104

TUGDboat, Volume 43 (2022), No. 2

The future of technical documentation
starts with its recent past

Carlos Evia

Abstract

This keynote presentation addresses how recent trends
to align technical documentation practices with “de-
veloper-friendly” workflows may be detrimental to
documentation authors and their users. A proposed
solution is in the recent past of technical documen-
tation as a discipline, where tools and ideas rooted
in structured authoring and markup, reuse, and per-
sonalization can still provide solutions to present —
and future — needs related to technical content.

1 Introduction

As T was preparing this keynote presentation, I re-
alized that a subtitle—or even alternative title for
it—should be “We all owe something to a former
IBMer”, or the more complimentary “Damn, those
former IBMers were right”.

I do love talking about the future of technical
documentation, but I also enjoy talking about its
past, and particularly its recent past. Technical docu-
mentation is still a very much needed and important
product, or genre, of technical communication. As
a bigger umbrella term to contain the processes of
developing and conveying technical information from
experts to a non-technical audience (or the dreaded
“laypeople” noun), technical communication is pretty
much concerned with documentation, but mainly
as part of a universe of genres or products that re-
quire that mediation between user and expert that
characterizes the job of technical communicators.

And here is where I will go back to the recent
past of technical communication. Ten years ago,
the Adobe Technical Communication Suite (TCS)
team distributed on several social media channels
a video titled “Future of Tech Comm”. The video
used stop-motion animation and fast-draw techniques
to summarize the features of “Adobe’s Tools and
Services” for technical communication. As a pair
of rapidly animated hands assembles Lego pieces,
the video’s narrator describes that “for some, [the
future of technical communication] is all about more
and more structured content and the ability to work
faster and smarter with XML and DITA constructs”.
Approaching the end of its 2:30-minutes runtime, the
video claims that “it is most certainly an exciting
future to be in” [1].

Carlos Evia
doi.org/10.47397/tb/43-2/tb134evia-techdoc


https://doi.org/10.47397/tb/43-2/tb134evia-techdoc

TUGDboat, Volume 43 (2022), No. 2

2 The Darwin Information Typing
Architecture

At this point we encounter a first batch of former
IBMers, as the main engine behind the future of tech
comm heralded by Adobe in that video was DITA
(Darwin Information Typing Architecture). This
should be interesting for you as IXTEX users, because
it involves a markup language. DITA is an open
standard for structuring and publishing technical
information. Sounds familiar? DITA was— big sur-
prise —developed by IBM in the late 1990s, and is
very much alive as an open standard maintained by
the non-profit consortium OASIS (Organization for
the Advancement of Structured Information Stan-
dards).

In an interview for the website “DITAWTriter”,
Don Day, a former IBMer who was one of the original
developers of DITA, chronicled the origins of his XML
experiments while working for IBM in the last decade
of the 20th century as follows:

With the advent of XML as a new markup
standard in 1998, the Customer and Service
Information (C&SI) group began adopting a
Tools and Technology mantra under Dave
Schell who was the strategy lead. By 1999,
Dave was aware of my participation as IBM’s
primary representative with the XSLT and
CSS standards activities at the World Wide

Web Consortium, and I delivered a presenta-

tion at a formative meeting in California that

forecast the possibility of XML to solve IBM’s
still-lingering problems with variant tools and

markup usage [2].

DITA consists of a set of design principles for
creating “information-typed” modules at a topic level
and for using that content in delivery modes such as
online help, technical documentation, and product
support portals on the Web. Day explained that,
when naming the standard, DITA “represented a
great deal of messaging in a compact and memorable
acronym”:

e Darwin: for specialization and how things could

“evolve” from a base;

e Information Typing: for representation of
knowledge as typed units;

e Architecture: a statement that this was not
just a monolithic design but an extensible tool

that could support many uses [2].

IBM eventually donated DITA as an open stan-
dard, which is currently maintained by OASIS. DITA,
however, “has evolved substantially since that initial
donation to encompass a very wide scope of require-
ments indeed” [7, p. 6]. At the OASIS DITA Technical

105

Committee, the standard continually evolves with the
purpose “to define and maintain the Darwin Informa-
tion Typing Architecture (DITA) and to promote the
use of the architecture for creating standard informa-
tion types and domain-specific markup vocabularies”
[8]. At OASIS, a small army of former IBMers (in-
cluding Kris Eberlein, Eliot Kimber, and Michael
Priestley) has kept the DITA standard evolving and
with very healthy adoption and usage figures.

Just as in I TEX we declare a document class to
start a file, in DITA we can use different topic types
that have specific semantic elements to structure, and
later publish, technical information. The literature
focuses on three topic types that “represent the vast
majority of content produced to support users of
technical information” [4, p. 7]: concept, task, and
reference, which Pringle & O’Keefe define succinctly
as follows:

e Concept: contains background information and
examples;

e Task: includes procedures (“how to” informa-
tion);

e Reference: describes commands, parameters,
and other features [9, p. 235].

For authors of technical documentation, these
foundational topic types provide constraints and
structures beyond a presentation-oriented template.
In DITA, authors can create consistent topics to as-
semble collections of information with elements that
can be reused even at the phrase level. For example,
a concept could be an introduction to a particular
software package, while tasks can provide instruc-
tions on how to install and use the software package,
and a reference topic can list common extensions and
tools associated with the package.

In practical terms, DITA’s topic types include
XML tags for content “moves” or strategies (such as
a short description, steps, and examples) frequently
used in technical publications. Pure XML does not
provide a defined set of tags, but DITA does offer
a catalog of elements and attributes relevant for
technical communicators.

The Darwin component of DITA is one of its
main “selling” points. DITA is customizable for spe-
cific situations that will still keep it as part of the
standard. Maybe the element types included in the
default task topic type are too generic for Compa-
nyX. The company can then specialize the task type
to create, rename its own structural elements that
will still validate in DITA-aware tools.

And that is the recent past of technical doc-
umentation: workflows and tools based on DITA
became mainstream and enabled practices such as

The future of technical documentation starts with its recent past



106

single sourcing, modularity, and multi- or omnichan-
nel publishing. Let me spend a few minutes describ-
ing those, and you will see that you can do similar
things with B TEX-based workflows for academic and
scientific publication.

2.1 Single sourcing

A team can have a common repository of topics, or
even element types (a common legal disclaimer in a
paragraph) that many files can use. By referencing
the single source, all files that mention it would be
automatically updated if there’s a change in the
source. Much better than copy-paste. We can, of
course, do some of that with IATEX.

2.2 Modularity

Nothing new for BTEX users here, but in DITA au-
thoring a whole “document” can be composed with
pieces from different sources. In the particular case
of DITA, most of these aggregation processes will use
a file type known as a map, which includes hyper
references to topics and other resources (internal or
external).

2.3 Multi- and omnichannel publishing

Like DVI on steroids, multichannel publishing is
one of DITA’s key features. By default, the DITA
Open Toolkit can publish to PDF, HTML, Markdown,
Eclipse Help, HTML Help, and other formats. Similar
to IATEX, the user community has also contributed
with plugins that enable publishing to many other
formats. Surprising no one, many of those publishing
pipelines involve a stop in KTEX-land.

Omnichannel publishing is even more interesting,
as it enables content-as-a-service approaches that
“serve” DITA topics or components via APIs. DITA
is particularly good at this because of the semantic
value that its XML tags and attributes can provide
as metadata for filtering and customization.

3 The present

And this is when we get to the present of technical
documentation. Adoption numbers and success sto-
ries should not hide that the evolution of technical
documentation takes place on a slightly rocky path;
even in practitioner circles, there has been pushback
and criticism against XML and its relationship with
technical communication. In blogs and social me-
dia exchanges, some practitioners have questioned
the status of XML, and DITA, as the main markup
language for information products. While acknowl-
edging DITA’s effectiveness as a replacement for large
user manuals in complex industries, a few authors
lament that “this form of structured content can feel

Carlos Evia

TUGDboat, Volume 43 (2022), No. 2

cold and clinical, especially to those from the edito-
rial or marketing side of content” [10, p. 20]. Others
argue that in the world of computing code verbose
languages are becoming obsolete, but intelligent con-
tent still relies on XML and its nested tag structures.

Those are valid concerns. DITA, as it evolves as
an open standard, needs to address them and learn
from its users. And here we have another former
IBMer to the rescue. Michael Priestley, one of the
key architects of DITA back in the late 1990s, has
been working on a simplified version of the stan-
dard known as Lightweight DITA (LwDITA). As
a disclaimer, I was involved in the development of
LwDITA and worked closely with Priestley for many
years. Although I am not an active member of OASIS
any more, I am still a DITA and LwDITA peddler
(see this keynote presentation as an example!).

LwDITA is a topic-based architecture for tag-
ging and structuring intelligent content using flexi-
ble markup options [3]. Lightweight DITA aims to
streamline the DITA authoring experience by pre-
senting three formats for content creation:

e XDITA, an XML format with a subset of DITA
elements that can be used for validated author-
ing and complex publishing chains;

e HDITA, an HTML5 format that can be used for
either authoring or displaying content;

e MDITA, a Markdown format with a subset of
XDITA elements that can be used for maximizing
input readability while maintaining structure in
content.

)

An author does not need to use all three “flavors’
at the same time to adopt LwDITA. They can work
in HDITA all the time and they would still be using
LwDITA. Authors can live in an MDITA environment
without XML or HTML tags and would still be using
LwDITA. All three LwDITA formats are compatible
with each other and with DITA XML. For a team of
authors with diverse technical backgrounds and com-
munication skills, the different formats of LwDITA
allow collaboration and content exchange in a cen-
tralized solution. For example, CompanyX can hire
a technical writer to create instructions in XDITA
(based on XML) while a marketing professional writes
a description of the app’s features in HDITA (based
on HTML5), and an engineer uses MDITA (based on
Markdown) to create a basic API reference. All their
topics are treated as DITA and can take advantage
of the standard’s reuse, filtering, and single-sourcing
capabilities.

Now, yet another former IBMer has come out
to warn users about going too lightweight. Michael



TUGDboat, Volume 43 (2022), No. 2

Tantosca warns about the impending doom of Mark-
down and reStructuredText (another lightweight au-
thoring format that has become popular with de-
velopers and some technical authors). Tantosca [6]
states that the degree of granularity and flexibility
that what he labels as cognitive content requires
cannot happen with lightweight languages. Iantosca
defines cognitive content as follows:

[...] a strategy, an architecture, and an oper-
ational model. It enables dynamic, machine-
based discovery, mining, analysis, retrieval,
assembly, and delivery of non-linear content
objects using advanced semantic technologies
that rely on predictive relationships between
content objects and inbound signals [5].

3.1 Conclusion

And that’s where DITA excels. But this requires
going back to the recent past of technical documen-
tation and to the future of “tech comm” that Adobe
heralded in its promotion video. Let lightweight lan-
guages work in a LwDITA-like environment and save
the intense structure for DITA.

3.2 What does this mean for KTEX users?

I am a big proponent of ventilating silos, and here
I see Markdown as a good bridge to connect the
academic and scientific typesetting of IMTEX with
the technical documentation of DITA and LwDITA.
The markdown package is your friend if you need (or
want) to use modules from a single source repository.
If you need stronger features to achieve cognitive
content or omnichannel publishing, then you can
move to XDITA and full DITA XML. That’s how I
see the future of technical documentation.

References

[1] Adobe TCS. Future of Tech Comm, Jul 2012.
https://www.youtube.com/watch?v=
dSdhnyDFOYY

[2] DITA Writer. Don Day and Michael Priestly
on the beginnings of DITA: Part 2, Oct 2018.
https://www.ditawriter.com/don-day-and-
michael-priestly-on-the-beginnings-of-
dita-part-2/

107

[3] C. Evia. Creating intelligent content with
Lightweight DITA. Routledge, New York, NY,
2019.

[4] J.T. Hackos. Introduction to DITA: A user
guide to the Darwin Information Typing
Architecture including DITA 1.2. Comtech
Services, Denver, CO, 2011.

[5] M. Iantosca. A future powered by knowledge
graphs. Bright TALK. https://www.
brighttalk.com/webcast/9273/525482

[6] M. Iantosca. Mark-Duh? The impending doom
of Markdown and reStructred Text, Mar
2022. https://thinkingdocumentation.com/
blog/f/mark-duh-the-impending-doom-of-
markdown-md-and-restrucured-tex

[7] E. Kimber. DITA for practitioners.
XML Press, Laguna Hills, CA, 2012.

[8] OASIS Open. OASIS Darwin Information
Typing Architecture (DITA) TC.
https://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=dita

[9] A.S. Pringle, S. O’Keefe. Technical writing
101: A real-world guide to planning and
writing technical content. Scriptorium Press,
Research Triangle Park, NC, 2009.

[10] S. Wachter-Boettcher. Content everywhere:
Strategy and structure for future-ready content.
Rosenfeld Media, Brooklyn, NY, 2012.

¢ Carlos Evia
Virginia Tech
Blacksburg, VA 24061
USA
cevia (at) vt dot edu
https://carlosevia.com

The future of technical documentation starts with its recent past


https://www.youtube.com/watch?v=dSdhnyDF0YY
https://www.youtube.com/watch?v=dSdhnyDF0YY
https://www.ditawriter.com/don-day-and-michael-priestly-on-the-beginnings-of-dita-part-2/
https://www.ditawriter.com/don-day-and-michael-priestly-on-the-beginnings-of-dita-part-2/
https://www.ditawriter.com/don-day-and-michael-priestly-on-the-beginnings-of-dita-part-2/
https://www.brighttalk.com/webcast/9273/525482
https://www.brighttalk.com/webcast/9273/525482
https://thinkingdocumentation.com/blog/f/mark-duh-the-impending-doom-of-markdown-md-and-restrucured-tex
https://thinkingdocumentation.com/blog/f/mark-duh-the-impending-doom-of-markdown-md-and-restrucured-tex
https://thinkingdocumentation.com/blog/f/mark-duh-the-impending-doom-of-markdown-md-and-restrucured-tex
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita

	Introduction
	The Darwin Information Typing Architecture
	Single sourcing
	Modularity
	Multi- and omnichannel publishing

	The present
	Conclusion
	What does this mean for LaTeX users?


