. FigPut. Interactive Figures for
MEX, 2022. ctan.org/pkg/figput

[2] A. Grahn. The animate package, 2022.
ctan.org/pkg/animate

[3] A. Grahn. The media9 package, v1.24, 2022.
ctan.org/pkg/media9

[4] J. Gruber. Markdown, 2004.
daringfireball.net/projects/markdown/

[5] C. Heinz, B. Noses, J. Hoffmann. The Listings
Package, 2020. ctan.org/pkg/listings

[6] H.M. Kanare. Writing the laboratory notebook.
American Chemical Society, Washington, D.C,
1985.

[7] T. Kluyver, B. Ragan-Kelley, et al.

Jupyter notebooks—a publishing format
for reproducible computational workflows.
In Positioning and Power in Academic
Publishing: Players, Agents and Agendas,
F. Loizides, B. Schmidt, eds., pp. 87-90.
IOS Press, 2016.

[8] D.E. Knuth. Literate Programming. No. 27
in CSLI Lecture Notes. Stanford, California,
1992.

[9] F. Leisch, R Core Team. Sweave User Manual,
2022. stat.ethz.ch/R-manual/R-devel/
library/utils/doc/Sweave.pdf

[10] Maxima. A computer algebra system, 2022.
maxima.sourceforge.io/

133

[11] J.P. Mesirov. Accessible reproducible
research. Science 327(5964):415-416, 2010.
10.1126/science.1179653

[12] R.C. Moss. The rise and fall of Adobe
Flash, 2020. arstechnica.com/
information-technology/2020/07/
the-rise-and-fall-of-adobe-flash/

[13] L. Pauling. Research notebooks, 1922-1972.
Special Collections & Archives Research
Center, Oregon State University Libraries.
scarc.library.oregonstate.edu/coll/
pauling/rnb/

[14] P. Ryan. Keeping a Lab Notebook. National
Institutes of Health, Office of Intramural
Training and Education, 2012.
www.training.nih.gov/assets/Lab_
Notebook_508_(new) . pdf

[15] M. Schwab, N. Karrenbach, J. Claerbout.
Making scientific computations reproducible.
Computing in Science & Engineering
2(6):61767, 2000. 10.1109/5992.881708

[16] T. Tantau. The TikZ and PGF Packages, 2021.
ctan.org/pkg/pgft

[17] T. Van Zandt, R. Niepraschk, H. Vo&.
PSTricks. PostScript macros for Generic TEX,
2007. ctan.org/pkg/pstricks-base

[18] B. Veytsman. Book review: Dynamic
Documents with R and knitr, by Yihui Xie.
TUGboat 35(1):115-119, 2014. tug.org/
TUGboat/tb35-1/tb109reviews-xie.pdf

[19] Wikipedia contributors. Henry Spencer —
Wikipedia, the free encyclopedia, 2022.
en.wikipedia.org/w/index.php?title=
Henry_Spencer&oldid=1093428638

20| wxMaxima, 2022. wxmaxima-developers.
p
github.io/wxmaxima/

[21] Y. Xie. Dynamic Documents with R and
knitr. Chapman and Hall/CRC, Boca Raton;
London; New York, second ed., 2015.

[22] Y. Xie. bookdown: Authoring Books and
Technical Documents with R Markdown.
Chapman and Hall/CRC, Boca Raton,
Florida, 2016. ISBN 978-1138700109.
bookdown. org/yihui/bookdown

¢ Boris Veytsman
Systems Biology School
George Mason University
Fairfax, VA 22030
borisv (at) lk dot net
http://borisv.lk.net

Using knitr and I2TEX for literate laboratory notes


https://ctan.org/pkg/figput
https://ctan.org/pkg/animate
https://ctan.org/pkg/media9
https://daringfireball.net/projects/markdown/
https://ctan.org/pkg/listings
https://stat.ethz.ch/R-manual/R-devel/library/utils/doc/Sweave.pdf
https://stat.ethz.ch/R-manual/R-devel/library/utils/doc/Sweave.pdf
https://maxima.sourceforge.io/
https://doi.org/10.1126/science.1179653
https://arstechnica.com/information-technology/2020/07/the-rise-and-fall-of-adobe-flash/
https://arstechnica.com/information-technology/2020/07/the-rise-and-fall-of-adobe-flash/
https://arstechnica.com/information-technology/2020/07/the-rise-and-fall-of-adobe-flash/
https://scarc.library.oregonstate.edu/coll/pauling/rnb/
https://scarc.library.oregonstate.edu/coll/pauling/rnb/
https://www.training.nih.gov/assets/Lab_Notebook_508_(new).pdf
https://www.training.nih.gov/assets/Lab_Notebook_508_(new).pdf
https://doi.org/10.1109/5992.881708
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pstricks-base
https://tug.org/TUGboat/tb35-1/tb109reviews-xie.pdf
https://tug.org/TUGboat/tb35-1/tb109reviews-xie.pdf
https://en.wikipedia.org/w/index.php?title=Henry_Spencer&oldid=1093428638
https://en.wikipedia.org/w/index.php?title=Henry_Spencer&oldid=1093428638
https://wxmaxima-developers.github.io/wxmaxima/
https://wxmaxima-developers.github.io/wxmaxima/
https://bookdown.org/yihui/bookdown

	Introduction
	What should electronic laboratory notes store?
	Examples of notebook interfaces
	knitr-based notebooks
	Problems with the knitr-based solution
	Conclusions

