
134 TUGboat, Volume 43 (2022), No. 2

yEx: a TEX-alike typesetter in Python

Marnanel Thurman∗

Abstract

yex is an implementation of the core TEX system
in pure Python. This article gives an overview of
its development, the challenges faced, and possible
future directions for the project.

1 Introduction

yEx is a TEX emulation written in pure Python. It
aims to be as faithful a recreation of the TEX core
as is possible. It has a strong test suite and plentiful
inline documentation.

While I began the project as a means of learn-
ing TEX better, it has grown beyond that in every
direction and continues to be an ongoing project.
Because of this origin, I’m using The TEXbook as a
spec rather than working from the WEB sources.

Any reimplementation, especially one which
reimplements a compiled system in an interpreted
language, necessarily has a set of goals which differ
from the original: this serves to add diversity and
robustness to the TEX ecosystem. Here are mine.

Firstly, yEx aims to get things right before aim-
ing for completeness: that is, it values depth over
breadth. The most commonly-used functionality is
implemented, and it can set basic documents suc-
cessfully.

Secondly, Python has a rich existing infrastruc-
ture: a wonderful resource. yEx is making as much
use of that as possible. PDF handling can be han-
dled by Python’s existing PDF libraries; Markdown
will be handled likewise; the library Beautiful Soup
takes care of XML and HTML handling; and so on.
yEx itself is already available in the Python package
index.1

Where possible, parts of yEx will be split out
into their own general-purpose libraries, so that they
may better interact with other people’s projects. It’s
a fine thing to create something beautiful. It’s a
thousand times better to build a source of creativity
for others.

Lastly, HTML output is a particular focus of
yEx. Although TEX is well-suited for producing this
format, it is surprisingly underused. More on that
shortly.

2 Where are we so far?

• We can set documents!

• SVG output, for debugging

∗ Thanks to Kit Thurman for proofreading.
1 pypi.org/project/yex/

• Serialisation

• Basic HTML output

Next steps:

• Full coverage of TEX controls

• PDF output

• Caching

3 Serialisation

All of yEx’s internal data structures can be serialised
to simple JSON types, as can all processed documents.
There are command line switches to output these
formats. This is useful in debugging, as well as in
integrating third-party systems outside Python.

This also enables caching. At present, for ex-
ample, plain.tex takes several seconds to process.
This would make it impractical to use as a library.
However, with serialisation, it can be stored and
retrieved at speed.

4 Docstrings

Python classes and functions can be documented
inline, using a literate programming feature known as
“docstrings”. These can be formatted using a markup
system, such as Restructured Text or Markdown.
The docstrings are converted to HTML by a tool
called Sphinx, for user help systems. Examples can
be seen on sites such as Read The Docs.2

yEx will include a new Sphinx plugin to accept
TEX formatting, so that yEx can produce its own
documentation.

5 Input filters

It will also be possible to add input filters for other
formatting systems to yEx itself, so that yEx docu-
ments can include inline HTML or Markdown. Each
format will have a stylesheet of macros, one per tag
type. The macros will be called to handle each tag,
to represent their meaning to yEx.

6 HTML output

The current focus of development is HTML output.
One of the historical barriers to HTML output from
TEX has been wordwrap. HTML is built to reflow
text on the fly—shoddily, compared to TEX’s charac-
teristically careful breaking of paragraphs into lines.

However, modern HTML toolkits such as Boot-
strap use a different approach. They divide available
display devices into “breakpoint”3 classes, based on
the viewport width: small (for devices such as mo-
bile phones), medium (for laptops), large, and extra

2 See, for example, yex.readthedocs.io.
3 See getbootstrap.com/docs/5.2/layout/breakpoints.

This term “breakpoint” is unrelated to TEX’s use of the word.

doi.org/10.47397/tb/43-2/tb134thurman-yex

Marnanel Thurman

https://pypi.org/project/yex/
https://yex.readthedocs.io
https://getbootstrap.com/docs/5.2/layout/breakpoints
https://doi.org/10.47397/tb/43-2/tb134thurman-yex


TUGboat, Volume 43 (2022), No. 2 135

large. This permits pages to adapt according to the
device in use, an ability known as “responsiveness”.
The system exists for the sake of more complex for-
matting than merely wordwrap, but it suits yEx’s
purposes well.

This allows us to add an \everypar rule to the
HTML output stylesheet, causing each paragraph
to be processed four times, each with a different
\hsize:

\let\endgraf=\par \let\endline=\cr

\def\wip##1\par{\let\widthspara=\relax

\special{html.responsive.start}\endgraf

\hsize=432pt

##1\endgraf

##\special{html.responsive.again}\hsize=576pt

##1\endgraf

##\special{html.responsive.again}\hsize=744pt

##1\endgraf

##\special{html.responsive.again}\hsize=992pt

##1\endgraf

\special{html.responsive.done}%

\let\widthspara=\wip}%

\let\widthspara=\wip

\everypar={\widthspara}

The \special directives tell the output driver
to treat these as four versions of the same paragraph.
The driver will meld them together, as with Boot-
strap breakpoints, so that one is used on mobiles,
one on laptops, and so on. The CSS makes the choice
of which version to use based on the width of the
viewport.

The widths here are taken from Bootstrap’s
breakpoint specification, where they are given in
pixels. yEx allows widths to be specified in pixels
(px) in addition to TEX’s standard units. For in-
teroperability, we give them in points, using W3C’s
definition of 96 pixels to the inch:4 this makes a pixel
equal to exactly 49152sp.

7 Impedance mismatches

There have been many challenges to overcome so
far, even beyond the work of reimplementation of
a system as complex as TEX—not to mention the
writing of a test suite to prove it all works!

One major factor has been the distance between
the priorities of yEx and TEX, which reflects the
forty-year distance between them. Unsurprisingly
for a program designed in the late 1970s, TEX has
a general assumption of scarcity. There are only so
many registers of each kind. Python expects you to
say what you need and assume that the resources

4 www.w3.org/Style/Examples/007/units.en.html

will be found. This difference in approach makes
implementation far more interesting. For example,
producing call stack traces for errors in TEX macros
proved aggravatingly difficult. A TEX macro can be
curried by omitting its final argument, thus:

\def\a#1#2{Hello, #2}

\def\b{\a x}

{\b world}

Because of this, the state of TEX’s stack can’t
be mirrored by the Python stack. Further, any part
of the TEX code above might be pushed onto TEX’s
token stack, and the call stack would still need to
remain consistent. The solution involves a special
class of token, Internal, which runs a given Python
callback on being processed. These tokens can’t be
generated by the tokeniser; they are used for macro
prologues and epilogues to maintain the call stack.

Another example is encapsulation: an impor-
tant principle in Python. TEX is not careful with
namespaces. One of the headaches this causes is
that the order of loading TEX libraries can easily
affect the results. That means that libraries can’t
be cached individually: the cached value of a library
will vary according to which libraries were loaded
before it. Thus yEx must wait until it’s seen all the
initial \input commands before making any deci-
sions about caching. When it knows the full list of
libraries needed, it must reload them from the cache
in order, as a group.

8 The future

yEx’s initial goal is to be able to typeset The TEX-
book. That’s still a long way off, though of course the
speed at which we get there depends on how many
people share the work. Contributions are always
welcome! Visit gitlab.com/marnanel/yex/ for the
source.

Beyond that, I have a goal to make sure yEx

gives solid results with as many of the packages in the
standard TEX distributions as possible. Processing
LATEX will be a very important step, though a huge
one.

There are also many other TEX-like projects
whose ideas we can share, many of which are being
discussed at this conference. I look forward to seeing
how we can work together.

⋄ Marnanel Thurman
https://gitlab.com/marnanel/yex

yEx: a TEX-alike typesetter in Python

https://www.w3.org/Style/Examples/007/units.en.html
https://gitlab.com/marnanel/yex/

	Introduction
	Where are we so far?
	Serialisation
	Docstrings
	Input filters
	HTML output
	Impedance mismatches
	The future

