
TUGBOAT

Volume 43, Number 2 / 2022

TUG 2022 Conference Proceedings

TUG 2022 86 Conference information and program

89 Jim Hefferon / TUG 2022 conference report

90 Robin Laakso / TUG 2022 Annual General Meeting notes

93 Karl Berry / David C. Walden, 1942–2022

96 Paulo Ney de Souza / Interview with John Lees-Miller

100 Paulo Ney de Souza / Interview with Boris Veytsman

Publishing 104 Carlos Evia / The future of technical documentation starts with its recent past

Resources 108 Dag Spicer / A stroll through computer history at the CHM

Fonts 109 Steven Matteson / Type design: Catching up to the past

Software & Tools 120 Peter K. G. Williams / The Tectonic Project:

Envisioning a 21st-century TEX experience

127 Island of TEX / IoT theatre presents: The Tempest

130 Boris Veytsman / Using knitr and LATEX for literate laboratory notes

134 Marnanel Thurman / yex: a TEX-alike typesetter in Python

136 Jean-Michel Hufflen / Extracting information from (LA)TEX source files

142 Apu V, Rishi T, Aravind Rajendran / LATEX profiling of author submissions —

completeness & usability checking

LATEX 148 LATEX Project Team / LATEX news, issue 35, June 2022

155 Éric Guichard, Jean-Michel Hufflen / Introductory LATEX workshop, en français

156 Lloyd Prentice / Self-publishing, LATEX, and Markdown

159 Paulo Cereda, Phelype Oleinik / The story of a silly package

162 Joseph Wright / Key–value setting handling in the LATEX kernel

164 Joseph Wright / siunitx: Launching version 3

165 Joseph Wright / Case changing: LATEX reaches Unicode-land

167 Ulrike Fischer / Using spot colors in LATEX

172 Chetan Shirore, Ajit Kumar / The luatruthtable LATEX package

Multilingual

Document Processing

176 Oleksandr Baranovskyi / LATEX classes for doctoral theses in Ukraine:

Interesting tips and painful problems

Humanities 182 H. Andrew Black, Hugh J. Paterson III / XLingPaper’s use of TEX technologies

Electronic Documents 197 Dennis Müller, Michael Kohlhase / A LATEX-based ecosystem for

semantic/active mathematical documents

ConTEXt 202 Hans Hagen, Mikael Sundqvist / Pushing math forward with ConTEXt lmtx

Hints & Tricks 207 Karl Berry / The treasure chest

Abstracts 209 TUG 2022 abstracts (Austin, Blakesley, Castañeda, Chernoff, Cheung, Claudio,

Fine, Gundlach, Hickman, Jimenez, Khalighi, Luc, Mariano, Moore, Ohri,

Park C., Park E., Preining, samcarter, Schmah, Vrabcová, Wu)

213 MAPS: Contents of issue 52 (2022)

214 La Lettre GUTenberg : Contents of issue 45 (2021)

215 Die TEXnische Komödie: Contents of issue 2/2022

TUG Business 215 TUG institutional members

216 2023 TEX Users Group election

News 217 Calendar

Advertisements 218 TUG 2022 advertisements

219 TEX consulting and production services

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2022 dues for individual members are as follows:

Trial rate for new members: $30.
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options are described
at tug.org/join.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
libraries and other organizations or individuals for
whom memberships are either not appropriate or
desired. Subscriptions are delivered on a calendar
year basis. The subscription rate for 2022 is $115.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted member-
ship rate, site-wide electronic access, and other ben-
efits. For further information, see tug.org/instmem
or contact the TUG office.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: August 2022]

Printed in U.S.A.

Board of Directors

Donald Knuth, Ur Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Rosendahl∗, Vice President
Karl Berry∗, Treasurer
Klaus Höppner∗, Secretary
Barbara Beeton
Johannes Braams
Paulo Cereda
Kaja Christiansen
Ulrike Fischer
Jim Hefferon
Frank Mittelbach
Ross Moore
Norbert Preining
Raymond Goucher (1937–2019),

Founding Executive Director
Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board for a roster of all past and present
board members, and other official positions.

Addresses

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
tug.org

tug.org/TUGboat

Electronic mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

TEXnical support,
public mailing list:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2022 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not
be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another

language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such
approval, the original English permission notice must

be included. An information notice to the TUGboat editors
regarding such redistribution is appreciated.

2022 Conference Proceedings

TEX Users Group

Forty-third annual TUG conference

Online

July 22–24, 2022

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 43, NUMBER 2, 2022

PORTLAND, OREGON, U.S.A.

86 draft: August 28, 2022 03:13 TUGboat, Volume 43 (2022), No. 2

The forty-third annual TUG conference

https://tug.org/2022 tug2022@tug.org

Conference committee

Jennifer Claudio

Rohit Goswami

Jérémy Just

Robin Laakso

Ross Moore

Norbert Preining

Will Robertson

Arthur Rosendahl, co-principal organizer

Paulo Ney de Souza, co-principal organizer

Boris Veytsman

Alan Wetmore

Sponsors

TEX Users Group

Carleton Production Centre

DANTE e.V.

Google

Overleaf

speedata

STM Document Engineering Pvt Ltd

The University of Adelaide

with generous assistance from many

individual contributors.

Conference artwork: Jennifer Claudio

Thanks to all!

DANTEe.V.

TEXFolio

TEXnology Inc.

Amy Hendrickson

57 Longwood Ave. #8

Brookline, MA 02446

+1 617-738-8029

Email: amyh (at) texnology.com

Web: https://texnology.com
Full time LATEX consultant for more than 30 years; have worked for major
publishing companies, leading universities, and scientific journals. Our macro
packages are distributed on-line and used by thousands of authors. See our
site for many examples: texnology.com.

• LATEX Macro Writing: Packages for books, journals, slides, posters,
e-publishing and more; Sophisticated documentation for users.

• Design as well as LATEX implementation for e-publishing, print books and
journals, or specialized projects.

• Data Visualization, database publishing.
• Innovative uses for LATEX, creative solutions our speciality.
• LATEX Training, customized to your needs, on-site or via Zoom. See
https://texnology.com/train.htm for sample of course notes.

Call or send email: I’ll be glad to discuss your project with you.

TUG2022—Online—July 22–24, 2022

doi.org/10.47397/tb/43-2/tb134confinfo

TUGboat, Volume 43 (2022), No. 2 draft: August 28, 2022 03:13 87

TUG2022 program

(All times and days listed are UTC.)

Thursday
July 21

13:00 Éric Guichard, ENS de Lyon CNRS;

Jean-Michel Hufflen,

FEMTO-ST&Univ. of Bourgogne

Franche-Comté

LATEX workshop (in French)

16:00 Cheryl Ponchin, IDA/CCR-P;

Sue DeMeritt, IDA/CCR-La Jolla

LATEX workshop (in English)

19:00 Alexánder Borbón Alṕızar,

El Tecnológico de Costa Rico

Inroducción a LATEX (in Spanish)

(continued)

Friday
July 22

15:00 Boris Veytsman, TEX Users Group Conference opening

15:15 Peter K. G. Williams,

Center for Astrophysics |
Harvard&Smithsonian

The Tectonic Project: Envisioning a 21st-century
TEX experience

16:00 Carlos Evia, Virginia Tech The future of technical documentation starts with
its recent past

16:45 Joseph Wright, LATEX Project siunitx: Launching version 3

17:30 Paulo Cereda, Overleaf The story of a silly package

18:15 Jennifer Claudio, San Jose, CA Revamping a youth chess workbook using
LATEX packages

20:00 Paulo Cereda, Overleaf IoT theatre presents: The Tempest

20:45 Lloyd Prentice, Writersglen Pub. A self-publisher’s take on TEX

21:30 Hubert Hickman, Matthew

Mariano, Haibin Wu, Hong Dat

Cheung, Essex Management LLC

Using LATEX deployed in AWS as a PDF report
generation tool for a cancer clinical trial
search engine

22:15 David Blakesley, Clemson

University

The residual concepts of production vs. the emergent
cultures of distribution in publishing

Saturday
July 23

00:00 Oliver Austin, UC Davis Looking outside the cockpit: An in-depth look at
airport signage

00:45 Sarai Castañeda Fonts and formats of constitutions

01:30 Boris Veytsman, TEX Users Group Using knitr and LATEX for literate lab notes

02:15 Norbert Preining, Mercari Japan,

TUG, TEX Live

TEX Live 2022 status update

03:00 Vafa Khalighi, Sydney, Australia Right to left beamer documents in X

E

TEX

11:15 Patrick Gundlach, speedata GmbH Boxes and glue: TEX algorithms reimplemented

12:00 Chetan Shirore, K.T.H.M. College,

Nashik; Ajit Kumar, Inst. of

Chemical Technology, Mumbai

The luatruthtable package in LATEX

12:30 Tereza Vrabcová, Masaryk Univ. A gentle introduction to Markdown for writers

13:15 Jonathan Fine The UK TEX Users Group—a personal history

14:00 samcarter Bricks and pieces

15:30 Ulrike Fischer, LATEX Project,

Bonn, Germany

New in stock—a walk though recent LATEX
improvements (that you may have missed)

16:15 Joseph Wright, LATEX Project Team Case changing: LATEX reaches Unicode-land

18:00 TUG Annual General Meeting

20:45 Nicolas Jimenez, MathPix, Inc. Bridging the gap between LATEX/PDFs and the
modern web

21:30 Tia Luc Observations and analysis of Vietnamese text

22:15 Max Chernoff Comparing TEX engines and formats

23:00 Vafa Khalighi Typesetting mathematics in Persian

88 draft: August 28, 2022 03:13 TUGboat, Volume 43 (2022), No. 2

Sunday
July 24

01:00 Paulo Ney de Souza, Books in

Bytes

Interview with Boris Veytsman

01:45 Ross Moore, Macquarie University Accessible tables using Tagged PDF

02:30 Vafa Khalighi Bidirectional multi-columns and paragraph footnotes
in TEX

07:00 Apu V, Rishi T, Aravind

Rajendran, STM Document

Engineering Private Ltd.

LATEX profiling of author submissions

07:45 Oleksandr Baranovskyi, Doctor

Barbarus Services& Institute of

Mathematics of the National

Academy of Sciences of Ukraine

LATEX classes for doctoral theses in Ukraine:
Interesting tips and painful problems

08:30 Dennis Müller, Michael Kohlhase,

FAU Erlangen-Nürnberg,

Germany

sTEX3—A LATEX-based ecosystem for semantic/active
mathematical documents

09:15 Jean-Michel Hufflen Extracting information from (LA)TEX source files

11:00 Mikael P. Sundqvist, Lund

University

Pushing math forward with luametatex and ConTEXt

11:45 Ulrike Fischer Using spot colors with LATEX

12:30 Joseph Wright, LATEX Project Team Key–value setting handling in the kernel

13:15 Marnanel Thurman Building a TEX-alike in Python

15:00 Aditya Ohri, UC Berkeley; Tanya

Schmah, University of Ottawa

Machine translation of mathematical text

15:45 Jonathan Fine Access and accessibility

17:15 Paulo Ney de Souza Interview with John Lees-Miller

19:00 Dag Spicer, Computer History

Museum

A walk through 2,000 years of computer history

19:45 Christopher Park, San Jose, CA;

Emily Park, UC Berkeley

Musical composition typesetting

20:30 Steven Matteson, Matteson

Typographics

Type design: Catching up to the past

21:15 Boris Veytsman, TEX Users Group Conference closing

≈ 21:15 end

TUGboat, Volume 43 (2022), No. 2 89

TUG 2022 conference report

Jim Hefferon

The TUG 2022 conference ran from July 21–24 (dates
are for the Eastern US). As in the prior two years
it was conducted online, over Zoom. The conference
was completely free to participants, as well as to
anyone watching the parallel YouTube live feed.

There were 232 registered attendees. While
the largest number were from North America, there
were also significant numbers from Europe, Asia,
and Australia & Oceania, and in total there were
representatives from six of the seven continents. The
YouTube feed also had a steady list of watchers.

The first day was given over to LATEX workshops,
one each in French, English, and Spanish. The videos
of these are already popular.

The remainder of the conference, from July 22
to July 24, consisted of forty three presentations
along with a conference opening, a closing, and the
TUG Annual General Meeting. The full schedule is at
tug.org/tug2022/program.html. As in the prior
online versions of the conference, the talks ran on
a 24-hour rotating schedule so that the times could
be reasonably convenient for the presenters. To the
extent that it was practical, talks were grouped into
sessions by topic. The result is that, as with the past
two years, we were treated to a fascinating mix of
talks by speakers both from within and outside of
the TEX community.

There were three keynotes: David Blakesley
spoke on The residual concepts of production vs. the

emergent cultures of distribution in publishing, Carlos
Evia spoke on The future of technical documentation

starts with its recent past, and Peter K. G. Williams
spoke on The Tectonic Project: Envisioning a 21st

century TEX experience. There were live interviews
with Boris Veytsman, current TUG President, and
with John Lees-Miller, the CTO of Overleaf. In
addition, Computer History Museum senior curator
Dag Spicer took us on a tour through computing
history starting with the Antikythera Mechanism.

There were a number of themes to the contri-
butions. Rather than trying to be comprehensive, I
will mention only two topics that continue from prior
years and have proved to be of special interest: talks
that describe and expand on recent changes either in
the LATEX kernel or in the underlying TEX engines,
and those addressing accessibility.

Once the talk videos have been processed, in-
cluding editing and adding a transcription for closed
caption, they will be posted on the TUG YouTube
channel at youtube.com/c/texusersgroup.

The Annual General Meeting was on July 23.
President Boris Veytsman made some remarks and
Secretary Klaus Höppner gave a presentation sum-
marizing the events of the organization’s prior year.
After a little discussion from the floor, the meeting
adjourned. Note that for confidentiality reasons this
meeting is not recorded and so will not be available
on YouTube. The minutes from the AGM are in this
issue of TUGboat.

Organizing the conference is a huge job and vol-
unteers did amazing work. The core group of the
conference committee, Paulo Ney de Souza, Jérémy
Just, Ross Moore, and Norbert Preining gave their
time and energy for running the Zoom sessions and
handling the very many details, and are now engaged
in post-processing of the videos. In addition, Karl
Berry and Jennifer Claudio provided support, along
with the entire Board, the President, and Execu-
tive Director Robin Laakso. The TEX Users Group
gratefully acknowledges the Zoom link provided by
the University of Adelaide through Will Robertson’s
efforts. They were a conference sponsor and TUG is
also grateful for sponsorship from Carleton Produc-
tion Centre (Ottawa), DANTE e.V., Google, Overleaf,
speedata, STM Document Engineering Pvt Ltd, and
individual donors.

The fact that having so many people participat-
ing in the conference is great for TEX and friends, as
well as great for those participants, has not escaped
the conference organizers or the TUG Board. When
we return to in-person conferences in the future they
likely will include some kind of online component.

However, no operation of this scale is without
hiccups. There were fewer registrants this year than
last year, which may have been because of less ad-
vertising on social media. Zoom instituted a change
making it harder for viewers to comment or ask ques-
tions, reducing the role of the conference as a place
to interact. Although organizers quickly responded
by adding links to the communication and media
platforms Wonder.me and Zulip, in the future such
links should be there at the start. And, although
the instructions to authors mentioned the potential
problems with including copyrighted material in the
presentation, it was not prominent enough and con-
sequently the first day’s video immediately got a
takedown notice (since rectified).

In summary, there were many talks, of excel-
lent quality. There were many participants, many
who might not have the chance to attend in person.
Overall the conference was a great success.

⋄ Jim Hefferon

https://hefferon.net

doi.org/10.47397/tb/43-2/tb134hefferon-tug22

TUG 2022 conference report

https://tug.org/tug2022/program.html
https://youtube.com/c/texusersgroup
https://doi.org/10.47397/tb/43-2/tb134hefferon-tug22

90 TUGboat, Volume 43 (2022), No. 2

TUG 2022 Annual General Meeting notes

Notes recorded by Robin Laakso

Boris Veytsman, TUG president, opened the meet-
ing at 11:00 (PDT): “Welcome to the second online
AGM.” He stated that the Zoom license has limits,
and asked that participants raise a hand to say some-
thing. He said to please state your name and state
if you are a TUG member. Let us know if you want
to be heard. He requested that people be respectful,
speak in good faith, and be courteous.

Boris showed two slides: Rules of the game and
Topics (basically the meeting agenda).

Klaus Höppner, TUG secretary, gave a TUG

status update and financial report. He showed a
series of slides, most of which are included in this re-
port (slides are omitted here if they merely duplicate
information from web pages):

1. The current TUG board of directors.
(tug.org/board)

2. “Formalities”: 2023 is an election year; 5 direc-
tors’ terms end + 3 open positions = 8 positions
for election. (tug.org/election)

3. “Members end of June 2022”: TUG membership
has declined slightly in 2022 so far; 2021 mem-
bership was up. Klaus commented that the trial
membership program is quite successful, and
leads to renewals in about 50% of cases.

4. “Profit & Loss 2021” included product sales:
DVDs, TUGboat, Lucida and expenses: journals,
software, Lucida, postage, payroll, overhead.

5. “Assets and Liabilities” and “Committed Funds”
slides were next, both as of the end of 2021.

6. “Donations 2022”: Klaus commented that do-
nations are up and quite generous this year.
(tug.org/donors)

Regarding the donation slide, Klaus further
stated that the TUG board is very thankful
for the generous UK-TUG donation, that no
restrictions were made with the contribution,
and that the TUG board was not involved in
and has no knowledge of the discussion within
UK-TUG leading to this donation. Jonathan
Fine interrupted. Boris said he was aware of the
raised hand and that JF would be heard when
Klaus finished his report.

7. “International Conferences”: Klaus said that the
ConTEXt meeting will be in person again this
year, and also that BachoTEX 2022 will be in
person this year, but this time in September
(not May). (tug.org/meetings)

8. “TEX Live/TEX Collection”: Klaus recognized
the hard work of the DVD team. He said that
the TEX Collection DVD is a joint effort in terms
of manufacturing as well as software production.
Members can order DVDs from their user group.
Two user groups have professional offices, which
promote the distribution of the software, among
other things.

Klaus defined a subset of MiKTEX, replacing
the separate proTEXt, given the size constraints
of the DVD; he thanked Christian Schenk for
help with this project and the end result fitting
on the TEX Collection DVD.
(tug.org/texcollection)

9. “Board Motions”
(tug.org/board/motions.html):

2021.6 Approval of the 2022 budget.

2021.7 Adopt TUG bylaws update and AGM

procedures. (tug.org/bylaws)

2022.1 Support for persons in war zones or
other extraordinary circumstances.

2022.2 Cover DOI fees for GUTenberg as
needed.

2022.3 Funding to support Ukrainian
students attending BachoTEX.

10. A “Last words” slide ended the presentation:
Farewell to Dave Walden (1942–2022).

Discussion

Jonathan Fine asked Klaus to display slide 9 (“Do-
nations 2022”) and share his screen. JF read the
second sentence: TUG was not involved and has no
knowledge about discussion within UK-TUG about
how to distribute the money. JF said that TUG VP

Arthur R[osendahl] was involved in the discussion.
JF said Arthur R was on the committee. JF said
Arthur R was involved in the discussion about how
to distribute the money.

JF said that the TUG board doubled the quorum from
50 to 100. He said that no motion that is binding may
be moved at the AGM without being approved by
the board. JF stated that he submitted a motion on
13 July 22 with a supporting statement. He said he
asked that it be circulated to members. He said that
Klaus read it and gave a rebuttal. JF encouraged
“ordinary” members to speak up. He asked other
attendees to comment on the AGM procedures. No
one did.

Keiran Harcombe asked if the board and other mem-
bers of TUGwould consider adopting a code of con-
duct for its members, board and others who work on
projects?

doi.org/10.47397/tb/43-2/tb134tug22-agm

TUG 2022 Annual General Meeting notes

https://tug.org/board
https://tug.org/election
https://tug.org/donors
https://tug.org/meetings
https://tug.org/texcollection
https://tug.org/board/motions.html
https://tug.org/bylaws
https://doi.org/10.47397/tb/43-2/tb134tug22-agm

TUGboat, Volume 43 (2022), No. 2 91

Boris replied, saying that he agreed that the Board
should discuss this.

Klaus H: Several board members are members of
other user groups. There is always an agreement that
within the TUG board I am a TUG board member
and not a DANTE member. Everything on the TUG

board is internal to that organization, not the other
membership/organization. UK-TUG asked DANTE if
they were interested in a donation upon dissolution.

Boris V: Please open the page about conferences.
Correction: The ConTEXt meeting should be Septem-
ber 2022 (not 2021). The ConTEXt and BachoTEX
meetings are quite close together. [Post-conference
correction made on included slide.]

Keiran H and Jonathan F discussed whether the
earlier comment by JF meant that there was a con-
flict of interest during the discussion leading to the
dissolution of UK-TUG.

Boris V: Does anyone else have something they would
like to speak about?

Keiran H: This may seem like an incredibly stupid
question: has anyone in the TUG considered making
a guide to all the various parts of the TEX world?
How different systems work and the approach to
them.

Boris V: I will comment. We have some documen-
tation but always need more. Recently someone
applied for TEX Development funds to write more
documentation. If there are people who want to do
this kind of work we welcome that.

David Carlisle: Joseph Wright and myself (David C)
support a site (previously managed by Robin Fair-
bairns), texfaq.org, which provides a lot of docu-
mentation. The LATEX team has a website as well.

[Post-conference addition: the web page tug.

org/levels gives an extremely brief overview of the
major components of the TEX world. Max Chernoff’s
presentation at this conference was on this topic.]

Question: Are we going to publish the slides?
Answer: Yes.

Klaus: This AGM report will be part of the minutes.

Paulo Ney: I would like to suggest that TUG support
of GUT à la DOI could be offered to other user groups.
TUG could do this for user groups worldwide. It
would be very positive for many local groups. This
would require tug.org to hold a mirror copy of all
those publications. There are only benefits. Include
user groups under one umbrella. It would be very
nice for other user groups to have this DOI support.

Boris V: This option was considered, but GUT did
not go this way. [Post-conference clarification: TUG

is happy to assist other groups with DOI support,
technically or financially. We’ll work together to
determine what’s best on a case-by-case basis.]

Any other comments or questions?

Jonathan F: I came across a 2019 email about the
$10K contribution for PDF accessibility. What is it
being used for?

Boris V: We have provided a couple of small grants.
It’s not enough for a full time programmer, unfortu-
nately, but we welcome interested persons.

[Post-conference addition: the recent addition of
amsmath support to latex2nemeth project (ctan.
org/pkg/latex2nemeth) was funded 50% by the
PDF Accessibility Fund money and 50% by the TEX
Development Fund.]

Keiran H: I wish to commend Jonathan Fine for
trying to push this forward. The world needs this
kind of accessibility work.

Boris V: We welcome proposals.

Jonathan F: This may not be the best place to say
this. I am tremendously grateful for all the online
work being done. Also I am personally grateful for all
the work that has been done to make this conference
happen.

Boris V: Thank you.

The meeting came to a close at 12:25 (PDT).

TUG 2022 Annual General Meeting notes

https://texfaq.org
https://tug.org/levels
https://tug.org/levels
https://ctan.org/pkg/latex2nemeth
https://ctan.org/pkg/latex2nemeth

92 TUGboat, Volume 43 (2022), No. 2

Annual General Meeting 2022 of the TeX Users Group

Klaus Höppner (secretary) for the board

July 23, 2022

Members end of June 2022

End of June we had 1,102 paid members, with:

1,052 renewals, 50 new (33 of them trial, 11 joint)

−48 compared to June 2021

85 institutional, 116 joint members

376 with electronic-only option

356 with auto-renewal option

34 of last year’s 72 trial members renewed so far

final numbers of last years:

December 2021: 1,210
December 2020: 1,189
December 2019: 1,238
December 2018: 1,214
December 2017: 1,178

Profit & Loss 2021

Income Expenses

Membership dues 79,320 Cost of goods sold
Product sales 4,423 TUGboat 22,328
Contributions 21,311 Software 2,391
Annual Conference 2,636 Fonts 1,675
Other 749 Postage 1,827

Other 372
Office

Payroll 64,274
Overhead 12,924

Contributions 2,000
Other 84

Sum 108,440 Sum 107,875
Net gain 565

Assets and Liabilities (status end of 2021)

Assets Liabilities

Checkings/Savings 173,602 Committed funds 55,655
Accounts Receivable 395 Admin services 1,445

Member income 10,075
Payroll 1,280

Sum 173,997 Sum 68,455
Equity 105,542

Committed Funds (status end of 2021)

Fund Amount

Bursary 5,927
CTAN 9,948
GUST e-foundry 406
LATEX3 12,392
LuaTEX 1,494
LyX 11
MacTEX 8,499
PDF Accessibility 11,758
TEX Development 5,221

owed: 2,000
available: 3,221

Sum 55,655

Donations 2022

Google: 10,000

Anonymous: 10,000

UKTUG: 5,366

The remaining funds of dissolved UKTUG were donated to two user
groups.
TUG was not involved and has no knowledge about discussion within
UKTUG about how to distribute the money.
No restrictions were made with the donation.

International Conferences

Past

TUG2021 (online)

DANTE autumn meeting (Germany, Sept. 2021 online)

ConTEXt meeting (Belgium, Sept. 2021)

GuIT meeting (Italy, Oct. 2021 online)

DANTE2022 summer meeting (hybrid)

Upcoming

ConTEXt meeting (Germany, Sept. 12–18, 2022)

BachoTEX2022 (Poland, Sept. 21–25, 2022)

TEX Live/TEX Collection

TEX Live 2022 released as planned

Team: Karl, Norbert, Siep Kronenberg, Akira Kakuto et al.

TEX Collection DVDs produced by DANTE in Germany, in
cooperation with TUG and various user groups, containing:

TEX Live
MiKTEX
MacTEX (Herbert Schultz)
CTAN snapshot (Manfred Lotz)

Former proTEXt distribution for Windows is abandoned, replaced by a
special MiKTEX subset defined by Klaus (due to space restrictions).
Thanks to Christian Schenk for support!

TUG 2022 Annual General Meeting notes

TUGboat, Volume 43 (2022), No. 2 93

David C. Walden, 1942–2022

Karl Berry

David Corydon Walden was born June 7, 1942, in
Longview, Washington. He died April 27, 2022, at his
home in East Sandwich, Massachusetts, of mantle cell
lymphoma. He had been coping with the lymphoma
for several years.

*

Dave had a long and distinguished professional career
as a programmer, technical manager, and general
manager at Bolt, Beranek and Newman (BBN). His
best-known programming project was also among
his first: being part of the small team that developed
the Interface Message Processor (IMP), the original
packet-switching gateways, known today as network
routers. This story is told in plenty of other places
(there is an overview in [3]). Dave himself wrote
about the rediscovery and resurrection of the IMP

code to run on emulators ca. 2014 (walden-family.
com/impcode). With Bernie Cosell, he developed
and then documented the famous will/won’t/do/
don’t telnet negotiation protocol; Dave’s own biogra-
phy page [5] goes into some detail on this.

After his retirement from BBN, Dave became in-
creasingly involved in writing and computer history.
One of his first post-retirement projects, a new edi-
tion of one of his management books, brought him to
LATEX. He tells this story in his first TUGboat article
(“Writing a big book in LATEX”, TUGboat 24:2, [10]).
After losing work and time due to Microsoft Word’s
lack of compatibility between versions, his attraction
to (LA)TEX was driven by his twin desires for explicit
ASCIImarkup and a stable system. As a programmer,
he was much happier with TEX’s explicitly-written
source files than Word’s invisible controls.

With that initial introduction, it quickly be-
came clear how invaluable a contributor Dave would
become to the TEX community. He immediately
helped establish The PracTEX Journal (tug.org/

pracjourn), an online journal published by TUG

with its first issue in 2005. Dave wrote a regular col-
umn for the journal (“Travels in TEX Land”, [8]). He
also wrote the software to generate the journal’s web
site (from its inception in 2005 until its final issues),
the first of several such projects he undertook.

His interests in TEX and computing history com-
bined with his TEX interview project [9], which he
pursued throughout nearly his entire tenure working
with TEX: he conducted the first interview in 2004
(Dan Luecking, a TEX, METAFONT, and MetaPost
contributor and package author for many years),
and his last was in 2021 (Amelia Hugill-Fontanel,
associate curator at the RIT Cary Graphic Arts Col-
lection). As even this sample of two shows, Dave
cast his net for interviewees widely and always found
insightful and unusual questions to ask. (By the
way, Dave always encouraged others to participate in
this and his other projects, and a new volunteer to
continue an interview series would be most welcome;
just email me.)

After several years of interviews, enough mate-
rial had been accumulated for a collection, and so
another of Dave’s interests was engaged: publishing
books. He was instrumental in setting up TUG’s
book publications, in everything from acquiring the
ISBN numbers, figuring out the best print-on-demand
service (Lightning Source), collecting and editing the
material, and generally directing the publication of
TUG’s first two books— the interviews (TEX People)
and a commemoration of TEX’s 32nd anniversary
conference (TEX’s 25 Anniversary). (Both are listed
in [6], and linked from tug.org/books/#tug.)

In general, it seemed for any project Dave com-
pleted, he would then write up a report about it. He
wrote so much! Throughout his many articles and
talks relating to TEX, he emphasized the practical
side of getting work done. He still used Word for sim-
ple documents, and the perennial question on TEX
forums of “how to make TEX compete with Word”
held no interest for him. His attitude was, let’s try
to improve the TEX system at what it already does
well; for example, he wrote many notes about solving
practical problems he faced in his writing.

In addition to these myriad TEXnical projects,
Dave was the treasurer for TUG from 2005–2011,
and a board member for four years beyond that. As
TUG treasurer, Dave worked extensively with long-
time employee Robin Laakso, who handles financial
matters. He recommended various improvements to
TUG accounting, created new reports, and helped the
board better understand financial statements. Dave
had a lifelong appreciation of double-entry bookkeep-
ing, saying in an interview for MAPS [13]:

doi.org/10.47397/tb/43-2/tb134walden-berry

David C. Walden, 1942–2022

https://walden-family.com/impcode
https://walden-family.com/impcode
https://tug.org/pracjourn
https://tug.org/pracjourn
tug.org/books/#tug
https://doi.org/10.47397/tb/43-2/tb134walden-berry

94 TUGboat, Volume 43 (2022), No. 2

Anyone who dismisses double-entry bookkeeping
as boring or too complicated has thrown away
the possibility of making use of [a] tremendously
powerful organizational tool . . .

Although being treasurer and director of a tiny
nonprofit (TUG) may seem rather modest after being
a general manager for a major corporation (BBN),
Dave repeatedly made the point that the two organi-
zations have more in common than one might think,
particularly in the MAPS interview and other inter-
views of him [12]— the same principles for creating
viable businesses apply, whether for-profit or not,
whether run by volunteers or paid staff. This made
a substantial impact on the understanding of many
of us on TUG’s place and its operations.

*

As mentioned above, Dave was deeply interested in
computing history, and devoted much of his post-
retirement time to numerous history-related projects,
including his final talk at a TUG conference (“Notic-
ing history”, TUGboat 41:2, [10]). In this connection,
he had a long association with the IEEE Annals of the

History of Computing [7]. His close IEEE colleague
David Hemmendinger kindly wrote the following de-
scription of Dave’s work with Annals:

Dave had a major role in Annals work.
He joined the Annals board in 2006 and from
2008 until last year, he edited the Anecdotes
department. From 2011 to 2013, he was the
first editor of Interviews. When he resigned
as Anecdotes editor last year, he became the
Events & Sightings editor until his poor health
prevented his continuing. He developed the
annals-extras.org web site for supplementary
material and bibliographic tools. According to
it, Dave was co-author of five Annals articles,
including two on TEX, conducted ten interviews,
wrote or co-wrote four anecdotes, wrote eleven
E&S reports, and five book reviews.

Dave reluctantly became acting Editor in
Chief for six months in 2014. He and colleagues
then brought in 40 submissions, an unmatched
record. I had joined the board shortly before he
took over, and he got me actively involved with
Annals. We worked on numerous projects, and
I greatly enjoyed our collaboration.

Dave excelled as an editor, able to find com-
mon ground among reviewers and to guide au-
thors in refining their articles and in improving
the English when it was not an author’s native
language. When the IEEE changed the maga-
zine production process, Dave worked with its
staff to facilitate submission of articles in LATEX

as well as in Microsoft Word and to improve
several aspects of the process.1

Dave had wanted to edit an issue on digital
typography, but gave up that plan when he
became sick. He was a guest co-editor of two
special issues on the history of BBN and worked
closely with guest editors of other issues. When
Burt Grad and I edited the desktop publishing
issues that grew out of a 2017 workshop, Dave
was a co-editor in all but name.

The workshop that David mentions was held at the
Computer History Museum, and brought together
pioneers from the early days of desktop publishing.
This was an intersection of Dave’s interests in pub-
lishing, TEX, and computing history, and he was a
key advisor in organizing the meeting, including the
participation of Don Knuth and Chuck Bigelow, as
well as attending himself. A transcript of the entire
meeting is online [2], and of course Dave wrote a
short report about it (“Collecting memories of the
beginning of desktop publishing”, TUGboat 38:3,
[10]). He also co-authored a two-part history of TEX
for the subsequent Annals special issues [1].

*

In addition to his continual writing activities, Dave
also returned to programming for some of his TEX
projects, mainly for generating web pages, including
the Interview Corner, The PracTEX Journal, and
most extensively for TUGboat—he was instrumen-
tal in getting all past TUGboat issues online, and
then generating the online lists of TUGboat articles
accessible by author, title, and category (such as
the link at [10]). He mostly wrote these programs
in Perl, with an occasional dip into m4. He always
made extensive use of macro capabilities; one of his
longest and most technical articles for TUGboat was
entitled “Macro memories” (TUGboat 35:1, [10]),
where he discusses his experiences with several macro
languages, including TEX’s. However, the implemen-
tation language was almost immaterial to him; he
once wrote:

Despite various programming disciplines that
have been popular during my era of computing
(the move from assembly language to high-level
languages, avoidance of goto’s, structured pro-
gramming, object-oriented programming, etc.),
in any high level language I still program as if I
was writing FORTRAN in 1964, e.g., if X eq Y,

goto Label A.

1 As usual, Dave wrote an article after finishing this effort:
“An experience of trying to submit a paper in LATEX in an
XML-first world”, TUGboat 40:3, [10].

Karl Berry

https://annals-extras.org

TUGboat, Volume 43 (2022), No. 2 95

*

On a personal note: over the 18 years of our col-
laboration, Dave and I exchanged thousands upon
thousands of emails, and were able to meet in person
at many TUG conferences and elsewhere. I was priv-
ileged to work with him on nearly all his TEX and
book projects, and enlisted him for help on plenty
of my own. Aside from our TEXnical efforts, we
shared wide-ranging interests in books and movies
[11] and regularly exchanged recommendations. Our
connection through the years was one of the great
and unexpected pleasures of my life, and he continues
to be an inspiration. He was a remarkable mentor,
colleague, and most of all friend.

Dave has already been remembered in many
other places, by family, friends and colleagues, in-
cluding Internet pioneers with whom he worked. The
family’s obituary is at olsonparent.com/obituary/
David-Walden, and includes several personal remem-
brances. The New York Times obituary [3], by noted
author Katie Hafner, provides an excellent capsule
summary of his professional career, especially his
early work on the proto-Internet. A more compre-
hensive biography of Dave’s remarkable careers is
published in Annals [4]. On an Internet history
list, there are personal accounts of some of his ear-
lier technical work (elists.isoc.org/pipermail/
internet-history/2022-May/).

We are honored and appreciative that Dave des-
ignated TUG as one of the two charities for gifts
to be made in his memory (tug.org/donate). The
other is the hospital that cared for him through his
illness (Beth Israel Deaconess Medical Center, Dept.
of Medical Oncology, 330 Brookline Ave., Boston,
MA 02215).

Dave is survived by his wife Sara, son Luke,
daughter-in-law Mindy Sobota, grandchildren Ada
and Kai Sobota-Walden, brother Daniel Walden and
his wife June, sister Velma Hampson and her hus-
band Paul, sister-in-law Susan Cowles, and numerous
nieces and nephews.

We all miss you, Dave.

References

[1] Barbara Beeton, Karl Berry, David Walden.
TEX: A Branch of Desktop Publishing,
Parts 1 and 2.
IEEE Annals of the History of Computing,
vol. 40, no. 3 (July–Sept. 2018), pp. 78–93;
vol. 41, no. 2 (April–June 2019), pp. 29–41.
doi.org/10.1109/MAHC.2018.033841114

doi.org/10.1109/MAHC.2019.2893731

[2] Computer History Museum. Desktop
Publishing Pioneer Meeting, day 1, session 1,

catalog number 102740205. The other
sessions are linked. computerhistory.org/
collections/catalog/102740205

[3] Katie Hafner. David Walden, computer
scientist at dawn of Internet, dies
at 79. New York Times, May 3, 2022.
nytimes.com/2022/05/03/technology/

david-walden-dead.html (Generally
accessible via a re-tweet from TUG:
twitter.com/TeXUsersGroup/status/

1522061721757642753.)

[4] Alex McKenzie. David Corydon Walden’s
five careers. IEEE Annals of the History of

Computing, vol. 44, no. 3 (July–Sept. 2022),
forthcoming.

[5] David Walden. Brief biography of me, BBN,
and the Internet. walden-family.com/dave

[6] David Walden. Published books. Includes
all his publicly-available books: on quality
management, BBN history, and TEX.
walden-family.com/public/mybooks

amazon.com/David-Walden/e/B003OR3E4A

[7] David Walden. His own description of
his involvement with IEEE and the IEEE

Computer Society, including an extensive
bibliography. ethw.org/David_Walden
walden-family.com/ieee/

[8] David Walden. Travels in TEX Land. A
compendium of all his works relating to
TEX, including his column of the same
name written for The PracTEX Journal.
walden-family.com/texland

[9] David Walden. TUG Interview Corner.
tug.org/interviews

[10] David Walden. Publications in TUGboat.
tug.org/TUGboat/Contents/listauthor.

html#Walden,David

[11] David Walden. Personal web site.
walden-family.com

[12] David Walden and Karl Berry.
David Walden interview for TUG.
tug.org/interviews/walden.html

(included in the TEX People book,
tug.org/store/texpeople)

[13] David Walden and Frans Goddign.
David Walden interview: A conversation
about writing and learning and some books
to read. MAPS 34, Najaar 2006, pp. 81–84.
ntg.nl/maps/34/16.pdf

⋄ Karl Berry

karl (at) freefriends dot org

David C. Walden, 1942–2022

https://olsonparent.com/obituary/David-Walden
https://olsonparent.com/obituary/David-Walden
https://elists.isoc.org/pipermail/internet-history/2022-May/
https://elists.isoc.org/pipermail/internet-history/2022-May/
https://tug.org/donate
https://doi.org/10.1109/MAHC.2018.033841114
https://doi.org/10.1109/MAHC.2019.2893731
https://computerhistory.org/collections/catalog/102740205
https://computerhistory.org/collections/catalog/102740205
https://nytimes.com/2022/05/03/technology/david-walden-dead.html
https://nytimes.com/2022/05/03/technology/david-walden-dead.html
https://twitter.com/TeXUsersGroup/status/1522061721757642753
https://twitter.com/TeXUsersGroup/status/1522061721757642753
https://walden-family.com/dave
https://walden-family.com/public/mybooks
https://amazon.com/David-Walden/e/B003OR3E4A
https://ethw.org/David_Walden
https://walden-family.com/ieee/
https://walden-family.com/texland
https://tug.org/interviews
https://tug.org/TUGboat/Contents/listauthor.html#Walden,David
https://tug.org/TUGboat/Contents/listauthor.html#Walden,David
https://walden-family.com
https://tug.org/interviews/walden.html
https://tug.org/store/texpeople
https://ntg.nl/maps/34/16.pdf

96 TUGboat, Volume 43 (2022), No. 2

Interview with John Lees-Miller

Paulo Ney de Souza

This interview took place on 24 July 2022, during
the TUG 2022 online conference. John Lees-Miller is
co-founder and CTO of Overleaf.

Jérémy Just (JJ): Interviews are always highly
awaited in the TUG conferences. So now I’m pleased
to leave the chair to Paulo Ney for an interview with
John Lees-Miller, the co-founder of Overleaf.

John, Paulo, it’s up to you.

Paulo Ney de Souza (PN): Thank you.
Welcome, John. The idea is we have a conversa-

tion about what you do and what your interests are
and so forth.

So the first question I want to ask you is, what
was your first contact with computing? Can you tell
us how it happened, even if you can remember it?

John Lees-Miller (JLM): It was a pretty long
time ago, but the first one I can remember was in
primary school, so I must have been like seven or
eight years old. We had some old Apple IIs in the
library.

I remember they ran a small number of pro-
grams. One I can remember was this touch-typing
game. We had to race by touch typing, and I was
really bad at that. I could not get my head around
how people could remember so many buttons. So I
didn’t get off to a great start with computing, but for-
tunately my school had a few other computers. And
within the next couple of years, I remember there
was a Tandy, which was an old make of MSDOS-
compatible sort of PC, and it had Quick Basic on it.

Some of my friends and I started learning how
to write simple programs on that. I think most of
them were like text-based adventure games. So a lot
of ifs and elses, that was about it. It was a good
system, though. Pretty easy to learn.

PN: And when were you introduced to TEX and
LATEX?

JLM: Pretty late, to be honest. I think I started
around 2006 because I was doing an internship, and
that’s something we’ll probably come back to. I was
interning at a company that’s working on self-driving
vehicles and we had some mathematical modeling
to do.

And so most people were writing things up in
Word and I wanted to try something else. So I think
I started with LyX, the L-Y-X, the “what you see is
what you get” editor. And I wrote up a few papers
in that, and then eventually I realized that I could
just write the LATEX source, and then I switched to
it after that. So, yeah, pretty late.

I will say it’s amazing to me that we have so
many students using Overleaf today at the under-
graduate and sometimes even secondary level. I don’t
think I’d done anything other than write things out
by longhand for most of my university career until
that internship.

PN: You do have a PhD in mathematics, isn’t it?

JLM: Yeah. I studied computer science as an un-
dergraduate, and then I went on to do a PhD in
engineering mathematics over at Bristol (UK).

PN: That’s where your statistics part comes from. I
read some of your papers and the ones on the game
2048 are very interesting. And some of the statistics
there went beyond what I could understand easily.

To anybody listening to this interview, I do
strongly recommend it; the game is addicting. It’s
called 2048. You can play it on the web, you can
play it on an iPhone, or whatever.

But the papers by John are a little bit hard
to get into. There is a higher level of math that’s
required to understand every step of it, but extremely
interesting and also beautiful.

Let me ask you this: What moves you more,
technology or coding?

JLM: Probably technology in general. I guess when
I started out at Overleaf, I was pretty much doing
the coding. But now Overleaf has grown to over 60
people, so my role has changed quite a lot. So I tend
to work at a slightly higher level now. I occasionally
get to touch the code, but mostly we have people
who are professionals who do most of that now. So
I try to operate a slightly higher level, looking at
things like architecture and how the various bits fit
together and long term vision for where we’re going.
I guess that’s more on the technology side.

I feel like I should always say that my under-
standing of LATEX is also very much a practitioner’s

doi.org/10.47397/tb/43-2/tb134lees-miller-desouza

Paulo Ney de Souza

TUGboat, Volume 43 (2022), No. 2 97

understanding. I did do Overleaf support, first line
and second line and third line support for many
years, and there I learned just how little LATEX I
really know. We later hired some very capable LATEX
experts like Lian Tze Lim and several more after her,
who showed me that I know almost nothing, but I
was still able to support some people who had basic
LATEX questions over the years.

PN: You were an experienced coder before you met
TEX and LATEX?

JLM: Yes.

PN: And that is what you used to start and build
Overleaf?

JLM: Yes. I was already working as a software
engineer, I guess going way back. I started it up
pretty young. So when I was in middle school, after
doing some Quick Basic, that was around the 2000
dot.com bubble, so anyone who could code anything
could get a job. I actually got a part-time job even
though I was like 13, writing [code]. I guess at that
point it was Visual Basic rather than Quick Basic,
but same idea.

So I started out there and then I did the com-
puter science degree, in which mostly I studied the
mathematical bits more than the practical ones, but
I still worked quite a bit on the side. So I gained
experience there. And I think depending on how far
back in my history of blogs you go, there’s a blog post
from 2009 which I think is the earliest public record
of Overleaf, or at least the idea behind Overleaf.

Back in the day there was this service called
Etherpad, which is like a very early basic precursor
to Google Docs. And so my collaborators and I, when
I was a PhD student, were basically using that to
write our papers. But then Google bought Etherpad
and shut it all down. So before they’d done that, I’d
actually written a bunch of scripts that sort of did
crazy things like download the Etherpad and compile
it, upload the PDF somewhere. So it kind of had
all the components of Overleaf. But then as soon as
Google came in and shut the whole thing down, I
decided, well, it can’t be too hard to start writing
my own Etherpad thing. And so that’s how Overleaf
got started.

PN: You did meet John Hammersley before Overleaf,
correct?

JLM: Right. So we were both working at a company
called Advanced Transport Systems and we built the
world’s first computer-guided taxi system. It went on
to be called the Heathrow Pod at Heathrow Airport,
and was basically 20 computer-guided taxis that ran

on their own roads. So this was very basic compared
to the stuff that Google and Tesla, well, not Google
any more, Waymo and Tesla are doing today, but we
actually managed to get something into production
in 2011, after that opened.

John and I met at the company. I think we were
in the systems research division. It was a very small
company, I think even smaller than Overleaf is now,
but there was still a systems research division. We
worked on simulation software mostly. One of the
good things about the company was that it was very
open. So we worked with a lot of people in academia
and that was another reason that we needed a good
collaboration tool, so that we could work on our
papers together, with all the people at university
and in the company. That’s still something that
people do on Overleaf today.

PN: What do you consider more important in terms
of skills, to have competing, complementary or simi-
lar skills as your partner, in developing an idea like
Overleaf?

JLM: You definitely benefit from having comple-
mentary skills. Pretty rare to find someone who can
found a business as a solo founder, but they certainly
do exist. There are just a lot of different aspects
of a business that you need to cover. So the split
between John H and I was always that John looked
at more of the business side of things, more of the
commercial side, and I looked after the technology
side and that worked pretty well.

John is actually pretty technical. He doesn’t
always let on, but he was also fairly technical. But he
could do, much more effectively than I, many of the
commercial parts of the business, like talking to our
early customers in the publishing industry, raising
investment; he definitely led all of that. That also
freed up some of my time to focus on initially building
the products and the prototypes and all of that, and
then eventually going to manage the engineering
team because there’s a lot of hiring required to go
from two people in 2012 to 60-odd today, ten years
later.

PN: What would you name as your biggest challenge
right now at Overleaf?

JLM: I think we have quite a few growing pains.
So every time you double in size, something stops
working, is my experience. Communication just gets
harder and harder as you get larger. I’m always
amazed that companies with thousands of employees
can work at all. It’s pretty challenging, even with
60 employees, to keep everyone on the same page,
aligned. Something that we are still working on, I

Interview with John Lees-Miller

98 TUGboat, Volume 43 (2022), No. 2

would say. I think all companies still have to work
at that, no matter how big they are.

Probably these days it’s almost a cliche, but
it’s about communication and trying to get all these
people with different skills to work together, and
work together efficiently. We certainly benefit from
having a very passionate group of people. Something
I feel extremely lucky and proud of is that everyone
at Overleaf is very passionate about either the tech-
nology or the impact that we have on making science
communication a little bit faster and easier. And
there’s lots of people that just really like LATEX and
TEX. I feel it’s a very special company to have so
many people [who] are really passionate about the
mission that we have.

PN: Is TEX Live a big stone on your path? TEX Live
changes?

JLM: Well, we’re extremely grateful to TEX Live.
Without TEX Live we would really struggle to main-
tain any kind of compatibility between Overleaf and
the offline world, and that’s something that we defi-
nitely try to do. Ideally, if it works offline, it should
work on Overleaf, and vice versa. We have very few
things that are Overleaf-specific.

That said, yes, TEX Live is a challenging target.
The fact that it’s always a moving target is probably
the biggest challenge we have because we have to cut
a release and ship that to millions of people.

Right now, TEX Live 2022 is in the testing phase
[at Overleaf]. So basically what we do is we take
a snapshot of TEX Live sometime pretty soon after
the official release and then we run it against all of
our gallery projects. Overleaf has a template gallery
where there are around 10,000 projects that people
have submitted that are licensed appropriately for
us to be able to use them for testing. We basically
just run all of those and see what breaks. And
if something very serious breaks, then we have to
figure out how to patch our image to try to fix that
without breaking too many other things. So, yeah,
we definitely do find the TEX Live release process
a bit of a struggle and we are in contact with the
TEX Live team.

Usually by the time we find one of the problems
with our gallery, though, we discovered it’s already
been reported by someone in the open source com-
munity. So it’s pretty rare that we actually find a
new bug, but we certainly hit most of the bugs that
everybody else hits. So hopefully, if all goes well, I
think it’s in the final round of testing and the key
guy, Eric, is on holiday for a week, but when he’s
back, I think we’re going to hit the publish button
and that will become available.

PN: Would you allow me to ask a question that I
asked JH last time around?

JLM: Sure.

PN: Will we be able to use Overleaf on our iPhones
and Android as a native app?

JLM: I can neither confirm nor deny that there are
plans to do that, but a native app is definitely on
our radar.

One of the things we’re working on at the mo-
ment is that we’ve moved the entire editor, the actual
sort of thing that you type into, from a piece of soft-
ware called Ace to a newer piece of software called
Code Mirror Six, which is a big project. So currently
I think 20% of users can see the new editor because
we roll out most things incrementally now, because
if we roll out to everyone at once, we very quickly
get overwhelmed if there’s anything wrong with it.
So that should have much better support on mobile.
It uses a very different approach to actually making
the editor work, which plays a lot better with mobile
browsers.

So at least for this year, and probably next year,
our focus is just on getting it working better on web
browsers, on mobile devices. But I am sure that the
day will come when we do make the jump into native
apps. I just don’t know when.

PN: Thank you very, very much. This was a won-
derful conversation and hope to have you here back
again sometime soon.

JLM: Great, thanks for having me.

PN: Thank you.

JLM: If anybody has any questions, I’m happy to
stick around.

PN: Thank you. If you want to join the floor, just
raise your hand and we still have time. So if you
have any questions for John, raise your hand and we
will bring you in.

But first, John, I don’t know if you can talk
about all of this, but how much of the company is
remote and how much is it physically local?

JLM: Yes, I can definitely talk about that. It’s in
our job ads. We are now basically all remote.

We have staff in, actually I’ve lost count of
the number of countries now, but most of our staff
are in the UK, the US, some in Canada; we have a
growing number in Germany, and places like France
and Portugal. So we are all remote.

We’re not a fully distributed team though, so
we do try to constrain our hiring to a range of time
zones. That means that people have overlap. So

Paulo Ney de Souza

TUGboat, Volume 43 (2022), No. 2 99

basically we have what are called core hours, which
are 2:00 p.m. to 5:00 p.m., UK time. So if you’re in
the UK, you tend to have a slightly quieter morning
and if you’re in the US, you have a slightly quieter
afternoon to get on with things, and then all the
meetings in the core hours. That’s how we manage
that.

Frank Mittelbach (FMi): Can you hear me, John?
Your last statement about your gallery testing

and everything made me wonder if we should talk
with you about the possibility to align that with
the LATEX releases. Right now you probably have
seen our sins in various respects, because every half
year we have the LATEX releases quite heavily sort of
improving stuff. But also in corner cases breaking
stuff, which is a natural thing if you have millions of
users out there.

You may or may not know that we run a de-
velopment version of LATEX which is available to
everybody. The intent is that developers and users
can make use of that before we actually hit the street.
I don’t know exactly how you do your gallery testing,
but if you have this as a sort of process, it might
be quite helpful for everybody if that process could
encompass running the development release at the
late stage before we switch over. Then you would
probably find bugs that otherwise will be found by
you when you [take] the full release.

I think by the end of the day that would save
you effort as well as saving everybody else pain. And
if we have a sort of feedback loop this way, I think
that could be very beneficial to everybody just to
bring this up as a potential sort of alignment between
our team and Overleaf there in the future.

JLM: Yes, we would be very happy to talk about
that. As you say, we will hit the bugs anyway. I think
we have talked about it at a previous TUG, and
certainly something we’re still interested in doing,
setting up some kind of LATEX CI, continuous inte-
gration, where we can just run it against our large
sample of documents and report back on error rates,
basically what we do internally now.

The other thing I’d say would be interesting
is that we track performance across the TEX Live
releases as well. One of the things that we see is that
every year things tend to get slightly slower. So we
would also be very interested in trying to set up some
kind of benchmark test set because we’re not sure
that our gallery test is particularly representative as
a benchmarking tool. But probably we could set up
some sort of thing we would be more comfortable
with as a benchmarking tool that could also alert
on things like performance regressions, which at the
moment I think there’s not a lot of visibility into.

PN: You have a question from Jérémy on the chat.

JJ: Can you tell us about the computing power
behind Overleaf? How many computing nodes, and
what kind of nodes?

JLM: I can say a few things, and it ties into the
slight performance decreases every year as more and
more servers are required. Overleaf is hosted on
the Google Cloud platform now. When we did the
integration with ShareLATEX in 2017, we were hosted
on essentially every cloud service, which meant that
if any cloud service was down, Overleaf had some
kind of problem. So one of the things that I’ve been
working on for the last five years is consolidating all
of our hosting on Google Cloud.

The number of nodes, I don’t think we give
an exact number, but I can say it is many, many
hundreds of cores, continuously compiling people’s
LATEX; and there’s also some fraction of that for
running the service. But our LATEX compilers are by
far the most compute-hungry thing that we do.

JJ: Thank you.

PN: Thank you very much, John, for joining us,
taking time out of your Sunday for this.

Welcome to TUG, and please come back and
join us at other years.

JLM: Great. Thanks again for having me. Thanks,
everyone. Have a good rest of the day.

Interview with John Lees-Miller

100 TUGboat, Volume 43 (2022), No. 2

Interview with Boris Veytsman

Paulo Ney de Souza

This interview took place on 23 July 2022, during
the TUG 2022 online conference. Boris Veytsman
has been a member of the TUG board since 2010,
and President since 2017.

Paulo Ney de Souza (PN): Let me start with
something very small. How do you pronounce your
name? Veytsman [pronounced like “day”] or Veyts-
man [pronounced like “night”]?

Boris Veytsman (BV): “Vaytsman”. The Ger-
man translation is “Weitzman”, which would be pro-
nounced like “night”, but since I’m not German . . .

PN: That’s interesting, it took me too long to find
out.

Can you tell me how you had your first contact
with computing? Can you remember it?

BV: I was born in what was then the Soviet Union,
which was several decades behind the United States
in computers at that time. So I first read about
computers when I was, I think in 7th grade, or some-
thing like this. I really loved the idea. But for the
first year or so it was mostly pen-based computing.
I wrote down programs, I think in Pascal. Then I
played computer. I computed it with a pen.

Then when I was at 8th grade, I won in the
Programming Olympiad and I was invited to the
so-called Summer School of Young Programmers in
Novosibirsk, in the Siberian Department of Academy
of Science. They had really great computers and
they had the School for Young Programmers, which
was the brainchild of Academician Yershov, who was
a great authority in teaching programming. So there
it was 1980 exactly. I remember the date because it
was Olympiad days and when a lot of people were
watching sports, I was watching BESM-6 (B�SM-6),
the great Soviet computer.

This was a time when computers would take
several rooms and they had a lot of terminals and
teletypes. I don’t know, have you seen teletypes?
This was an overgrown typing machine where you
type something, then the computer would type to
you, and you basically talk on a big roll of paper.
And the thing about this was that they didn’t have
enough terminals, they didn’t have enough teletypes.
And so they had a very strict rule. There was a
number of levels. School students (I was in 8th
grade) were on the lower level. Then there were
undergrads, then graduate students, and so on and
so on, up to the head of the institute. And the idea
was that if you are working on a terminal or teletype
and somebody from the higher rank would come and
there were no free spaces, then somebody from the
lower rank should stop what they were doing, save
their work, and release the terminal for somebody at
the higher end. And you can understand that since I
was a school student, I was the lowest rank at all. So
I was bumped many times and I was okay. I think,
when I grow up I will have a teletype at my home
and nobody will bump me from this teletype. And
now basically what happens is now I have this phone
which I can connect to any computer in the world.
It by itself has probably more computing power than
back in my childhood.

So basically when I was a kid, when I get this
teletype in my room, I would be absolutely happy
and I would not want anything else. Now I have
so many terminals around me, sometimes I think
I’m happy as much as I would be when I was eighth
grade.

PN: I can give you a word of consolation, because
I can relate very well to your story, because I was
introduced to computing inside the military. So there
they would just show you their rank, and you had
to leave. It was only in Berkeley that I was able to
have access to terminals on a standard basis. So I
can relate to that story very well.

We got across this issue, this next issue, several
times in this conversation, and crossing from Odesa1

to Novosibirsk was no easy task. You would get
invited normally if you just won the Olympics. It’s
a long way. It’s a very long way.

BV: Yes, it’s a very long way. And 1980, this was the
year of Moscow Olympiad. And so what happened
was that you could not buy any plane tickets because
all aircraft were taken to serve the Olympiad, and
you could not buy any railway tickets except the

1
Editor’s note: Since the Russian invasion of Ukraine,

many people use the Ukrainian spelling “Odesa” instead of

the Russian spelling “Odessa”; we follow suit here.

doi.org/10.47397/tb/43-2/tb134veytsman-desouza

Paulo Ney de Souza

TUGboat, Volume 43 (2022), No. 2 101

most uncomfortable. I think it was three days travel
in probably the worst possible railway car you can
imagine. But I was much younger, and that was fine.

PN: Did you end up meeting other kids from the
Olympics there?

BV: The kids in the Programmer Olympics, in
which most of my school participated, were inter-
ested in general because it was exactly the days of
the Olympic Games, and lots of people were watch-
ing. But somehow, for those of us programming,
especially for those who saw computers for the first
time in their life, we would rather be behind the
terminals than behind the TVs.

PN: This was most like a summer school?

BV: It was a summer school. It was a very inter-
esting idea by Novosibirsk people. They started to
do an experiment. What is the optimal age to teach
kids computing? And by computing, I don’t mean
using computing, no, but active computing, when
you teach them programming. They have very in-
teresting ideas about special computer languages for
the young kids, and so on. And they had a lot of
school students.

If I’m not mistaken, the big conclusion of the
research was that the optimal age to teach kids cod-
ing is fourth grade. Because if you tried before, they
don’t have yet enough skills and not yet enough at-
tention to start coding computers. And after this,
it’s like language. It goes downhill after fourth grade.
So from their point of view, I started to code actively
at 7th or 8th grade. From their point of view, I was
probably too old to become a good programmer.

PN: Well, I’ll keep your number fourth grade in
mind, because I just became a grandparent.

How and when were you first introduced to TEX
and friends?

BV: I’m a physicist by training. So one of the things
that physicists do, they write a lot of math, text and
so on. So when I was first working, it was the Soviet
Union, and then it became Ukraine in 1990s.

In the 1990s we had computers, and we had a
very interesting scientific word processor, which was
called ChiWriter. Probably some old hands like you
and me remember this thing. So I wrote my first
paper in ChiWriter. I remember that in many cases
it didn’t have enough fonts so it had a font editor—
you would make your own mathematical font and
your own mathematical symbols.

Then when I got a postdoc position in the United
States, I wrote, I think, a paper or two in Microsoft
Word which was not very pleasant, mostly because

it had a lot of equations. And then a friend of mine
who was a young professor at the same department
said, you know, there is this strange thing called
TEX and it’s much easier to write math in it. It
was something like 1994, and there was this program
OzTEX for Macintosh which had really ugly rendering
of text and math on the screen. It used DVI files
and the DVI viewer was really bad so the only way
to see how beautiful is your text was to send it to
the printer. The preview was bad but I started to
play with this and I thought, well, it’s programming.
I know how to program and now I see my text as a
program and I can just write down comments how my
text should look, and the concept was so attractive
for me. I started to work on this.

PN: So you were already an experienced program-
mer by the time you met TEX?

BV: I wasn’t a programmer. For a couple of years of
my life I was what was called a scientific programmer,
and after these two years I understood that I really
love programming as a hobby, but working eight
hours a day programming is probably not for me, so
I’m not a programmer. I really love programming
if I’m not made to do it from the morning to the
evening; let’s say that I’m an amateur programmer.

PN: I have to ask because you are responsible for a
great number of CTAN packages and related work,
and a lot of them in support of publishing.

BV: Yes.

PN: How did this relationship grow up? There is a
huge lot of CTAN packages that have no relationship
to publishing, as you know, like TEX by itself, but
with your packages you see a vein of publisher sup-
port.2 How did this happen? Is it because of your
own interest or . . .

BV: I don’t know. I think sometime in the beginning
of 2000 I started to know TEX was a hobby for me.
I wrote a couple of packages and then I saw this,
then somewhere I saw a possibility to publish an ad
for TEX consulting in TUGboat. Well, it’s a nice
hobby; maybe they can pay me for this hobby. And
I published an ad, and somebody called me and said,
we need this sort of style. Why not. And somehow
it went from there, and I guess most of it was ads in
TUGboat. There was word of mouth, and, you know,
as I said, programming and TEX programming as a
hobby is something that you do, I don’t know, on
the weekends and evenings. It’s probably one of the
most fascinating things you can do.

2 https://ctan.org/author/veytsman

Interview with Boris Veytsman

102 TUGboat, Volume 43 (2022), No. 2

PN: You mentioned your original training as a physi-
cist . . . It looks like that you always wanted to have
a foot inside industry and a foot inside academia.

BV: The thing is, as one of my mentors said in a
similar situation, I have a rather short attention span.
So there are a lot of people, and I deeply respect
the people who can do the same thing for years, for
decades, and they just do and do and do, and for
me it was always, okay, I understand how to do it,
I probably do it well, what else can I do with my
life? So I moved and moved. I have to say that in
my life, I did all the things from designing vacuum
cleaners to proving theorems and doing a lot and a
lot of things in between.

So I wouldn’t say that I want to be both in
academia and industry. I would rather say that I
want to be in as many places as possible. Yeah, of
course it has its own drawbacks, because if you do
something from year to year you probably can get
a lot of interesting things and a lot of success. But
unfortunately after several years I usually become
bored with what I’m doing and try to change it.

PN: I mean for somebody that wanted to have
their feet in several different places you must be
quite happy right now, having worked for George
Mason for so long now, inside CZI [Chan Zuckerberg
Initiative], and also president of TUG, with probably
one of the longest tenures I have seen.

BV: I’m really surprised that it was long. I need to
think about.

PN: What can you share with us about the work
inside CZI? Is it gratifying?

BV: I joined CZI at the point when I decided that
my main job was becoming boring. At the time I was
working for, it was ITT, it’s now L3Harris, I think,
and it was a very interesting job because we created
and maintained what’s called ADS-B, basically one
of the primary systems for air traffic safety. So I
loved to say for many years that if you fly over the
United States and don’t collide with anybody, then
I probably have some . . . I certainly would not say I
am completely responsible for your flights not having
collisions, but perhaps you may want to thank me
in part. But at this point, instead of building the
system, we started to maintain the system and it’s
much less interesting, it’s much more routine. So I
said let’s change everything I did and I moved to
Chan Zuckerberg Initiative which had a very inter-
esting idea to completely cure, manage, or prevent
all diseases before the end of the century.

As one of my hobbies, I did some biomedical
research for many years. I said okay, let’s try to do

this and I started to work. I had been working there
for five years (another long stretch). My primary
work was in what is called science of science. The idea
was to try to understand how people in biomedical
fields read literature, and how can we improve the
reading literature understanding, and so on.

I worked in this area, then Covid struck and
people did not know what to do. And I somehow
got recruited in the Covid effort in CZI and our
sister organization, Chan Zuckerberg Biohub, and
we started to think about mathematical modeling
for Covid, and I recalled my physicist training and
started to write models. We published several papers,
including papers in journals like Phys. Rev., Phys.
Biology, Scientific Reports, . . . Basically, it became
very fascinating. So right now I’ve somehow drifted
back into physics, biophysics and so on.

By the way, it’s one of the secrets if you have
a long tenure at the same place. (I have been with
Harris for 20 years and have been with CZI five years.)
If you have a short attention span and are interested
in new things, one of the things you can do, you can
reinvent what you are doing even on the same job.
And I did this several times at Harris. I’m trying
to do this at CZI and basically even if you stay, it’s
better to think that you are changed.

PN: Let’s change then to one other job, which is
president of TUG. I remember that you have stated
that your goals were to keep TUG intact, relevant in
a changing world of that setting when you started.
How do you gauge what you have achieved on that
goal and what still needs to be done?

BV: Okay, there are two things: you want to keep
the lights on, you want to keep going; and you want
to go into new directions, and TEX is a huge world.
There’s a lot of moving things, that it is difficult to
move them all. TUG has lots of people with quite
different ideas of what they want. So I think that
at the first part of this, keeping the lights on, what
we are doing, what we all are doing is good. We
have distributions coming out, we have members
coming in. I have spent some time trying to stop the
bleeding, the constant lowering down the numbers
of members. It’s very difficult to do.

Going into new directions, it’s very difficult to
make volunteers to work on the problems unless they
think they are most important. So I tried to explain
and try to influence. I think we did something in
two directions I think are most important. This
is accessibility and electronic books. We have now
much more progress. I don’t think that a lot of this
is due to my work. I think that there are much
better people and people with much better visions,

Paulo Ney de Souza

TUGboat, Volume 43 (2022), No. 2 103

and they did this, and many of them have talks in
this conference. I hope that some of what I was
doing, talking and trying to convince people that
this is what should be done, was helpful. I hope
that it helps to move a little bit in this direction.
But I don’t have to say that my contribution was
substantial or even significant. I want to hope that I
did something to convince people to go there.

We also have a lot of success in electronic for-
mats. There are several things that people are doing
in several directions. I really love the ebook package.
I really love this new HINT format which has a lot
of potential. I hope that it could be adopted. I hope
its business window is not closed and people are not
already entrenched in older and worse formats. And
there are lots of developments in this area.

So again, let me answer your question whether
I was able to do what I wanted. I would say that
there is a lot of movement in the right direction.
I don’t think that my role in this movement was
large enough, but I would like to think that I did
some pushing there. But one of the things you get
when you work at TUG, when you have so many very
smart, very dedicated, very knowledgeable people
use it, you learn humility. You just understand that
almost anybody, our developers, is much better than
you. You just must be humble and understand them.

PN: If you allow me, I’d like to change the subject
a little bit as well again. You are from Odesa.

BV: Yes.

PN: Lots of people around the world do not know
it very well. I have been to it. I went to Kyiv for
a conference in symbolic computation in the late
eighties and had the chance to do a very small trip
because my wife is a nurse and Crimea helped us—
the first place of nursing—and the fastest place to
get to at that time was Odesa. And I have a very nice
remembrance of that time. Right now, a city which
is besieged, and being a short lead from Mariupol,
Crimea, and all these places that we hear every day.
Do you have friends and families in there that worry
you?

BV: Yes, I have friends there. My immediate family
is here [in the US], but I have a lot of relatives and
I talk daily with people from Odesa. It’s incredibly
sad what’s going on and I never even thought that it
would be like this. Especially, I don’t know what is
your impression about it. Did you like it when you
were there?

PN: The meeting, it was my first time inside the
Soviet Union. People here in the US would not
even travel to the Soviet Union at that time. And

I had to go to other places to then pick up a plane
to go there. The computing was very rudimentary,
especially symbolic computation. So everybody was
very eager to talk to me. So I felt like I knew more
than I really knew, and I felt that I could help a
little bit more than I really could.

I had just started at the time playing with Max-
ima here and Richard Fateman had brought the
Maxima code and had installed it on the VAXes at
Berkeley. They were all very eager to experiment
and we did run many computations with them over
(postal mail) letters, letters that were written and
say oh, we would like to try the integration on this
particular function here in Maxima and see what
happens. And then I will try and send them the
result by mail, not email. And so this visit to there
was very nice. I remember buying CDs for a dollar
which were very, very good, Philharmonicas that
were exquisite music. And while here in the US we
would pay $12 for a CD, $14 for a CD. And it was a
nice trip.

BV: It’s interesting that you have been in at the
beginning of Maxima; great program and I still use
it almost daily. To tell the truth, it’s my favorite
computer algebra system. But speaking of Odesa,
besides it’s being beautiful and the city of my child-
hood, what I really like about the city, it’s one of
the things that Tony Judt—a philosopher and very
interesting writer—called Corner Cities. I don’t
know whether you know this notion. It’s basically a
place where several different cultures come together,
coincide, intermingle in the very old days, much be-
fore me, anybody from a difficult origin—Ukrainian,
Russian, Greek, Jewish, Yiddish— it was a multicul-
tural place in the best meaning of the city. It was
much less than this in Soviet times when Greeks were
deported, and so on, but still it started to become
more and more multicultural and more and started
to return to its old idea of intermingling of different
cultures and different things.

What’s going on now, I mean this aggression
from Russia, is some sort of reaction to the idea
of multicultural free life, because for me the idea
of freedom, of openness, and so on, is something
which really related to the city of my childhood. It’s
something which was important for me.

Nice that you have been there and nice that
you played with Maxima. It’s old days, it’s a great
program and I really love it. I work with all, I think,
or most commercial computer algebra systems, and
now I return to Maxima.

PN: When I found out that it could do integrations
and that later on I found out there is an algorithm

Interview with Boris Veytsman

104 TUGboat, Volume 43 (2022), No. 2

to do integrations. If a function has an integral, it
will compute it. It doesn’t tell you how long it will
take, but it will compute it. And that was one of the
things that meant the most in computing for many
years.

BV: It looked like magic. And since I was trained to
do this integration in the old Soviet manner, when
it would probably be considered cruel and unusual
here, when they just made you to work and work
and work on this. And when they saw how Maxima
was doing. . . .

PN: Do you think that this aggression from Russia
could have been averted? Like more integration,
more transit in between the two societies that were
built after the breakup, more that there was no way
that it was written on the wall that the autocratic
government in Russia would only be to this enemy.

BV: I’m not a specialist in this, and I have . . . It’s
very difficult to say. My gut feeling is that Russia
had enough problems and enough of very difficult
things inside that it was very tempting for them to
try to solve these problems on the path of war and
aggression. So my gut feeling is that, at some point,
it was probably inevitable at some level. But again,
I’m very much afraid of saying something in the field
which I’m not competent, so it’s just my thought.

PN: We’ve run out of time. I wish you the best for
especially for your family that stayed behind. That
probably would be the worst thing that you can have
with us and we share concerns with you. I guess
every day I have at the back of my mind people that
I have known there, and I have very long time, and
we should do more about this in the US.

I wish you a very successful future at CZI and
also with that, because your goals for accessibility
and ebook are just top priorities right now. And
thanks for taking the time to talk with me.

BV: Thank you very much for very interesting ques-
tions and very thoughtful talk. I really enjoyed it
very much. Thank you very much. And let me use
this occasion to tell you how I’m grateful for every-
thing you have been doing for this conference. It
would be absolutely impossible without your huge,
huge, huge work.

PN: It was nothing. Thank you. All right.

Paulo Ney de Souza

The future of technical documentation

starts with its recent past

Carlos Evia

Abstract

This keynote presentation addresses how recent trends
to align technical documentation practices with “de-
veloper-friendly” workflows may be detrimental to
documentation authors and their users. A proposed
solution is in the recent past of technical documen-
tation as a discipline, where tools and ideas rooted
in structured authoring and markup, reuse, and per-
sonalization can still provide solutions to present—
and future—needs related to technical content.

1 Introduction

As I was preparing this keynote presentation, I re-
alized that a subtitle—or even alternative title for
it— should be “We all owe something to a former
IBMer”, or the more complimentary “Damn, those
former IBMers were right”.

I do love talking about the future of technical
documentation, but I also enjoy talking about its
past, and particularly its recent past. Technical docu-
mentation is still a very much needed and important
product, or genre, of technical communication. As
a bigger umbrella term to contain the processes of
developing and conveying technical information from
experts to a non-technical audience (or the dreaded
“laypeople” noun), technical communication is pretty
much concerned with documentation, but mainly
as part of a universe of genres or products that re-
quire that mediation between user and expert that
characterizes the job of technical communicators.

And here is where I will go back to the recent
past of technical communication. Ten years ago,
the Adobe Technical Communication Suite (TCS)
team distributed on several social media channels
a video titled “Future of Tech Comm”. The video
used stop-motion animation and fast-draw techniques
to summarize the features of “Adobe’s Tools and
Services” for technical communication. As a pair
of rapidly animated hands assembles Lego pieces,
the video’s narrator describes that “for some, [the
future of technical communication] is all about more
and more structured content and the ability to work
faster and smarter with XML and DITA constructs”.
Approaching the end of its 2:30-minutes runtime, the
video claims that “it is most certainly an exciting
future to be in” [1].

doi.org/10.47397/tb/43-2/tb134evia-techdoc

Carlos Evia

TUGboat, Volume 43 (2022), No. 2 105

2 The Darwin Information Typing
Architecture

At this point we encounter a first batch of former
IBMers, as the main engine behind the future of tech
comm heralded by Adobe in that video was DITA

(Darwin Information Typing Architecture). This
should be interesting for you as LATEX users, because
it involves a markup language. DITA is an open
standard for structuring and publishing technical
information. Sounds familiar? DITA was—big sur-
prise—developed by IBM in the late 1990s, and is
very much alive as an open standard maintained by
the non-profit consortium OASIS (Organization for
the Advancement of Structured Information Stan-
dards).

In an interview for the website “DITAWriter”,
Don Day, a former IBMer who was one of the original
developers of DITA, chronicled the origins of his XML

experiments while working for IBM in the last decade
of the 20th century as follows:

With the advent of XML as a new markup
standard in 1998, the Customer and Service
Information (C&SI) group began adopting a
Tools and Technology mantra under Dave
Schell who was the strategy lead. By 1999,
Dave was aware of my participation as IBM’s
primary representative with the XSLT and
CSS standards activities at the World Wide
Web Consortium, and I delivered a presenta-
tion at a formative meeting in California that
forecast the possibility of XML to solve IBM’s
still-lingering problems with variant tools and
markup usage [2].

DITA consists of a set of design principles for
creating “information-typed” modules at a topic level
and for using that content in delivery modes such as
online help, technical documentation, and product
support portals on the Web. Day explained that,
when naming the standard, DITA “represented a
great deal of messaging in a compact and memorable
acronym”:

• Darwin: for specialization and how things could
“evolve” from a base;

• Information Typing: for representation of
knowledge as typed units;

• Architecture: a statement that this was not
just a monolithic design but an extensible tool
that could support many uses [2].

IBM eventually donated DITA as an open stan-
dard, which is currently maintained by OASIS. DITA,
however, “has evolved substantially since that initial
donation to encompass a very wide scope of require-
ments indeed” [7, p. 6]. At the OASIS DITA Technical

Committee, the standard continually evolves with the
purpose “to define and maintain the Darwin Informa-
tion Typing Architecture (DITA) and to promote the
use of the architecture for creating standard informa-
tion types and domain-specific markup vocabularies”
[8]. At OASIS, a small army of former IBMers (in-
cluding Kris Eberlein, Eliot Kimber, and Michael
Priestley) has kept the DITA standard evolving and
with very healthy adoption and usage figures.

Just as in LATEX we declare a document class to
start a file, in DITA we can use different topic types
that have specific semantic elements to structure, and
later publish, technical information. The literature
focuses on three topic types that “represent the vast
majority of content produced to support users of
technical information” [4, p. 7]: concept, task, and
reference, which Pringle & O’Keefe define succinctly
as follows:

• Concept: contains background information and
examples;

• Task: includes procedures (“how to” informa-
tion);

• Reference: describes commands, parameters,
and other features [9, p. 235].

For authors of technical documentation, these
foundational topic types provide constraints and
structures beyond a presentation-oriented template.
In DITA, authors can create consistent topics to as-
semble collections of information with elements that
can be reused even at the phrase level. For example,
a concept could be an introduction to a particular
software package, while tasks can provide instruc-
tions on how to install and use the software package,
and a reference topic can list common extensions and
tools associated with the package.

In practical terms, DITA’s topic types include
XML tags for content “moves” or strategies (such as
a short description, steps, and examples) frequently
used in technical publications. Pure XML does not
provide a defined set of tags, but DITA does offer
a catalog of elements and attributes relevant for
technical communicators.

The Darwin component of DITA is one of its
main “selling” points. DITA is customizable for spe-
cific situations that will still keep it as part of the
standard. Maybe the element types included in the
default task topic type are too generic for Compa-
nyX. The company can then specialize the task type
to create, rename its own structural elements that
will still validate in DITA-aware tools.

And that is the recent past of technical doc-
umentation: workflows and tools based on DITA

became mainstream and enabled practices such as

The future of technical documentation starts with its recent past

106 TUGboat, Volume 43 (2022), No. 2

single sourcing, modularity, and multi- or omnichan-
nel publishing. Let me spend a few minutes describ-
ing those, and you will see that you can do similar
things with LATEX-based workflows for academic and
scientific publication.

2.1 Single sourcing

A team can have a common repository of topics, or
even element types (a common legal disclaimer in a
paragraph) that many files can use. By referencing
the single source, all files that mention it would be
automatically updated if there’s a change in the
source. Much better than copy-paste. We can, of
course, do some of that with LATEX.

2.2 Modularity

Nothing new for LATEX users here, but in DITA au-
thoring a whole “document” can be composed with
pieces from different sources. In the particular case
of DITA, most of these aggregation processes will use
a file type known as a map, which includes hyper
references to topics and other resources (internal or
external).

2.3 Multi- and omnichannel publishing

Like DVI on steroids, multichannel publishing is
one of DITA’s key features. By default, the DITA

Open Toolkit can publish to PDF, HTML, Markdown,
Eclipse Help, HTML Help, and other formats. Similar
to LATEX, the user community has also contributed
with plugins that enable publishing to many other
formats. Surprising no one, many of those publishing
pipelines involve a stop in LATEX-land.

Omnichannel publishing is even more interesting,
as it enables content-as-a-service approaches that
“serve” DITA topics or components via APIs. DITA

is particularly good at this because of the semantic
value that its XML tags and attributes can provide
as metadata for filtering and customization.

3 The present

And this is when we get to the present of technical
documentation. Adoption numbers and success sto-
ries should not hide that the evolution of technical
documentation takes place on a slightly rocky path;
even in practitioner circles, there has been pushback
and criticism against XML and its relationship with
technical communication. In blogs and social me-
dia exchanges, some practitioners have questioned
the status of XML, and DITA, as the main markup
language for information products. While acknowl-
edging DITA’s effectiveness as a replacement for large
user manuals in complex industries, a few authors
lament that “this form of structured content can feel

cold and clinical, especially to those from the edito-
rial or marketing side of content” [10, p. 20]. Others
argue that in the world of computing code verbose
languages are becoming obsolete, but intelligent con-
tent still relies on XML and its nested tag structures.

Those are valid concerns. DITA, as it evolves as
an open standard, needs to address them and learn
from its users. And here we have another former
IBMer to the rescue. Michael Priestley, one of the
key architects of DITA back in the late 1990s, has
been working on a simplified version of the stan-
dard known as Lightweight DITA (LwDITA). As
a disclaimer, I was involved in the development of
LwDITA and worked closely with Priestley for many
years. Although I am not an active member of OASIS

any more, I am still a DITA and LwDITA peddler
(see this keynote presentation as an example!).

LwDITA is a topic-based architecture for tag-
ging and structuring intelligent content using flexi-
ble markup options [3]. Lightweight DITA aims to
streamline the DITA authoring experience by pre-
senting three formats for content creation:

• XDITA, an XML format with a subset of DITA

elements that can be used for validated author-
ing and complex publishing chains;

• HDITA, an HTML5 format that can be used for
either authoring or displaying content;

• MDITA, a Markdown format with a subset of
XDITA elements that can be used for maximizing
input readability while maintaining structure in
content.

An author does not need to use all three “flavors”
at the same time to adopt LwDITA. They can work
in HDITA all the time and they would still be using
LwDITA. Authors can live in an MDITA environment
without XML or HTML tags and would still be using
LwDITA. All three LwDITA formats are compatible
with each other and with DITA XML. For a team of
authors with diverse technical backgrounds and com-
munication skills, the different formats of LwDITA

allow collaboration and content exchange in a cen-
tralized solution. For example, CompanyX can hire
a technical writer to create instructions in XDITA

(based on XML) while a marketing professional writes
a description of the app’s features in HDITA (based
on HTML5), and an engineer uses MDITA (based on
Markdown) to create a basic API reference. All their
topics are treated as DITA and can take advantage
of the standard’s reuse, filtering, and single-sourcing
capabilities.

Now, yet another former IBMer has come out
to warn users about going too lightweight. Michael

Carlos Evia

TUGboat, Volume 43 (2022), No. 2 107

Iantosca warns about the impending doom of Mark-
down and reStructuredText (another lightweight au-
thoring format that has become popular with de-
velopers and some technical authors). Iantosca [6]
states that the degree of granularity and flexibility
that what he labels as cognitive content requires
cannot happen with lightweight languages. Iantosca
defines cognitive content as follows:

[. . .] a strategy, an architecture, and an oper-
ational model. It enables dynamic, machine-
based discovery, mining, analysis, retrieval,
assembly, and delivery of non-linear content
objects using advanced semantic technologies
that rely on predictive relationships between
content objects and inbound signals [5].

3.1 Conclusion

And that’s where DITA excels. But this requires
going back to the recent past of technical documen-
tation and to the future of “tech comm” that Adobe
heralded in its promotion video. Let lightweight lan-
guages work in a LwDITA-like environment and save
the intense structure for DITA.

3.2 What does this mean for LATEX users?

I am a big proponent of ventilating silos, and here
I see Markdown as a good bridge to connect the
academic and scientific typesetting of LATEX with
the technical documentation of DITA and LwDITA.
The markdown package is your friend if you need (or
want) to use modules from a single source repository.
If you need stronger features to achieve cognitive
content or omnichannel publishing, then you can
move to XDITA and full DITA XML. That’s how I
see the future of technical documentation.

References

[1] Adobe TCS. Future of Tech Comm, Jul 2012.
https://www.youtube.com/watch?v=

dSdhnyDF0YY

[2] DITA Writer. Don Day and Michael Priestly
on the beginnings of DITA: Part 2, Oct 2018.
https://www.ditawriter.com/don-day-and-

michael-priestly-on-the-beginnings-of-

dita-part-2/

[3] C. Evia. Creating intelligent content with
Lightweight DITA. Routledge, New York, NY,
2019.

[4] J.T. Hackos. Introduction to DITA: A user
guide to the Darwin Information Typing
Architecture including DITA 1.2. Comtech
Services, Denver, CO, 2011.

[5] M. Iantosca. A future powered by knowledge
graphs. BrightTALK. https://www.

brighttalk.com/webcast/9273/525482

[6] M. Iantosca. Mark-Duh? The impending doom
of Markdown and reStructred Text, Mar
2022. https://thinkingdocumentation.com/
blog/f/mark-duh-the-impending-doom-of-

markdown-md-and-restrucured-tex

[7] E. Kimber. DITA for practitioners.
XML Press, Laguna Hills, CA, 2012.

[8] OASIS Open. OASIS Darwin Information
Typing Architecture (DITA) TC.
https://www.oasis-open.org/committees/

tc_home.php?wg_abbrev=dita

[9] A.S. Pringle, S. O’Keefe. Technical writing
101: A real-world guide to planning and
writing technical content. Scriptorium Press,
Research Triangle Park, NC, 2009.

[10] S. Wachter-Boettcher. Content everywhere:
Strategy and structure for future-ready content.
Rosenfeld Media, Brooklyn, NY, 2012.

æ Carlos Evia

Virginia Tech

Blacksburg, VA 24061

USA

cevia (at) vt dot edu

https://carlosevia.com

The future of technical documentation starts with its recent past

https://www.youtube.com/watch?v=dSdhnyDF0YY
https://www.youtube.com/watch?v=dSdhnyDF0YY
https://www.ditawriter.com/don-day-and-michael-priestly-on-the-beginnings-of-dita-part-2/
https://www.ditawriter.com/don-day-and-michael-priestly-on-the-beginnings-of-dita-part-2/
https://www.ditawriter.com/don-day-and-michael-priestly-on-the-beginnings-of-dita-part-2/
https://www.brighttalk.com/webcast/9273/525482
https://www.brighttalk.com/webcast/9273/525482
https://thinkingdocumentation.com/blog/f/mark-duh-the-impending-doom-of-markdown-md-and-restrucured-tex
https://thinkingdocumentation.com/blog/f/mark-duh-the-impending-doom-of-markdown-md-and-restrucured-tex
https://thinkingdocumentation.com/blog/f/mark-duh-the-impending-doom-of-markdown-md-and-restrucured-tex
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita

108 TUGboat, Volume 43 (2022), No. 2

A stroll through computer history

at the CHM

Dag Spicer

D
z
h
o
u
,
W

ik
ip

e
d
ia

,
C
C

B
Y
-
S
A

The Computer History Museum is the world’s leading
institution for the preservation, display and inter-
pretation of computing history, from antiquity to
the present day. It began life as the DEC (Digi-
tal Equipment Corporation) Computer Museum in
the mid-1970s when DEC co-founder and president
Ken Olsen and DEC VP of Engineering Gordon Bell
rescued the legendary 1951 MIT Whirlwind com-
puter from the landfill. Its modern Silicon Valley
instantiation began in 1995 when Gordon Bell and
entrepreneur Len Shustek hired Dag Spicer, then a
PhD student in history and electrical engineering at
Stanford University, to manage the collection.

Starting with some 1,200 seminal objects, many
from the first generation of computing, CHM’s col-
lection now includes over 120,000 items, comprising
hardware, software, ephemera, media, and over a
linear mile of computer-related documentation. The
collection can be searched.1 About 1% of this col-
lection is on permanent display in CHM’s award-
winning exhibition, “Revolution: The First 2000
Years of Computing”, and we’ll be taking a look
at some of the canonical objects from “Revolution”
during this talk. These will include the Abacus,2 the
Antikythera Mechanism,3 ENIGMA,4 SAGE,5 IBM

System/360,6 Cray-1,7 Xerox Alto,8 Apple-1,9 an

1 www.computerhistory.org/collections/search/
2 www.computerhistory.org/revolution/calculators/1/1
3 www.computerhistory.org/revolution/calculators/1/

42
4 www.computerhistory.org/revolution/

birth-of-the-computer/4/82/334
5 www.computerhistory.org/revolution/

real-time-computing/6/120
6 www.computerhistory.org/revolution/

mainframe-computers/7/161
7 www.computerhistory.org/revolution/supercomputers/

10/7
8 www.computerhistory.org/revolution/input-output/

14/347
9 www.computerhistory.org/revolution/

personal-computers/17/312

original Google server rack,10 and more. The presen-
tation is application centered so we’ll focus on what
problems people were trying to solve at the time and
how that can compare with what came before and
what came after.

A second major exhibit, “Make Software: Change
the World”,11 celebrates the role of code in our lives
by focusing on seven application stories: Photoshop,
Wikipedia, Texting, MRI, Car Crash Simulation, and
World of Warcraft. The idea is that each of these
types of software often affects us, either directly or
indirectly, as we go through life. It’s a near statistical
certainty that most advertising images you see, for
example, have been processed, to some degree, in
Photoshop.

Beyond its public exhibit functions, CHM is also
a world-class center for research into the history of
computing. At its research center, anyone wishing to
access the Museum’s massive archive of computing
literature and reference material has only to make
an appointment. There are no restrictions or costs
(unless you request scans).

In-person visitors to the Museum can also enjoy
three unique “retrocomputing” demonstrations of
vintage technology of the 1960 DEC PDP-1,12 the
1959 IBM 1401 Electronic Data Processing System,13

and the 1956 IBM RAMAC14 —the head-disk assem-
bly of the world’s first disk drive. Plenty of whirling
tape drives, flashing lights, and interesting mechani-
cal sounds await you!

⋄ Dag Spicer

dspicer (at) computerhistory dot org

[Editor’s note: From its start in Marlborough, Mas-
sachusetts, the museum moved to Boston, where, on
21 May 1986, the publication of Knuth’s Computers

& Typesetting series was celebrated with a “coming
out” party. Read about it at tug.org/TUGboat/

tb07-2/tb15complete.pdf starting on page 93.]

10 www.computerhistory.org/revolution/the-web/20/391
11 www.computerhistory.org/makesoftware/exhibit/
12 www.computerhistory.org/exhibits/pdp-1/
13 www.computerhistory.org/exhibits/ibm1401/
14 http://www.ed-thelen.org/RAMAC/

doi.org/10.47397/tb/43-2/tb134spicer-chm

Dag Spicer

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://www.computerhistory.org/collections/search/
https://www.computerhistory.org/revolution/calculators/1/1
https://www.computerhistory.org/revolution/calculators/1/42
https://www.computerhistory.org/revolution/birth-of-the-computer/4/82/334
https://www.computerhistory.org/revolution/real-time-computing/6/120
https://www.computerhistory.org/revolution/mainframe-computers/7/161
https://www.computerhistory.org/revolution/mainframe-computers/7/161
https://www.computerhistory.org/revolution/supercomputers/10/7
https://www.computerhistory.org/revolution/input-output/14/347
https://www.computerhistory.org/revolution/personal-computers/17/312
https://www.computerhistory.org/collections/search/
https://www.computerhistory.org/revolution/calculators/1/1
https://www.computerhistory.org/revolution/calculators/1/42
https://www.computerhistory.org/revolution/calculators/1/42
https://www.computerhistory.org/revolution/birth-of-the-computer/4/82/334
https://www.computerhistory.org/revolution/birth-of-the-computer/4/82/334
https://www.computerhistory.org/revolution/real-time-computing/6/120
https://www.computerhistory.org/revolution/real-time-computing/6/120
https://www.computerhistory.org/revolution/mainframe-computers/7/161
https://www.computerhistory.org/revolution/mainframe-computers/7/161
https://www.computerhistory.org/revolution/supercomputers/10/7
https://www.computerhistory.org/revolution/supercomputers/10/7
https://www.computerhistory.org/revolution/input-output/14/347
https://www.computerhistory.org/revolution/input-output/14/347
https://www.computerhistory.org/revolution/personal-computers/17/312
https://www.computerhistory.org/revolution/personal-computers/17/312
https://www.computerhistory.org/revolution/the-web/20/391
https://www.computerhistory.org/makesoftware/exhibit/
https://www.computerhistory.org/makesoftware/exhibit/
https://www.computerhistory.org/exhibits/pdp-1/
https://www.computerhistory.org/exhibits/ibm1401/
http://www.ed-thelen.org/RAMAC/
https://tug.org/TUGboat/tb07-2/tb15complete.pdf
https://tug.org/TUGboat/tb07-2/tb15complete.pdf
https://www.computerhistory.org/revolution/the-web/20/391
https://www.computerhistory.org/makesoftware/exhibit/
https://www.computerhistory.org/exhibits/pdp-1/
https://www.computerhistory.org/exhibits/ibm1401/
https://http://www.ed-thelen.org/RAMAC/
https://doi.org/10.47397/tb/43-2/tb134spicer-chm

TUGboat, Volume 43 (2022), No. 2 109

Type design: Catching up to the past

Steven Matteson

Editor’s note: This is a lightly edited transcript of the

talk given at the TUG 2022 conference. Some of the

illustrations are omitted here; for the full set, and the

video of the talk, see tug.org/tug2022.

Abstract

The typographer’s goal is to provide the best possi-
ble reading experience for the reader. Thirty years
of disruptive technologies have made this a greater
challenge despite the overwhelming number of type
designs available to us. Steve Matteson will give
several historical and contemporary examples where
fonts have been adapted or designed to meet con-
stantly changing technological demands.

Thanks for the invitation back to speak this year.
“Today’s type designer ought to design typefaces

for specific needs.” This quote is from Chuck Bigelow,
who I met in 1987 when he received the Goudy Award
at RIT. It was an epiphany for me as a student.
I’d already fallen hopelessly in love with letters—
typefaces, typography, lettering. I’d been steeped in
letterforms but where did I fit in?

After all, as a student, you study 2,000 years of
letterforms and think ‘it’s all been done’. There’s no
way I can do better or improve on the achievements
of the masters.

Typeface designs have evolved on a parallel
course with changes in the way in which technology
reproduces them. With each change in technology we,
as type designers, have to think about what were the
best examples of design using previous technologies.
With this understanding we can improve designs for
the future.

While some of these designs were certainly in-
fluenced by fashion, political movements and basic
function rather than form, many also saw some un-
derlying change in technology which had an impact
on the success of the new approach to design.

When I started working with the latest desktop pub-
lishing tools at school and at work, I could see that
not all fonts could hold up to the limitations of res-
olution and imaging technologies. New typefaces
could be designed like bitmap fonts—which were
used for individual size—or scalable fonts like Lu-
cida, a family of different styles which worked well
together even for bad laser printer output.

doi.org/10.47397/tb/43-2/tb134matteson-adapt

Type design: Catching up to the past

110 TUGboat, Volume 43 (2022), No. 2

I quickly found that old typefaces were being
adapted for new technologies like TrueType. When
it came time for me to work on Microsoft’s first
TrueType fonts, it was already the third time in my
short career that I’d be making this font family for
a different technology.

I’m going to look at a few specific aspects of
type design that are relevant today and challenge us
type designers to come up with old solutions to new
problems. Ligatures: connected letterforms which
either correct for shapes that would otherwise collide
or simply make a more elegant combination. Kern-
ing: the space between pairs of letters (different from
tracking since kerning historically refers to the re-
moving of material between letters to fit them closer
together). Imaging: how the letters reproduce under
various conditions, be it letterpress on dampened
paper or shown through an RGB filter on a piece of
glass and held in your hand.

All of these topics are shown here on a page of print-
ing that launched a hundred typeface interpretations.
This is Jenson’s typeface of about 1470. Modeled
on an advanced form of the calligraphic ‘humanist
bookhand’. This is my first reference to having to
look to the past for guidance. For our ligature ex-
ample you see the ligated or ‘connected’ ct, long-s t,
and ss ligatures.

Kerning (or rather the lack thereof) can be spot-
ted between Te. The process of hand setting text is
already quite tedious; having to kern every gap in
12pt type would be beyond the pale.

While the Qu below the Te appears to be kerned,
they were likely cast as a single piece of type to allow
the tail to tuck under the u. Given how common
this combination is in Latin, it was not an unusual
practice.

Finally, looking at the image quality achieved
on this 550 year-old page, one can see the letterforms
hold up remarkably well in consistency and color.

The variables of hand inking, uneven paper surface
and the commonality of damaged pieces of type (the
ae in quae on the line below Quarto; the e in Septimo
on the next line; the g two lines further), viewing this
at actual size demonstrates a remarkable achievement
in letter design, typesetting, printing and rubricating.

Ligatures. One of the first things that strikes a care-
ful observer of the Gutenberg bible is the beautifully
aligned justified columns of text.

Gutenberg went to great lengths to make paper
smooth enough to print on, ink black enough to look
like the ink used by scribes, and typeset so carefully
and in such a way that rubricators could hand color
initial letters in red after the black ink was dry. On
top of this he cast hundreds of additional special
sorts— letter combinations connected in pairs or
triples—varying in width and shape just enough to
aid in justifying lines of text.

Johann Gutenberg: The Man and His Invention by Albert Kapr (Aldershot [England]: Scolar Press, 1996), p. 160.

Steven Matteson

TUGboat, Volume 43 (2022), No. 2 111

Gutenberg’s font of type had about 290 sorts, so if
a line came out too long or short he had options to
adjust the width of the line. Many remark that his
columns line up as well as the scribes could do by
hand.

Jump forward 100 years and we see another example
of ligatures mimicking handwriting— in this case
the Greek script. Christophe Plantin’s polyglot bible
(ca. 1560) shows here, when viewed in detail, ligatures
of common combinations of two and three letterforms,
and alternative letter designs.

For the Latin alphabet—post Gutenberg—we
have a more basic set of ligatures to help with the
characters which are problematic— like the Qu com-
bination in the Jenson example but more notably

in the f and long s (which I’ll leave out of this talk
because it’s an odd duck we no longer use).

In this slide you can see how a type founder
could cast the type so that it would overhang onto
the shoulder of the following letter. This allowed for
elegant f shapes, but would cause awkward situations
like the dot of the ‘eye’ or the ascenders of h, l etc.

The solution was to create a new sort with a
specially designed pair of letters.

Linotype machine, 1884

When the Linotype machine was invented the grace-
ful overhang of f had to be tempered for the sake of
mechanization. Ligatures could be added in manu-
ally, as shown in this slide, but were often just left
out.

Monotype machine, 1897

The release of the Monotype keyboard and caster 13
years later reintroduced ligatures to the mechanized
work flow. An operator could keyboard ligatures
directly in the flow of text. For this and other reasons
the Monotype machine was preferred for fine book
publishing. Again looking to the past to restore lost
aesthetics.

Type design: Catching up to the past

112 TUGboat, Volume 43 (2022), No. 2

OpenType, 1996

Two contemporary examples bring us back to Plan-
tin’s and Gutenberg’s attempts at mimicking hand-
writing through the use of ligatures (among many
other design tricks). John Hudson’s tour de force,
Gabriola has over 4500 characters to include Latin,
Greek and Cyrillic. But it is unique in its exten-
sive collection of ligatures. I think there are 100
f-ligatures alone. The beautifully comprehensive
Greek is similar to Plantin’s with as many as three
characters joined as though they were written by
hand.

Hermann Zapf’s Zapfino has less than half the
characters of Gabriola, and only supports Latin char-
acters. Naturally a connected typeface such as this
requires a huge number of special combinations to
help fool the reader into thinking that a document
was written specifically for him or her. Who better
to concoct such a scheme than a master calligrapher
such as the late professor.

Left: 180pt kerned; right: 16pt unkerned

Kerning. As I alluded to with the Jenson example,
Kerning was once a physical and time consuming
process. To cut the wood or lead shoulder away
from two letters so they fit together neatly required
a steady hand and a good saw and file. I experienced
this firsthand in our once-great letterpress lab at RIT

when, just as our professor walked in, there was a
loud ‘ping’ sound as a piece of type ricocheted out of
a power saw. A lab assistant was then admonished
for attempting to miter a small piece of metal type
and had lost his grip but luckily not any fingers.

Courtesy of StarshapedPress.com

This lovely example from Starshaped press, used
in an article ‘Let’s hear it for the kern’, shows the
amount of material that would have to be removed
to fit the AV in this font. It also shows that, while
the second line is kerned, it’s not much better, given
the resulting uneven spacing. The I and L would
also need to be spaced apart with spacing material
to reflect the openness of the AVA combination.

The Talking Le av es

Steven Matteson

TUGboat, Volume 43 (2022), No. 2 113

Kerning, as often as not, could make things worse
in display typography where not every piece of type
is notched. Here the unkerned word Talking looks
better than the kerned result below: Leaves becomes
three fake words: le av es.

Things quickly changed with phototypesetting, where
it was comparatively very easy to kern. Just reverse
or advance the filmstrip, expose a character and move
on. No risk of losing a finger. “Tight not touching”
was one descriptor of this style of typography. Others
called it sexy spacing. Whatever you called it, this
style dominated the scene for easily two decades. I
call it kerning and not tracking because the people
that were really good at this were not just entering a
negative spacing value for whole lines of text - they
carefully adjusted each letter combination in each
word for the greatest effect.

design by Herb Lubalin

The master of this style was Herb Lubalin. As a
lettering artist he knew exactly what he was doing
when it came to interlocking and fitting letters. In the
case of his Avant Garde typeface he nudged letters
so close together he needed a huge set of ligatures of
overlapping shapes to get the effect he wanted. Sexy
spacing indeed.

By the time desktop publishing was taking off the
sexy spacing schtick was overdone, even farcical. Got
a long headline? Just keep hitting the minus button.
Never mind using a condensed typeface or just a
smaller size.

Out of curiosity I googled kerning and found 4.4
million hits. Mostly it seems by people who never
actually designed a typeface in their lives. All these
rules and steps written by people with, perhaps, no
practical experience at all. Thank you internet. My
favorite—and probably the best piece of advice—
kerning is not always a good thing. A title for a
communication arts article that I haven’t actually
read but the title gives me some hope.

As far as my own thoughts and approaches for kern-
ing: I go in with the understanding that it is not a
cure-all. You can kern to improve the basic rhythm

Type design: Catching up to the past

114 TUGboat, Volume 43 (2022), No. 2

in a typeface but it is impossible to solve the balance
of every imaginable scenario—even my own name.
In fact I vividly remember my first kerning assign-
ment in school where I was given a 72 pt drawer of
type and told to typeset my name in all caps. The
instructor said to me ‘ooh you’re going to have fun
with this’, referring to the big white gap caused by
the TT combination.

Today’s big advantage with kerning is the fact that
we can consistently space every re-occurrence of a
letter shape. Accented letters and punctuation can
all be adjusted to fit together the same way a scribe
would combine them by hand.

Aldus Manutius’ Virgil and Horace, printed in 1501

Finally I’ll discuss imaging of type and how it’s af-
fected type design. We’ve already had a good look at
Jenson and Gutenberg so let’s jump ahead a bit to
1501. When one speaks of beautiful books and beau-
tiful typography, it’s pretty easy to get swept away
with Aldus Manutius’ Virgil and Horace. These are
the first use of italic types in print. They were cut by
Francesco Griffo and based on pre-Carolingian calli-
graphic hands like the work of Giovanni Tagliente.

Italics were very popular during the Italian Re-
naissance both for their fashionable look and the fact
that their narrow letter width allowed more lines to
fit per page.

Printed on smooth vellum, the meticulous de-
tails of this gorgeous type hold up beautifully. Thin
strokes are not too thin, the rhythm instilled by the
italic slant is very regular and even in color.

In 1788 Giambattista Bodoni printed his specimen of
typefaces—about 140 individually cut sizes of types.
The Manuale Tipographico, as it’s called, clearly
shows the contemporary fashion of upright stress
and extremely fine hairlines. But it also illustrates
an important reality that people in today’s digital
type world forget. Each size is a slightly different
design, cut by hand for maximum style, legibility
and proportion.

Scalable type expectations

To illustrate: what we expect today is for the same
typeface to work at every size we select. 4 or 400
point—same letter, just a different size. If this
were really meant to be, Bodoni’s largest and most
contrasting size for display would be difficult to read
in text. On the left you can see the condensed forms
and somewhat wobbly rhythm compared to a true
text cut on the right.

Steven Matteson

TUGboat, Volume 43 (2022), No. 2 115

1994 ITC Bodoni

Conversely, if we set the text size as big as the display,
we see how heavy the hairlines are in order for them
to hold up at small sizes. ITC Bodoni claims to be
entirely accurate to the type punches that Bodoni
cut for 6, 12 and 72pt. I remain a bit dubious about
this though I haven’t had the pleasure of going to
Parma Italy to see for myself.

2019 Walbaum

Another quick example of using a display face for
text. Walbaum’s extreme hairlines are beautiful
and elegant in the intended size, but blow out in
text. This may remind some of things like the Vogue
magazine logo, whose hairlines are so thin they’d
never print well for anything smaller than a logo.

Times New Roman, made by Monotype for casting
metal newspaper type, had over 30 different master
sizes created. Each unique in slightly different ways.
When you look at the catalog you might be struck
by how legible Times is at 5pt and how elegant it
is at 72. This cannot be matched in digital unless
different designs are created for this wide range of
uses. The digital version of Times was based on the
14pt metal size drawings.

The idea being that 14 was text-like enough for ex-
tended reading but delicate enough for large sizes.
You could call it Times New ‘Average’. It works
reliably in text but struggles for the extreme small
use. It looks ok in display but loses a great deal of
its finesse.

Type design: Catching up to the past

116 TUGboat, Volume 43 (2022), No. 2

The Monotype archive has every drawing of every size
of typeface. I found this lovely unique illustration of
size overlays. This g from a typeface called Spectrum
by Jan van Krimpen shows the nuanced changes from
6, 8, 12pt sizes. You can see slight adjustments to
weight and the amount of prescribed spacing on each
side.

This notion of making designs for specific sizes, or
size ranges, is what drew me into the fray of the
e-reader boom. Seeing how really well designed fonts
that were made specifically for print were falling
apart in digital products encouraged me to look at
size masters for solutions.

The problem of e-Readers was not just of low
resolution; the poor contrast of e-ink screens added
to the deformation of letterforms. The magnetic
disks that were supposed to flip to their black or
white sides in the e-Reader hardware didn’t always
do so, adding to the grey-cast of the screens. I think

one engineer told me ‘white’ was actually about 70%
grey in the best scenarios.

Amazon had chosen a pretty solid design for
the Kindle: Thesis Serif by Lucas de Groot. It had
humanist book proportions, was mono-linear with
sturdy serifs. Most designs of this ilk are not book
proportioned—they’re typically very geometric such
as Rockwell or Stymie and not great for reading
extended text.

early e-ink screenGeorgia, by Matthew Carter, renders poorly on an

early e-ink screen

When Barnes and Noble started developing their com-
peting product, the Nook, I immediately suggested
what I thought were outstanding low resolution text
fonts—Lucida and Georgia. The results of both
were quite bad; one could never have predicted how
bad without actually seeing the product firsthand.
Here you can see Georgia falling apart with the 4 bits
of greyscale and low contrast causing many letter
details to consistently drop completely out of sight.
Unfortunately I don’t have a picture of it but Lucida
almost looked like a stencil design as hairlines simply
looked detached from the stems.

Monotype’s Amasis typeface works better but still needs Monotype’s Amasis typeface works better but still

needs improvements

Steven Matteson

TUGboat, Volume 43 (2022), No. 2 117

I decided to try Monotype’s Amasis family as a start-
ing point—shown here with improved contrast but
still not quite right. I made several edits to the design
creating an “e-paper specific” version which bumped
up the visual contrast by strengthening hairlines a
bit further and increasing the x-height slightly— just
as one would do in making a small-size font master.

Now, with e-paper’s latest generation the resolution
is 300dpi and the contrast closer to 90% white. The
font menu is far more extensive as a result. The fonts
still need more robust qualities than many existing
digital book faces but the options are far greater in
number than when they started.

At the same time all of this was happening with
e-paper, LCDs were gaining in pixel density. LCD

monitors, however, varied a great deal from one
to another and to complicate things further every

platform, browser and some apps all rendered type
differently.

Interesting side note: E-reader or tablet com-
panies would order screens, reject them based on
some hardware flaws and they’d get sold to automo-
tive companies for their navigation systems further
degrading that sector for reading.

This image of different rasterizations of the same
typeface, Verdana, illustrates well the moving tar-
gets we faced in designing fonts for screen use. The
Segoe typeface I designed for Microsoft’s OS in 2004
was carefully analyzed with the ClearType rasterizer
turned on. Now the technology has changed and
resolution has improved I’m not sure what’s being
used but it still looks ok.

2010 iPad, 132dpi LCD screen

When the iPad came out Apple heralded their book
app. They provided a menu of fonts chosen at ran-
dom rather than by quality for reading on screen.
Only Palatino was pleasant to read. They offered
Monotype Baskerville but it looked delicate and wan
on the iPad screen.

nn
Type design: Catching up to the past

118 TUGboat, Volume 43 (2022), No. 2

could get nothing there but poor entertainment, and the
Impertinant Bable of one of the worst of men, among
many others of which our Host made one, who, had he
bin one degree Imudenter, would have outdone his
Grandfather. And this I think is the most perplexed
night I have yet had. From hence, Saturday, Dec. 23, a
very cold and windy day, after an Intolerable night’s
Lodging, wee hasted forward only observing in our way
the Town to be situated on a Navigable river wth in-
diferent Buildings and people more refined than in
some of the Country towns wee had passed, tho’ vicious
enough, the Church and Tavern being next neighbours.
Having Ridd thro a difficult River wee come to Fairfield
where wee Baited and were much refreshed as well with
the Good things wch Latter I employed in enquiring
concerning the Town and manners of the people, &c.
This is a considerable town, and filled as they

nothing there but poor entertainment, and the

le of one of the worst of men, among

hich our Host made one, who, had he

Imudenter, would have outdone his

. And this I think is the most perplexed

t had. From hence, Saturday, Dec. 23, a

cold and windy day, after an Intolerable night’s

hasted forward only observing in our way

to be situated on a Navigable river wth in-

Country towns wee had passed, tho’ vicious

h and Tavern being next neighbours.

ed and were much refreshed as well with

wch Latter I employed in enquiring

wn and manners of the people, &c.

So I once again turned to size masters for the solution.
The eText version of Baskerville is based on the 6pt
drawings for metal. The serifs and hairlines are quite
sturdy and the stems are darker for greater contrast.
The height was larger to look ‘bigger on the body’,
becoming more legible in comparative text.

Alas, as things go with Apple, the advice to
switch fonts fell on deaf ears. Fonts aren’t as sexy
as apps. Luckily both Amazon and B&N picked up
the design. Jeff Bezos, in an unprecedented nod to
fonts, remarked with fascination that the font he was
showing an audience was from the 18th century!

For all the work put into getting the fonts to look
good we still have to put up with stultifying, dull,
typography of e-readers. Horrible hyphenation/justi-
fication, feeble attempts at chapter navigation and
the occasional flying drop capital.

In the Libby library e-book application they have
very few good type choices and pull out the oldest
trick in the book saying they have a bold weight of a
font but actually let the application alter the regular
in a pseudo bold. Literally the rasterizer smears the
bitmap in the x direction to appear a little darker.
In this case the font gets tracked, too, or spaced out
in the process. This really gets messy in the word
firefighter (fourth line) where the fi ligatures look
tight while the rest of the word expands.

For all the problems that crop up it’s nice to know
that companies like Microsoft still appreciate the
value of good fonts. Last year they launched five
new designs to augment their Office applications.
And they’re not just new fonts for the sake of new
fonts. Their purpose is to expand their font menu
into genres they didn’t support well before.

Steven Matteson

TUGboat, Volume 43 (2022), No. 2 119

Particularly appreciated is their attention to
purpose. Size-specific designs are included in all of
these families, including my Bierstadt. Not only is
there a display version of each (most useful for Pow-
erPoint headlines) but a focus on things like width:
how much information one can fit in a spreadsheet
cell vs. how legible (or illegible) the design becomes.

Examples of PowerPoint with just one size font fits all
(above), vs. separate display and text versions (below)
to optimize the aesthetics of a PP presentation.

I’ll leave you with this quote from Jan Tschichold.
It is profound in many ways since type design is an
aggregate of many many detailed decisions which all
affect the performance of the type—be it legibility
or fashion.

Though we may be armed with the most ad-
vanced fonts and authoring tools ever known, it still
feels like a constant battle to raise the bar of quality,
beauty and function.

With the technology landscape continually chang-
ing there will always be problems for type designers
and typographers to overcome—I’ve barely scratched
the surface here and I’ve not even mentioned writing
systems other than Latin.

The next generation of type designers can look
at Mr. Bigelow’s words in 1987 and rest assured that
their work is far from being finished.

⋄ Steven Matteson

mattesontypo (at) gmail dot com

mattesontypographics.com

Type design: Catching up to the past

120 TUGboat, Volume 43 (2022), No. 2

The Tectonic Project: Envisioning

a 21st-century TEX experience

Peter K. G. Williams

Abstract

Tectonic is a software project built around an al-
ternative TEX engine forked from X ETEX. It has
been created to explore the answers to two questions.
The first question relates to documents: in an era
of 21st-century technologies—where interactive dis-
plays, computation, and internet connectivity are
generally cheap and ubiquitous—what new forms
of technical document have become possible? The
second question relates to tools: how can we use
those same technologies to better empower people
to create excellent technical documents?

The premise of the Tectonic project is that while
TEX may be venerable, it is still an ideal system for
creating “21st-century” technical documents—but
that a project with an independent identity and
infrastructure can make progress in ways that can’t
happen in mainline TEX. Tectonic is compiled using
standard Rust tools, installs as a single executable
file, and downloads support files from a prebuilt TEX
Live distribution on demand.

In the past year, long-threatened work on native
HTML output has finally started landing, including
a possibly novel Unicode math rendering scheme in-
spired by font subsetting. Current efforts are fleshing
out this HTML support using X

E

TEX: The Program

as a test case, with an eye towards substantially im-
proving the documentation of Tectonic itself. While
Tectonic positions itself as “outside of” traditional
TEX in a certain sense, the project could not exist
without the efforts of the entire TEX community,
to whom the author and the project are gratefully
indebted.

1 Introduction

This article will motivate the Tectonic project (§2),
discuss some of its distinctive characteristics (§3),
delve into how it is implementing HTML output (§4),
and briefly discuss the outlook for its future (§5).

2 Motivation

I (PKGW) will motivate the Tectonic project with
a somewhat stylized history of my journey through
the TEX ecosystem. My background is in scientific
research (astronomy), and to the best of my recollec-
tion, my first use of TEX was for typesetting problem
sets in college. I still remember the satisfaction of
creating a beautifully typeset equation, and under-
standing that there was no other tool in the world

Figure 1: A screenshot of typical LATEX2HTML

output. From www.sci.utah.edu/~macleod/latex/

latex2html/Enode8.html, chosen arbitrarily.

that could typeset math nearly as well—at least,
none that could be freely used by a college student.

During my college career (2002–2006, if you
must ask), it was clear that the Internet and World
Wide Web were on their way to transforming society.
But for the most part, design on the web was notori-
ously poor. LATEX could be converted to HTML and
rendered, but the results resembled Figure 1: legi-
ble, mostly, but absolutely inferior to what could be
accomplished in PDF. And while HTML documents
had hypertext capabilities, they were generally static

documents: words and figures arranged on a page in
a facsimile of the “real thing”: ink on paper.

For me, there were two major “watershed mo-
ments” demonstrating that web documents weren’t
always going to be inferior. First, the release of
Google Maps (February, 2005; maps.google.com)
showed that websites could be applications, not just
static documents. In my mind, this opened up ex-
citing possibilities for new forms of scientific and
technical communication: not just hypertextual fac-
similes of paper, but interactive documents.1 More
broadly, I’ll define 21st-century documents as those
that leverage the technologies that have been un-
rolling since then: documents designed for a world
where interactive digital displays, computation, and
internet connectivity are often cheap and ubiquitous.
(I don’t love this terminology—smacks of näıve futur-
ism—but don’t have anything better.) In principle,
21st-century documents can target any of a variety
of technology platforms, but in my opinion, the web
is the only one that matters. Web content can be
experienced nearly anywhere, from smartphones to
billboards, and private industry is spending billions

of dollars every year to enhance its power and reach.
Nothing else comes close.

1 See the slides to my talk, which are in HTML, for an
example of an embedded interactive plot (tug.org/tug2022/
assets/html/Peter_K_G_Williams-TUG2022-slides/).
Because TUGboat is delivered in PDF format, I can’t
reproduce the plot here.

doi.org/10.47397/tb/43-2/tb134williams-tectonic

Peter K. G. Williams

https://www.sci.utah.edu/withtilde%20macleod/latex/latex2html/Enode8.html
https://www.sci.utah.edu/~macleod/latex/latex2html/Enode8.html
https://maps.google.com
https://tug.org/tug2022/assets/html/Peter_K_G_Williams-TUG2022-slides/
https://tug.org/tug2022/assets/html/Peter_K_G_Williams-TUG2022-slides/
https://doi.org/10.47397/tb/43-2/tb134williams-tectonic

TUGboat, Volume 43 (2022), No. 2 121

But in 2005, the state of web typography was
still pretty poor, and so PDF was still easily the best
choice for scientific papers and other kinds of tech-
nical documents. While I won’t attempt to define
this category precisely, common characteristics of
technical documents include substantial length; use
of mathematics, figures, or tables; complex structure;
dense internal or external referencing; and more re-
cently, integration with source code and computation.
While every kind of document deserves excellent ty-
pography, I will assert that technical documents
probably suffer more from bad typography than non-
technical ones. The second watershed moment for
me was therefore the release of the pdf.js library
for displaying PDFs in the web browser (July, 2011;
mozilla.github.io/pdf.js/). What better way to
demonstrate that you can do high-precision typogra-
phy on the web than by demonstrating that you can
render arbitrary PDF files?

After seeing pdf.js, I was convinced that all of
the pieces were in place to start trying to bring the
typographic quality of TEX to the world of web-
native, 21st-century documents. Even attempting
this would surely require new software to be cre-
ated—but alongside my scientific training, I’ve been
involved in open-source software development since
even before I started college, and I’m more than
happy to tackle such problems myself.

My first push, undertaken around 2014, was an
attempt to do a clean-room implementation of the
core TEX engine in JavaScript, using The TEXbook

as a reference. It went about as well as you might
expect. I made decent progress, but quickly came
to understand that the TEX engine itself is just the
tip of the proverbial iceberg of code needed to com-
pile actual modern LATEX documents, and that The
TEXbook is only a partial— in fact, sometimes mis-
leading—guide to how modern TEX engines operate,
with no discussion of ε-TEX, Unicode, OpenType
fonts, and more. I concluded that in order to com-
pile “real” LATEX documents for the web, one would
need to build on “real” LATEX.

So I started to look into hacking TEX. More
specifically, I looked into modifying the X ETEX en-
gine, since it includes support for Unicode and Open-
Type fonts, which struck me as essential for creating
truly web-native documents. As a person with a long
history in open-source projects, the experience was
frankly frustrating and discouraging. Even the tradi-
tional first step for getting to understand a codebase—
checking out the source code from version control—
felt like an ordeal, primarily due to a lack of clarity
about which repository to use, the huge size and
deeply nested structure of the TEX Live repository,

and the use of Subversion. Modern software develop-
ment conveniences, above all the availability of some
kind of GitHub-like “pull request” mechanism and
continuous integration (CI), were missing.

While there’s no shortage of fads in the world
of software development, there have been some real
advances, and as a developer I find them extremely
important. For me, undertaking a software project
without them is like trying to write a research paper
in Microsoft Word rather than LATEX. I can do it if
I have to, but I won’t enjoy it, and the inferior tools
close off entire ways of working that I don’t want to
give up. I didn’t feel that I could work with the TEX
code in the way that I wanted to, if I was forced to
use the existing infrastructure.

But if you take a software project and rebuild
its development infrastructure, it is unlikely to be
feasible to merge your changes back into the original
source. Such changes result in a long-lived fork,
not a temporary branch. Forking a project is a
weighty decision, not to be taken lightly. But as I
thought about the experiments I wanted to try, I
came to believe that forking was an appropriate path.
Besides allowing me to explore newer development
tools, it would allow me to explore a new “persona”
for the project—a distinct brand identity. This
may sound like business jargon, because it is, but
it captures the right concept. I wanted the ability
to try all sorts of things that you couldn’t do with
traditional TEX: tidy up the output, change default
behaviors, drop compatibility with various ancient
packages. It wouldn’t be right to describe such a
system as a regular TEX system. New branding gives
an opportunity to reset user expectations all at once,
without having to explain the details of individual
technical changes.

3 The Tectonic Project

The narrative of the previous section has suggested
an interrelated set of gaps in the TEX ecosystem:

• support for creating modern HTML output with
a full-featured TEX engine;

• a modernized developer experience;

• a modernized user experience; and

• a project with a distinct brand identity to serve
as a platform for experimentation.

Launched in 2016, the Tectonic project aims to fill
these gaps. Key elements of its design are as follows.

3.1 Form factor

Tectonic is delivered as a single executable, named
tectonic, that bundles the capabilities of X ETEX, bib-
tex, xdvipdfmx, and supporting machinery for driving

The Tectonic Project: Envisioning a 21st-century TEX experience

https://mozilla.github.io/pdf.js/

122 TUGboat, Volume 43 (2022), No. 2

these engines. The executable is designed to be as
self-contained as possible, with minimal dependen-
cies on system libraries, environment variables, user
configuration files, or external tools. In particular,
dependencies on Ghostscript have been removed for
security, eliminating PostScript capabilities.

3.2 Engine implementation

The engines, most notably X ETEX, are implemented
with C/C++ code obtained from the standard WEB2C
pipeline implemented by TEX Live. The C/C++ files
extracted from the pipeline have been extensively re-
formatted and refactored to make them more human-
readable and, for instance, reintroduce symbolic con-
stants that do not survive the WEB2C workflow. A
few refactorings have been conducted automatically
with coccinelle [2]. Due to these customizations, how-
ever, engine updates from TEX Live cannot be auto-
matically incorporated into the Tectonic codebase.
This is the price of forking. To aid the process of
synchronizing Tectonic with TEX Live, a framework
called tectonic-staging (code repository at github.

com/tectonic-typesetting/tectonic-staging/)
contains a pipeline that can automatically generate
a readable set of C/C++ “reference sources” from
the TEX Live repository. When updates from a
new TEX Live release are to be incorporated into
Tectonic, the pipeline is run and changes to the refer-
ence sources are manually imported into Tectonic’s
codebase. This system heavily leverages the change-
tracking features of the git version control system.

3.3 Use of Rust

Excepting the engines, Tectonic is implemented in
the Rust language. Rust is a systems-level language
focusing on performance, reliability, and productiv-
ity. Rust’s packaging and compilation model is an
excellent fit for a project like Tectonic: while Rust of-
fers a sophisticated package ecosystem that makes it
easy to import support for anything from the HTTPS

protocol to image loading, it compiles by default into
self-contained executables that lack external depen-
dencies. Rust also has excellent support for cross-
platform work and bridging with C and C++ code.
Rust’s packaging tool, cargo, allows codebases to be
organized into “crates” with well-defined interfaces,
and has a “feature” system for the management of
build options. The main Tectonic codebase currently
consists of 22 crates.

More broadly, the Rust language has a similar
spirit to TEX. Both are regarded as best-in-class
tools that can be demanding, but rewarding as well.
Both have a reputation for being complicated and
hard to learn. Despite this reputation, Rust has

achieved a tremendous level of success in a rela-
tively short period of time, being named the “most
loved language” by stackexchange.com for seven
consecutive years as of this writing. Rust support-
ers generally attribute this success to several factors.
First, Rust is technically excellent: it actually deliv-
ers on its promises in a rigorous way, and third-party
Rust packages are often well-designed, performant,
and reliable. Second, Rust has excellent tooling,
with high-quality built-in support for package man-
agement (cargo), documentation, testing, and more.
Third, the Rust user community explicitly values
being welcoming and inclusive. Many aspects of the
Rust design aim to support new users, most famously
the Rust compiler’s error messages, which generally
offer impressively clear diagnoses of problems and
useful advice for fixing them. Spanning these factors
is a theme of experience-centered design: elements of
the Rust ecosystem are designed primarily around a
vision of what it will be like for people to use them,
with technical goals flowing from that vision. Tec-
tonic explicitly aims to emulate these characteristics
of the Rust ecosystem and community.

3.4 Bundles

Tectonic can be delivered as a single executable be-
cause it can download files from a backing TEX dis-
tribution on the fly, during document compilation.
This functionality is implemented by virtualizing the
I/O subsystem underlying the engines so that it can
search not just the local filesystem, but also remote
“bundles”, for files. Files from bundles are cached
locally, and the implementation is designed such that
the network is needed only if a new file must be
fetched. Bundles are created using a reproducible,
automated pipeline based on the TEX Live installa-
tion process (github.com/tectonic-typesetting/
tectonic-texlive-bundles/). The bundle file as
served over the network is essentially a large Unix tar

file with an associated index, which the tectonic pro-
gram downloads in pieces using HTTPS byte-range
requests.

The bundle scheme is also the backbone of Tec-
tonic’s approach to reproducible document builds.
Bundle files are intended to be immutable, and it
is possible to associate a given Tectonic document
(see below) with a specific bundle, identified by its
url or a SHA256 cryptographic digest based on its
contents. It is thus possible to specify the exact TEX
distribution that a document should be built against.
There is an associated loss of flexibility: to update or
extend a package contained in the bundle, you must
generate your own bundle or install the package files
locally, currently on a per-document basis.

Peter K. G. Williams

https://github.com/tectonic-typesetting/tectonic-staging/
https://github.com/tectonic-typesetting/tectonic-staging/
https://stackexchange.com
https://github.com/tectonic-typesetting/tectonic-texlive-bundles/
https://github.com/tectonic-typesetting/tectonic-texlive-bundles/

TUGboat, Volume 43 (2022), No. 2 123

3.5 Document model

Tectonic offers a “document model” for defining com-
pilations. Its design is heavily indebted to that of
Rust’s cargo tool. Tectonic documents are direc-
tory structures indicated by the existence of a file
named Tectonic.toml at the root. This file, in the
TOML structured-data format (toml.io), declares
basic metadata about a document and how it should
be built. By default, the top-level document source
code is contained in a subdirectory named src in files
named preamble.tex, index.tex, and postamble.tex,
that are processed in that order.

A document can be built by running the com-
mand tectonic -X build anywhere in its source tree.
This will create one or more versions of the docu-
ment in a build directory below the Tectonic.toml

file. The -X flag marks the use of Tectonic’s “ver-
sion 2” command-line interface, which uses a “sub-
command” or “multi-tool” paradigm like git or svn.
For compatibility, the default mode of operation is
still “version 1”: tectonic myfile.tex will compile the
specified input file without invoking the document
model. This form of one-shot compilation is accessi-
ble in the version 2 interface with tectonic -X compile

myfile.tex. The version 1 interface will eventually be
deprecated and the -X flag will become optional.

The main purpose of the Tectonic document
model is to make document builds automatable, re-
producible, and analyzable by rendering document-
specific choices as configuration, rather than (e.g.)
a string of command-line options. For instance, the
Tectonic.toml file can record what TEX format file a
build requires, or whether it needs shell-escape func-
tionality. (A runtime flag can override this setting
when the document to be built is not from a trusted
source.) As alluded to above, the specification can
define multiple outputs for a single document, such
as PDFs in both US Letter and A4 sizes.

While the document model has not yet been
developed thoroughly in Tectonic, it is expected to
provide a platform for additional utilities in the fu-
ture. For instance, a future tectonic -X format com-
mand might automatically reformat a document’s
sources into a consistent style, or tectonic -X doc

might generate meta-documentation about available
control sequences customized to a particular docu-
ment’s selection of packages.

4 HTML output

Although high-quality HTML output has been a goal
of the Tectonic project from its inception, little work
has happened on this front—until this year. Inter-
esting progress has begun to occur.

The overall approach taken while implement-
ing HTML output for Tectonic has been to focus on
achieving high-quality results with documents that
specifically target that output format. While the
eventual goal is to be able to produce good HTML

output from arbitrary input documents, that is a
larger problem that is being avoided for the time
being. Current efforts also prioritize visual appear-
ance over proper semantic tagging, and focus on the
English language.

As a broad approach, when HTML output is
called for, a special flag in the X ETEX engine is ac-
tivated that alters various aspects of its behavior.
Linebreaking of paragraphs is disabled to avoid deal-
ing with hyphenation, and \specials are inserted
to indicate engine-suggested locations for insertions
of HTML tags such as <p>. The resulting output file
is essentially in the X ETEX XDV format, but it is
relabeled as a new “SPX” format to avoid confusion.
(SPX stands for “semantically-paginated XDV”, but
it is a misnomer because semantic pagination turned
out to be technically infeasible.)

A new processing step written in Rust, spx2html,
uses the Tera templating framework (tera.netlify.
app) to convert the single SPX file into one or more
HTML outputs, and creates or copies associated files
such as CSS stylesheets, JavaScript user interface
code, and font files. The spx2html stage is designed
under the assumption that the input document uses
OpenType fonts everywhere, including mathematics,
via the unicode-math package. This dramatically
reduces the problem space by allowing the code to
only work with fonts that can be rendered directly
by the browser.

4.1 Precise typography in canvases

Initial HTML work focused on demonstrating the
precise character sizing and positioning needed to
render constructs such as “TEX”. In Tectonic, the
bulk of document text is emitted directly into the
HTML, but areas needing careful typographic layout
are handled specially as canvases. Layout in the
canvas mode can either be activated automatically by
the engine (for instance, in math mode) or manually
by the author (with \specials).

Because CSS commands can be used to move
individual HTML elements arbitrarily, the actual
positioning is not difficult, although some care needs
to be taken to achieve proper alignment relative
to the text baseline for inline expressions. More
challenging is the fact that the SPX file specifies how
glyphs in a font should be placed, while the HTML

output must be Unicode text—and these are distinct
concepts. In many cases, there is a direct mapping

The Tectonic Project: Envisioning a 21st-century TEX experience

https://toml.io
https://tera.netlify.app
https://tera.netlify.app

124 TUGboat, Volume 43 (2022), No. 2

Figure 2: The standard mdBook layout, discussed in subsection 4.2. From rust-lang.github.io/mdBook/.

between the two, encoded in a font’s Unicode CMAP

table; but not always. For instance, a display math
environment might call for a large version of an
integral sign that cannot be “reached” by emitting
a U+222B INTEGRAL character, which maps to a
smaller version of the glyph.

When Tectonic encounters this problem, it ad-
dresses it by creating an additional version of the rel-
evant font file with a customized CMAP table. This
variant glyph approach is a slightly generalized form
of font subsetting, although Tectonic’s implementa-
tion is much more näıve than a “real” font subsetter.
In the example above, the new font’s CMAP table
might replace the mapping of U+222B INTEGRAL

from the default integral glyph to the large version
needed by the display math in question. The HTML

for that canvas will then include a tag styled
to load that font, sized and positioned appropriately,
containing a single U+222B INTEGRAL character.

In order to determine whether a new variant-
glyph font must be created, Tectonic must parse and
invert the CMAP tables of the fonts used by the
document that it is processing. This process is po-
tentially fragile, since in full generality it essentially
requires inverting character “shaping” algorithms.
Note, however, that it only needs to occur for char-
acters that occur within canvases. For the main
text of a document, in almost all cases Tectonic can
emit Unicode output directly from the ActualText

information emitted by the X ETEX engine.

4.2 The chrome: HTML, CSS, JavaScript

Tectonic’s approach aims to minimize the amount
of web design occurring at the TEX level. Instead,
HTML content derived from the TEX input is in-
serted into predesigned templates. It is important
to emphasize that in modern web design, such tem-
plates inevitably consist of interdependent pieces
of HTML, CSS, and JavaScript code. These pieces
combine to form the chrome of the resulting web
document. Chrome encompasses everything from
the high-level page layout to interactive functionality
such as search, hideable sidebars, and non-linear nav-
igation. High-quality default chrome is an essential
component of the web document production pipeline.

Current efforts focus on a clean design emulat-
ing that of the toolmdBook (rust-lang.github.io/
mdBook/), a Markdown-based, web-native documen-
tation system. A screenshot of the default mdBook

layout is shown in Figure 2. On a large screen, the
default view is divided into a main content area and
a sidebar. The main body text is centered within
the main content area, with a maximum width to
prevent line lengths from becoming excessive. An
unobtrusive title bar sticks to the top of the page,
but auto-hides while the reader scrolls through the
main content. On mobile displays, the sidebar re-
mains hidden by default, and can be opened using
the “hamburger menu” of the title bar.

Peter K. G. Williams

https://rust-lang.github.io/mdBook/
https://rust-lang.github.io/mdBook/
https://rust-lang.github.io/mdBook/

TUGboat, Volume 43 (2022), No. 2 125

Figure 3: A snapshot of the in-development tt-weave presentation
of X E

TEX: The Program, with obvious debts to mdBook (Figure 2).

After a great deal of exploration, I believe that
this layout may well be the optimal design for present-
ing general-purpose technical documents on the web.
On wide screens, the positioning of the main body
text becomes awkward if it is not nearly centered in
the browser window. If the maximum width of the
text is not limited, lines become too long, as seen on
Wikipedia. On mobile, there is little enough room
that there should be virtually nothing else on screen
besides the main text while reading—a constraint
that is accommodated well by the combination of the
sticky, auto-hiding title bar and toggle-able sidebar.

Finally, many chrome designs attempt to cram
information into multiple sidebars, headers, and foot-
ers. These clutter the page and are difficult to use on
mobile. A better alternative is to provide these sorts
of extras as “modals”, overlays that can be quickly
brought up and dismissed using icons in the title bar
(on all platforms) or keystrokes (on desktops). This
is an example of the way in which chrome consists of
more than just page layout: 21st-century documents
can have full-blown user interfaces.

4.3 tt-weave

Current work on Tectonic’s HTML output is focus-
ing on a very specific test case: X

E

TEX: The Pro-

gram, the variant of TEX: The Program [1] produced
from X ETEX’s patched WEB code. It is close to ideal
because it is long, highly structured, densely cross-
referenced, used frequently by the author, and avail-
able as TEX source.

The TEX source generated by the traditional
weave program is highly tuned for print output. Al-
though I could potentially have worked to create
HTML output from the weave-generated TEX code, I
had an additional goal. I regret to say that I have
always found the code listings generated by weave

extremely difficult to read, even though I know that
a great deal of care has gone into their design. I
wanted to see if I could create a weave-like tool that
could reformat the X ETEX WEB code into the sort of
monospaced, syntax-colorized format that I’m more
familiar reading.

The result of that work is a Rust tool called
tt-weave (github.com/pkgw/tt-weave). It serves
essentially the same function as weave, but parses
the Pascal portions of WEB code with a high level
of semantic awareness and emits them as blocks of
specialized TEX code in an indented, monospaced
format with embedded commands controlling syn-
tax colorization and interlinking. The syntax of the
emitted code is rewritten to superficially resemble C
and Rust. For instance, logical “and” is represented
using && rather than ∧. No semantic transforms are
attempted, however. Indexing information is emitted
into JSON data files that can be used by the web
chrome. The tt-weave program is not intended to be
a general-purpose WEB processor, and contains nu-
merous hacks specific to the patched xetex.web input
file. A snapshot of its output is shown in Figure 3.
The design shown here is updated relative to the

The Tectonic Project: Envisioning a 21st-century TEX experience

https://github.com/pkgw/tt-weave

126 TUGboat, Volume 43 (2022), No. 2

version included with the HTML slides associated
with this presentation.

As of this writing, the corresponding chrome
is under development. The entire book text can be
rendered into a single HTML file (∼10MB) that is
actually comfortable to use in the browser, and the
online slides associated with this article include a
snapshot of this form of output. Such a large page
is an impractical delivery mechanism for general use,
however, and work is underway to subdivide the out-
put for dynamic loading. This will also help with
integrating Tectonic’s output into industry-standard
web development frameworks (e.g., npm, webpack),
which would significantly boost the productivity of
development by making it convenient to adopt tech-
nologies such as SASS (sass-lang.com) or Type-
Script (typescriptlang.org).

5 Outlook

The Tectonic project has been successful thus far,
gathering ∼2,800 “stars” on GitHub and register-
ing 47 distinct project contributors as of the time
of this writing. While much work remains to be
done to make the HTML output framework gener-
ally usable, the variant-glyph technique successfully
addresses the most technically demanding problem
in the current system.

The documentation of the Tectonic project—
somewhat ironically, given its subject matter and
aspirations— is lacking. Once the tt-weave effort has
demonstrated good success with the existing X

E

TEX:

The Program book, the intention is to start creating
new documentation to remedy this situation.

Thus far, the prime person driving work on
Tectonic has been the author of this article. Since
the project’s inception, however, the hope has been to
make it a welcoming place for new contributors, and
as the project matures, that is more important than
ever. There are numerous areas—non-Latin scripts,
accessibility, non-LATEX workflows, TEX internals—
where more expertise from around the TEX world
would be hugely beneficial. People interested in
engaging with the Tectonic community should visit
the Tectonic discussion forum attached to its GitHub
repository at github.com/tectonic-typesetting/
tectonic/discussions.

Of course, Tectonic only exists because it is
building on the work of the hundreds, if not thou-
sands, of people who have collaborated to build the
TEX ecosystem over the past few decades. While
Tectonic positions itself as “outside of” traditional
TEX in a certain sense, the sincere intent is to credit
and celebrate the work of all those people as fully as
possible. With immense gratitude, I thank you for
sharing your wonderful creation with the world.

References

[1] D.E. Knuth. TEX: The Program, vol. B of
Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986.

[2] J. Lawall, G. Muller. Coccinelle: 10 years
of automated evolution in the linux kernel.
In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pp. 601–614, Boston, MA,
July 2018. USENIX Association. www.usenix.org/
conference/atc18/presentation/lawall

⋄ Peter K. G. Williams
60 Garden St. MS-20
Cambridge, MA 02138
USA
pwilliams (at) cfa dot harvard dot edu

https://newton.cx/~peter/

ORCID 0000-0003-3734-3587

Peter K. G. Williams

https://sass-lang.com
https://typescriptlang.org
https://github.com/tectonic-typesetting/tectonic/discussions
https://github.com/tectonic-typesetting/tectonic/discussions
https://www.usenix.org/conference/atc18/presentation/lawall
https://www.usenix.org/conference/atc18/presentation/lawall

TUGboat, Volume 43 (2022), No. 2 127

IoT theatre presents: The Tempest

Island of TEX (developers)

Abstract

2021 was a challenging year for the Island of TEX:
roadmap changes, lack of resources, server limita-
tions. Yet, resilience, persistence and a bit of good
humour made the island even stronger, with new
joiners, community support, bold plans and an even
brighter future for the TEX ecosystem. And all just
in time for celebrating 10 years of arara, our beloved
bird!

1 Introduction

For those who do not know anything about us, the
Island of TEX started as a pair of friends trying to
improve the TEX ecosystem. Nowadays, the island
acts as a friendly hub to community-based TEX-
related projects, still mostly focused on the tooling
side of things.

The last year has been challenging for us: road-
map changes, lack of resources, server limitations.
Yet, resilience, persistence and, of course, a bit of
good humour made the island even stronger, with
new joiners, community support, bold plans and an
even brighter future for the TEX ecosystem.

2 Docker images

The Island of TEX provides Docker images for easily
reproducible builds as well as an official response
to the need for continuous integration. Our images
were among the first using vanilla TEX Live, pro-
viding the required tools for running software in-
cluded in TEX Live— for example, Java Virtual Ma-
chine, Python, and so forth. Additionally, we provide
TEX Live releases from 2014 on and let the user de-
cide whether they want to pull all the documentation
and source files into their CI configuration.

We officially publish our images at Docker Hub:
hub.docker.com/r/texlive/texlive. Docker Hub
is the world’s largest repository of container images
with an array of content sources including container
community developers, open source projects and in-
dependent software vendors building and distributing
their code in containers.

We feel honoured to maintain and provide one
of the most complete and comprehensive TEX Live
Docker images available in the TEX ecosystem. Sev-
eral organisations now base their images on ours—
for instance, DANTE e.V., the German-speaking TEX
user group. Thank you very much for trusting our
builds!

More recently, given certain characteristics of
a typical TEX Live install, our shared CI runners
could not meet the requirements to properly build
and generate entries in our registry for historic and
current images (e.g., failure due to timeout and disk
space constraints). At first, we believed this was
just a temporary issue (e.g., having a job assigned
to a weak CI runner) and subsequent jobs would
eventually have our images correctly built. Alas,
we had no luck— failure rates were increasing at an
alarming rate.

V́ıt Novotný reached out to us to discuss poten-
tial build improvements to our images and joined
our Docker team. A new islander! His contributions
were amazing—the build process soon became way
more robust and reliable than ever. However, the
blocking issue with our shared CI runners was still
haunting us. We had to do something.

We agreed to reach out to the TEX community
and ask for any spare computational resource that
could host one of our CI runners. We then wrote an
e-mail to the TEX Live mailing list on May 12 and
hoped for the best.

In less than 30 minutes, we got three replies
offering help! In that same day, the island already
had a new dedicated CI runner. A couple of days
later, two more runners were added to our pool. The
response from the TEX community was fantastic.

Special thanks to Uwe Ziegenhagen, Erik Braun,
DANTE, Marei Peischl, Paul Gessler, and the In-
stitute of Mathematics of the Czech Academy of
Sciences. We really appreciate it—our Docker im-
ages are saved because of you! Also, thanks to all
who sent us messages of encouragement, from elec-
tronic mail to public support via our Matrix chat
room.

Incidentally, Marei Peischl became an islander
as well, joining our team of Docker experts. Thanks,
Marei! Apparently, dragons are very good at building
images!

Still, there is a long road to go. The TEX Live
images are becoming more and more versatile but we
still only feature full-fledged installations. So there
are new frontiers waiting for us: splitting the images
by scheme and improving layer-friendliness. Docker
experts are invited to join our quest to solve these
issues.

3 TEXdoc online

From all those projects using our TEX Live images,
TEXdoc online is our most prominent contribution in
the field—an online TEX and LATEX documentation
lookup system based on CTAN’s JSON API. Alas,
TEXdoc online has not seen much activity in the last

doi.org/10.47397/tb/43-2/tb134island-tempest

IoT theatre presents: The Tempest

https://hub.docker.com/r/texlive/texlive
https://doi.org/10.47397/tb/43-2/tb134island-tempest

128 TUGboat, Volume 43 (2022), No. 2

year. It has a long way to go until it is not only
a successor of the former texdoc.net but an even
better replacement.

Some of our ideas include a source code lookup
mode, based on a combination of texdoc, kpsewhich
and file output, and runtime macro definition capa-
bilities with a frontend for texdef. In general, the
frontend should get a UI overhaul at some point in
order to make it friendlier, more responsive, and
more accessible.

We are also planning to include an optional
analytics layer based on anonymous browsing and
queries. But do not worry; at this point we are only
interested in counting visits for starters— something
which does not track anyone. Our generous sponsor
of the world’s most accessed TEXdoc online instance
at texdoc.org, Stefan Kottwitz, would love to see
this feature implemented as well. By the way, thanks
for updating and maintaining texdoc.org, Stefan!

If anyone is interested in tackling one (or more)
of the aforementioned features, definitely get in touch
with us. All you need is some kind of programming
background. Picking up Kotlin and contributing is
something we can help you with. And if you have
further ideas for improvement for this or any of our
projects, our issue trackers are open 24/7. We believe
that community feedback is key to building software
the community actually finds useful.

4 CLI tooling

Apart from the web-based end, we should expect
improvements to our CLI tooling in the near future
as well. Take, for instance, our lovely Albatross, a
tool for finding system fonts that provide a certain
glyph (ctan.org/pkg/albatross).

Some of our ideas include report customisation,
support for output formats (e.g., JSON or CSV), and
caching. We also plan extending the glyph lookup
based on specific files and directories, so any font in
the filesystem—even ones not installed—could be
properly inspected.

We’ve released a patched version of checkcites,
our tool for checking missing or unused references, in
order to address an outstanding issue due to a break-
ing BibLATEX update. (ctan.org/pkg/checkcites)

This tool also has an interesting roadmap. Some
of our ideas include a complete rewrite from Lua to
Kotlin (work in progress) and moving to a modular
approach, in which we have a proper BibTEX parser
and a command line interface.

The ultimate goal for our BibTEX parser is to
produce native code for all major operating systems
alongside a Java Virtual Machine-compliant bytecode
for major vendors, as well as a JavaScript backend.

This would be the perfect place to talk about
our plans for arara as they share many goals. But
before we do that, we want to celebrate with you.
So let us go back in time for a bit.

5 Ten years of arara

Ten years ago, the very first version of arara, the cool
TEX automation tool, was released. It was a humble
flight for such a little bird. Little did we know, a
delightful story about friendship, TEX, community
and noisy birds was about to be written.

5.1 Version 1

There is a famous quote along the lines of

If at first you do not succeed,

call it version 1.0.

Version 1 of arara was also the first public re-
lease, dated April 4, 2012. Nothing much was there,
besides the core concepts that still exist today: rules
and directives.

Amusingly, the first version offered only a log
output as an additional feature. There was no ver-
bose mode. The log file was a gathering of streams
(error and output) from the sequence of commands
specified through directives. And that was it.

5.2 Version 2

The first version had a serious drawback: compilation
feedback was not in real time and, consequently, no
user input was allowed. For version 2, real time
feedback was introduced when the tool was executed
in verbose mode.

Two other features were included in this version:
a flag to set an overall execution timeout, in millisec-
onds, as a means to prevent a potentially infinite
execution, and a special variable in the rule context
for handling cross-platform operations.

5.3 Version 3

So far, arara was only a tiny project with a very re-
stricted user base. However, for version 3, a qualita-
tive goal was reached: the tool became international,
with localised messages in English, Brazilian Por-
tuguese, German, Italian, Spanish, French, Turkish
and Russian. Further, new features such as configu-
ration file support and rule methods brought arara
to new heights. As a direct consequence, the lines of
code just about doubled from previous releases.

When the counter stopped at version 3, we de-
cided it was time for arara to graduate and finally
be released in TEX Live. Then things really changed
in our lives. Given the worldwide coverage of TEX
distributions, arara silently became part of the daily
typographic tool belt of many users.

Island of TEX (developers)

https://texdoc.org
https://ctan.org/pkg/albatross
https://ctan.org/pkg/checkcites

TUGboat, Volume 43 (2022), No. 2 129

5.4 Version 4

Version 4 was definitely a quantum leap from previ-
ous releases. New features included a REPL workflow
(i.e., rule evaluation on demand as opposed to prior
to execution), an improved rule format, support for
multiline directives, partial directive extraction mode,
commands and triggers as abstraction layers, and an
improved lookup strategy for configuration files.

5.5 Version 5

Version 5 featured a major rewrite from Java to
Kotlin. We mainly worked on features from user
feedback, especially directory support and the pro-
cessing of multiple files.

We got hooked by the idea of aligning release
schedules of arara with TEX Live releases enabling
us to make (small) breaking changes more often.
We had big plans and started to work on version 6
right after releasing version 5. As with checkcites,
we walked the extra mile and arara went from a
monolithic implementation to a modular one, plus
an enhanced feature set and optimized workflow.

5.6 Version 6

Version 6 was split between an API, a core imple-
mentation, the engine and the CLI application to
separate concerns. This was the first step in the
direction of splitting out components that are bound
to one platform. New features included specifying
command line options to be passed to arara’s session
map, default preambles, expansion within directives,
safe mode, and rule improvements (towards safety
and optimization).

5.7 Version 7

For version 7, we wanted to take larger steps towards
platform-independence. Some components had to be
rewritten, some needed different interfaces for differ-
ent platforms. It is still a heavy work in progress,
but in the end, we hope to provide an even more
multitalented tool.

Version 7 still targets JVM, but the tool is al-
ready being shaped towards platform-independence.
New features include a new interface for the most
common file operations (as a means to supersede
Java’s I/O API in the future), better error messages
to indicate potential encoding problems, header mode
enabled by default, and a brand new project specifi-
cation.

6 The future

As previously stated, we are planning the stabiliza-
tion of the current projects and implementation of
new modular components, as well as improving sup-
port for our tools by producing native executables
by means of Kotlin/Native, a technology for compil-
ing Kotlin code to native binaries without the need
of a JVM, languages like Rust and similar modern
technology.

We also have challenges. For starters, hardware
limitations for development and testing. The develop-
ment happens on GNU/Linux machines. Incidental
issues specific to Windows or macOS are handled
through voluntary testing from users who sometimes
do not have development expertise.

The lack of such systems in the development
pool poses a problem and can hinder the long-term
goals for better coverage and interoperability. See,
for instance, the recent issues regarding Windows
support in version 7—we had to release three patches
in quick succession to properly address these issues!

Also, the island has no documentation team, so
we need to cover all fronts during development and
release, not to mention the limited number of active
developers and contributors.

Again, we kindly ask the TEX and software com-
munity for help, in any way possible. And, as always,
thanks for the patience with us.

Also, a special thanks to our new members Jon-
athan Spratte, Marei Peischl and Vı́t Novotný! We
are fortunate to have you on the team!

We have many plans and hope to realize as much
as possible. The island is a vibrant environment for
the development of TEX-related tools; we want to
enhance the user experience, from newbie to expert,
and promote use and diffusion of modern methodolo-
gies and technologies. If you are interested in helping
us develop ideas or even implementing some code,
visas for the island are free and no bureaucracy is
involved, so feel free to reach out.

The Island of TEX is hosted at GitLab, whom
we thank for providing us with a premium plan. It’s
highly appreciated.

If you are a TEX ecosystem tool author and want
to join us, you and your projects are always welcome.
If you want to become a tool author, or rewrite an
existing tool, you are welcome as well!

⋄ Island of TEX (developers)
https://gitlab.com/islandoftex

IoT theatre presents: The Tempest

130 TUGboat, Volume 43 (2022), No. 2

Using knitr and LATEX for literate
laboratory notes

Boris Veytsman

1 Introduction

Many years ago I worked in a lab that hired a new
student. His assignment seemed to be easy: to repro-
duce the results of another student and to expand
on them. The work in question included mathemati-
cal modeling, computer simulations, and so on. To
his dismay, the new student found out that the pro-
grams used undocumented libraries, the scripts had
incomprehensible options, and the models had un-
stated assumptions. Deciphering all this turned out
to be very difficult. While the original author was
willing to help, he could not do much: the author
started to forget the details of his research soon after
graduation.

This experience had a profound influence on me.
The question of whether I would be able to under-
stand my own research in a decade or two became an
obsession. Being a scientist, I asked myself how the
problem was solved elsewhere. In experimental and
applied sciences the research may cost millions of dol-
lars. To preserve it, the researchers are required to
keep detailed logs of their activity in the laboratory
notes. The notes include the details of the exper-
iments and their results, and also the hypotheses
tested. There are courses [14] and books [6] about
laboratory notes. It is fascinating to study laboratory
notes of great scientists, for example, Linus Paul-
ing. Pauling’s notes comprise 46 notebooks spanning
from 1922 to 1992, digitized by Special Collections
& Archives of the Oregon State University [13]. His
beautiful notes have a definite aesthetic value.

I would argue that the concept behind the prac-
tice of laboratory note keeping is somewhat akin
to the concept of literate programming [8]. Knuth
understood that code is just part of a programmer’s
output. The programmer’s thoughts about these
programs are even more important. Similarly, an im-
portant insight for science is that papers, preprints,
presentations are not the research, but “an adver-
tisement of the research” [15]. We must preserve
the research itself [11, 15]. Laboratory notes are the
means for this preservation.

Classic laboratory notes are physical notebooks
like those of Linus Pauling. Unfortunately, this for-
mat has a number of flaws:

1. Physical notes are not searchable. While it is
recommended to add a table of contents to a
notebook [6, 14], it is time-consuming to keep it
current, and has only limited value for a search.

2. Copying from physical notes is not easy. This is
especially frustrating with code: retyping from
the printouts pasted to the notebook pages is
time-consuming and error-prone.

3. Physical notebooks are bulky.

Electronic notebooks may be searchable, allow easy
copying and pasting, can be stored infinitely (if the
proper backups are kept), and take miniscule space.
On the other hand, physical notebooks are versa-
tile, and one can write and doodle in them very
quickly. It is difficult to match their convenience for
the laboratory record keeping.

2 What should electronic laboratory notes
store?

Electronic laboratory notes should allow the user
to easily store a number of disparate items. As a
theoretician, I put in my notes:

1. Prose. Sometimes short texts, sometimes longer
paragraphs.

2. Equations, both inline and displayed.

3. Code snippets of various length.

4. Tables, sometimes produced automatically by
code.

5. Plots, often produced automatically by code.

6. Sketches, doodles, diagrams, etc.

7. Bibliographies.

The standard LATEX features like automatic number-
ing of objects, font changes, etc., may help to make
the notes more readable and expressive.

3 Examples of notebook interfaces

Many commercial and free programs have so-called
“notebook interfaces” for exploratory studies. These
interfaces try to solve the same problem as labo-
ratory notebooks: documentation of research. In
this section we discuss two free programs. The first,
wxMaxima [20], is a document-based interface for
the famous computer algebra system Maxima [10].
The second, Jupyter notebooks [7], is intended “to
support interactive data science and scientific com-
puting”. Jupyter notebooks were initially developed
for Python programming, but have been extended
to more than 40 computer languages.

Both these solutions are based on similar ideas,
which are also used in many other notebook inter-
faces. They have a linear sequence of “cells” of dif-
ferent kinds. A text cell contains documentation.
A code cell contains a program snippet. This cell
could be “run”: the program snippet is executed, and
an output cell is added to the notebook. There are
other types of cell to introduce metadata, section

doi.org/10.47397/tb/43-2/tb134veytsman-labnotes

Boris Veytsman

https://doi.org/10.47397/tb/43-2/tb134veytsman-labnotes

TUGboat, Volume 43 (2022), No. 2 131

wxMaxima example
Maxima knows many standard integrals. Here is one. Note that we write it
down twice: once without evaluation (the apostrophe prevents the evaluation),
once evaluating it:

(% i1) ’integrate(sin(x)/x, x, 0, inf) = integrate(sin(x)/x, x, 0, inf);

�
∞

0

sin (x)

x
dx =

π

2
(% o1)

We can also plot the function under the integral:

(% i2) wxplot2d(sin(x)/x, [x, 0.001, 20]);

(% t2)

(% o2)

1

jupyter

July 17, 2022

1 Example of jupyter notebook
Let us make a graph of

sin(�)�
[3]: import numpy as np

import matplotlib.pyplot as plt
x = np.arange(0.01, 20, 0.01)
y = np.sin(x)/x
plt.plot(x, y)

[3]: [<matplotlib.lines.Line2D at 0x10e239f10>]

[]:

1

Figure 1: Examples of the output of wxMaxima and Jupyter notebooks

headers, etc. The text cells in Jupyter notebooks use
the Markdown language [4], including LATEX math
syntax. These programs can export a document with
the record of the session in either PDF or TEX format
(Figure 1).

These notebooks are useful, and they are much
better than no documentation at all. However, they
do not satisfy many of the requirements stated in
Section 2. We cannot easily number and reference ob-
jects. The output cells are not typically rendered as
Markdown code, so we cannot typeset tables created
by the code.

There are two reasons for these deficiencies.
First, Markdown is not as expressible as LATEX.
There are extensions like bookdown [22] which alle-
viate this problem. However, as far as I know, most
notebook interfaces do not support these extensions.
Also, Markdown extensions make the language more
LATEX-like, which questions the whole premise of a
simple typesetting language. Some readers may re-
call the famous phrase by Henry Spencer about the
people who are condemned to reinvent Unix [19].

The second reason is more deep. The notebook
interfaces are primarily records of the interaction
between the user and the computer. The ideas of
literate science, like the ideas of literate programming,
suggest the centrality of the interaction between the
user and other humans. Notebooks are basically code

with text inserts. A literate interface should be the
opposite: text with code inserts. This approach is
discussed in the next session.

4 knitr-based notebooks

It is interesting that most notebook interfaces use
TEX as the back end typesetting engine, even when
Markdown is the front end. This leads to the idea
of LATEX as the laboratory notebook language. A
set of TEX files is easily searchable with standard
utilities such as grep and find, while PDF output
provides readable documents. This approach satisfies
almost all requirements listed in Section 2, with one
exception: we want to add both snippets of programs
and their output as tables and plots. While adding
program code can be achieved within LATEX (using,
for example, the listings package [5]), the automatic
addition of its output requires other means. The
knitr package [21], based on the ideas of Sweave [9],
can be used to create literate science [18].

A document in this case is a LATEX file (with
extension .rnw) that contains “chunks” of code. Ini-
tially, only R code was supported by knitr. Now
knitr, like Jupyter notebooks, has been extended to
other program languages, including Python. When
processed by knitr, the chunks are typeset and their
output is added to the document.

Using knitr and LATEX for literate laboratory notes

132 TUGboat, Volume 43 (2022), No. 2

<<plot, dev='tikz', message=F>>=

library(tidyverse)

library(ggthemes)

theme_set(theme_bw())

data <-

tibble(x=seq(0.01, 20, by=0.01)) %>%

mutate(y=sin(x)/x)

ggplot(data) + geom_line(aes(x,y)) +

xlab("x") +

ylab("$\\sin(x)/x$")

@

Figure 2: knitr chunk (in R) for plotting sin(x)/x

For example, consider the chunk in Figure 2. It
programs a plot. When processed by knitr, both the
typeset code and the plot are included in the TEX
file (Figure 3). There are options to suppress the
typeset code, change the graphics format, etc. [21].
For example, the chunk in Figure 2 uses the tikz

format, so the plot has math typeset by TEX.
An interesting feature of knitr is the ability to re-

render the output in TEX. This feature can be used to
automatically produce tables. Consider, for example,
the extrema of the function f(x) = sin(x)/x. We can
calculate them by solving numerically the equation
x cos(x) − sin(x) = 0, obtained by differentiating
f(x). The R program in Figure 4 calculates the
first six extrema at x ≥ 0. It outputs six lines (for
example: 5 & 14.07 & 0.07). To typeset the table
we output these lines as raw TEX code (with the
chunk options result=’asis’, echo=F), and wrap
it in a tabular environment. The result is shown in
Table 1.

5 Problems with the knitr-based solution

The solution based on knitr is powerful. However, it
has its own problems.

The first set of problems is related to the de-
ficiencies of PDF format. This format is static by
design. Sometimes we want to include movies, an-
imation or interactive plots. It is possible to do

Number x f(x)

1 0 1
2 4.49 −0.22
3 7.73 0.13
4 10.9 −0.09
5 14.07 0.07
6 17.22 −0.06

Table 1: First six extrema of f(x) = sin(x)/x (see the
code in Figure 4)

library(tidyverse)

library(ggthemes)

theme_set(theme_bw())

data <-

tibble(x=seq(0.01, 20, by=0.01)) %>%

mutate(y=sin(x)/x)

ggplot(data) + geom_line(aes(x,y)) +

xlab("x") + ylab("$\\sin(x)/x$")

-0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

x

si
n
(x
)/
x

Figure 3: The typeset code (grayscaled for print) and
plot produced by the chunk on Figure 2

find_extremum <- function(number) {

result <-

uniroot(

function(x) {

x*cos(x) - sin(x)

},

c((number-1)*pi,

number*pi))

x <- result$root

f <- ifelse(x==0, 1,

sin(x)/x)

cat(number, "&", round(x, 2),

"&", round(f, 2),

"\\\\\n")

}

walk(1:6, find_extremum)

Figure 4: Code for calculation of extrema of sin(x)/x.
The results are shown in Table 1.

Boris Veytsman

TUGboat, Volume 43 (2022), No. 2 133

this using packages like media9 [3], animate [2], and
FigPut [1]. However, the recent debacle of Adobe
Flash [12] makes one wary of PDF extensions.

Another problem is related to the speed of writ-
ing laboratory notes. I personally type prose and

equations in LATEX with the same speed I produce
them. The same can be said about programming.
However, doodling with a pen and paper is substan-
tially faster than writing code in PSTricks [17] or
TikZ [16]. Thus sketching may require different solu-
tions: from scanning handwritten images to the use
of special programs for fast doodling.

6 Conclusions

LATEX allows the production of detailed laboratory
notebooks, that can be easily read, searched and
indexed. The addition of knitr helps to integrate the
notebooks with the inclusion of typeset code and its
output, such as plots, tables, etc.

This has been my preferred format of laboratory
notebooks for several decades. It is quite versatile,
reasonably fast and provides notes of archival quality.

References

[1] R. Fairman. FigPut. Interactive Figures for

LATEX, 2022. ctan.org/pkg/figput

[2] A. Grahn. The animate package, 2022.
ctan.org/pkg/animate

[3] A. Grahn. The media9 package, v1.24, 2022.
ctan.org/pkg/media9

[4] J. Gruber. Markdown, 2004.
daringfireball.net/projects/markdown/

[5] C. Heinz, B. Noses, J. Hoffmann. The Listings

Package, 2020. ctan.org/pkg/listings

[6] H.M. Kanare. Writing the laboratory notebook.
American Chemical Society, Washington, D.C,
1985.

[7] T. Kluyver, B. Ragan-Kelley, et al.
Jupyter notebooks—a publishing format
for reproducible computational workflows.
In Positioning and Power in Academic

Publishing: Players, Agents and Agendas,
F. Loizides, B. Schmidt, eds., pp. 87–90.
IOS Press, 2016.

[8] D.E. Knuth. Literate Programming. No. 27
in CSLI Lecture Notes. Stanford, California,
1992.

[9] F. Leisch, R Core Team. Sweave User Manual,
2022. stat.ethz.ch/R-manual/R-devel/

library/utils/doc/Sweave.pdf

[10] Maxima. A computer algebra system, 2022.
maxima.sourceforge.io/

[11] J.P. Mesirov. Accessible reproducible
research. Science 327(5964):415–416, 2010.
10.1126/science.1179653

[12] R.C. Moss. The rise and fall of Adobe
Flash, 2020. arstechnica.com/

information-technology/2020/07/

the-rise-and-fall-of-adobe-flash/

[13] L. Pauling. Research notebooks, 1922–1972.
Special Collections & Archives Research
Center, Oregon State University Libraries.
scarc.library.oregonstate.edu/coll/

pauling/rnb/

[14] P. Ryan. Keeping a Lab Notebook. National
Institutes of Health, Office of Intramural
Training and Education, 2012.
www.training.nih.gov/assets/Lab_

Notebook_508_(new).pdf

[15] M. Schwab, N. Karrenbach, J. Claerbout.
Making scientific computations reproducible.
Computing in Science & Engineering

2(6):61–67, 2000. 10.1109/5992.881708

[16] T. Tantau. The TikZ and PGF Packages, 2021.
ctan.org/pkg/pgf

[17] T. Van Zandt, R. Niepraschk, H. Voß.
PSTricks. PostScript macros for Generic TEX,
2007. ctan.org/pkg/pstricks-base

[18] B. Veytsman. Book review: Dynamic
Documents with R and knitr, by Yihui Xie.
TUGboat 35(1):115–119, 2014. tug.org/

TUGboat/tb35-1/tb109reviews-xie.pdf

[19] Wikipedia contributors. Henry Spencer—
Wikipedia, the free encyclopedia, 2022.
en.wikipedia.org/w/index.php?title=

Henry_Spencer&oldid=1093428638

[20] wxMaxima, 2022. wxmaxima-developers.

github.io/wxmaxima/

[21] Y. Xie. Dynamic Documents with R and

knitr. Chapman and Hall/CRC, Boca Raton;
London; New York, second ed., 2015.

[22] Y. Xie. bookdown: Authoring Books and

Technical Documents with R Markdown.
Chapman and Hall/CRC, Boca Raton,
Florida, 2016. ISBN 978-1138700109.
bookdown.org/yihui/bookdown

⋄ Boris Veytsman
Systems Biology School
George Mason University
Fairfax, VA 22030
borisv (at) lk dot net

http://borisv.lk.net

Using knitr and LATEX for literate laboratory notes

https://ctan.org/pkg/figput
https://ctan.org/pkg/animate
https://ctan.org/pkg/media9
https://daringfireball.net/projects/markdown/
https://ctan.org/pkg/listings
https://stat.ethz.ch/R-manual/R-devel/library/utils/doc/Sweave.pdf
https://stat.ethz.ch/R-manual/R-devel/library/utils/doc/Sweave.pdf
https://maxima.sourceforge.io/
https://doi.org/10.1126/science.1179653
https://arstechnica.com/information-technology/2020/07/the-rise-and-fall-of-adobe-flash/
https://arstechnica.com/information-technology/2020/07/the-rise-and-fall-of-adobe-flash/
https://arstechnica.com/information-technology/2020/07/the-rise-and-fall-of-adobe-flash/
https://scarc.library.oregonstate.edu/coll/pauling/rnb/
https://scarc.library.oregonstate.edu/coll/pauling/rnb/
https://www.training.nih.gov/assets/Lab_Notebook_508_(new).pdf
https://www.training.nih.gov/assets/Lab_Notebook_508_(new).pdf
https://doi.org/10.1109/5992.881708
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pstricks-base
https://tug.org/TUGboat/tb35-1/tb109reviews-xie.pdf
https://tug.org/TUGboat/tb35-1/tb109reviews-xie.pdf
https://en.wikipedia.org/w/index.php?title=Henry_Spencer&oldid=1093428638
https://en.wikipedia.org/w/index.php?title=Henry_Spencer&oldid=1093428638
https://wxmaxima-developers.github.io/wxmaxima/
https://wxmaxima-developers.github.io/wxmaxima/
https://bookdown.org/yihui/bookdown

134 TUGboat, Volume 43 (2022), No. 2

yEx: a TEX-alike typesetter in Python

Marnanel Thurman∗

Abstract

yex is an implementation of the core TEX system
in pure Python. This article gives an overview of
its development, the challenges faced, and possible
future directions for the project.

1 Introduction

yEx is a TEX emulation written in pure Python. It
aims to be as faithful a recreation of the TEX core
as is possible. It has a strong test suite and plentiful
inline documentation.

While I began the project as a means of learn-
ing TEX better, it has grown beyond that in every
direction and continues to be an ongoing project.
Because of this origin, I’m using The TEXbook as a
spec rather than working from the WEB sources.

Any reimplementation, especially one which
reimplements a compiled system in an interpreted
language, necessarily has a set of goals which differ
from the original: this serves to add diversity and
robustness to the TEX ecosystem. Here are mine.

Firstly, yEx aims to get things right before aim-
ing for completeness: that is, it values depth over

breadth. The most commonly-used functionality is
implemented, and it can set basic documents suc-
cessfully.

Secondly, Python has a rich existing infrastruc-

ture: a wonderful resource. yEx is making as much
use of that as possible. PDF handling can be han-
dled by Python’s existing PDF libraries; Markdown
will be handled likewise; the library Beautiful Soup
takes care of XML and HTML handling; and so on.
yEx itself is already available in the Python package
index.1

Where possible, parts of yEx will be split out
into their own general-purpose libraries, so that they
may better interact with other people’s projects. It’s
a fine thing to create something beautiful. It’s a
thousand times better to build a source of creativity
for others.

Lastly, HTML output is a particular focus of
yEx. Although TEX is well-suited for producing this
format, it is surprisingly underused. More on that
shortly.

2 Where are we so far?

• We can set documents!

• SVG output, for debugging

∗ Thanks to Kit Thurman for proofreading.
1 pypi.org/project/yex/

• Serialisation

• Basic HTML output

Next steps:

• Full coverage of TEX controls

• PDF output

• Caching

3 Serialisation

All of yEx’s internal data structures can be serialised
to simple JSON types, as can all processed documents.
There are command line switches to output these
formats. This is useful in debugging, as well as in
integrating third-party systems outside Python.

This also enables caching. At present, for ex-
ample, plain.tex takes several seconds to process.
This would make it impractical to use as a library.
However, with serialisation, it can be stored and
retrieved at speed.

4 Docstrings

Python classes and functions can be documented
inline, using a literate programming feature known as
“docstrings”. These can be formatted using a markup
system, such as Restructured Text or Markdown.
The docstrings are converted to HTML by a tool
called Sphinx, for user help systems. Examples can
be seen on sites such as Read The Docs.2

yEx will include a new Sphinx plugin to accept
TEX formatting, so that yEx can produce its own
documentation.

5 Input filters

It will also be possible to add input filters for other
formatting systems to yEx itself, so that yEx docu-
ments can include inline HTML or Markdown. Each
format will have a stylesheet of macros, one per tag
type. The macros will be called to handle each tag,
to represent their meaning to yEx.

6 HTML output

The current focus of development is HTML output.
One of the historical barriers to HTML output from
TEX has been wordwrap. HTML is built to reflow
text on the fly—shoddily, compared to TEX’s charac-
teristically careful breaking of paragraphs into lines.

However, modern HTML toolkits such as Boot-
strap use a different approach. They divide available
display devices into “breakpoint”3 classes, based on
the viewport width: small (for devices such as mo-
bile phones), medium (for laptops), large, and extra

2 See, for example, yex.readthedocs.io.
3 See getbootstrap.com/docs/5.2/layout/breakpoints.

This term “breakpoint” is unrelated to TEX’s use of the word.

doi.org/10.47397/tb/43-2/tb134thurman-yex

Marnanel Thurman

https://pypi.org/project/yex/
https://yex.readthedocs.io
https://getbootstrap.com/docs/5.2/layout/breakpoints
https://doi.org/10.47397/tb/43-2/tb134thurman-yex

TUGboat, Volume 43 (2022), No. 2 135

large. This permits pages to adapt according to the
device in use, an ability known as “responsiveness”.
The system exists for the sake of more complex for-
matting than merely wordwrap, but it suits yEx’s
purposes well.

This allows us to add an \everypar rule to the
HTML output stylesheet, causing each paragraph
to be processed four times, each with a different
\hsize:

\let\endgraf=\par \let\endline=\cr

\def\wip##1\par{\let\widthspara=\relax

\special{html.responsive.start}\endgraf

\hsize=432pt

##1\endgraf

##\special{html.responsive.again}\hsize=576pt

##1\endgraf

##\special{html.responsive.again}\hsize=744pt

##1\endgraf

##\special{html.responsive.again}\hsize=992pt

##1\endgraf

\special{html.responsive.done}%

\let\widthspara=\wip}%

\let\widthspara=\wip

\everypar={\widthspara}

The \special directives tell the output driver
to treat these as four versions of the same paragraph.
The driver will meld them together, as with Boot-
strap breakpoints, so that one is used on mobiles,
one on laptops, and so on. The CSS makes the choice
of which version to use based on the width of the
viewport.

The widths here are taken from Bootstrap’s
breakpoint specification, where they are given in
pixels. yEx allows widths to be specified in pixels
(px) in addition to TEX’s standard units. For in-
teroperability, we give them in points, using W3C’s
definition of 96 pixels to the inch:4 this makes a pixel
equal to exactly 49152sp.

7 Impedance mismatches

There have been many challenges to overcome so
far, even beyond the work of reimplementation of
a system as complex as TEX—not to mention the
writing of a test suite to prove it all works!

One major factor has been the distance between
the priorities of yEx and TEX, which reflects the
forty-year distance between them. Unsurprisingly
for a program designed in the late 1970s, TEX has
a general assumption of scarcity. There are only so
many registers of each kind. Python expects you to
say what you need and assume that the resources

4 www.w3.org/Style/Examples/007/units.en.html

will be found. This difference in approach makes
implementation far more interesting. For example,
producing call stack traces for errors in TEX macros
proved aggravatingly difficult. A TEX macro can be
curried by omitting its final argument, thus:

\def\a#1#2{Hello, #2}

\def\b{\a x}

{\b world}

Because of this, the state of TEX’s stack can’t
be mirrored by the Python stack. Further, any part
of the TEX code above might be pushed onto TEX’s
token stack, and the call stack would still need to
remain consistent. The solution involves a special
class of token, Internal, which runs a given Python
callback on being processed. These tokens can’t be
generated by the tokeniser; they are used for macro
prologues and epilogues to maintain the call stack.

Another example is encapsulation: an impor-
tant principle in Python. TEX is not careful with
namespaces. One of the headaches this causes is
that the order of loading TEX libraries can easily
affect the results. That means that libraries can’t
be cached individually: the cached value of a library
will vary according to which libraries were loaded
before it. Thus yEx must wait until it’s seen all the
initial \input commands before making any deci-
sions about caching. When it knows the full list of
libraries needed, it must reload them from the cache
in order, as a group.

8 The future

yEx’s initial goal is to be able to typeset The TEX-

book. That’s still a long way off, though of course the
speed at which we get there depends on how many
people share the work. Contributions are always
welcome! Visit gitlab.com/marnanel/yex/ for the
source.

Beyond that, I have a goal to make sure yEx

gives solid results with as many of the packages in the
standard TEX distributions as possible. Processing
LATEX will be a very important step, though a huge
one.

There are also many other TEX-like projects
whose ideas we can share, many of which are being
discussed at this conference. I look forward to seeing
how we can work together.

⋄ Marnanel Thurman

https://gitlab.com/marnanel/yex

yEx: a TEX-alike typesetter in Python

https://www.w3.org/Style/Examples/007/units.en.html
https://gitlab.com/marnanel/yex/

136 TUGboat, Volume 43 (2022), No. 2

Extracting information from (LA)TEX source
files

Jean-Michel HUFFLEN

Abstract

We present some tools that allow us to parse all
or part of (LA)TEX source files and process suitable
information. For example, we can use them to ex-
tract some metadata of a document. These tools
have been developed in the Scheme functional pro-
gramming language. Using them requires only basic
knowledge of functional programming and Scheme.
Besides, these tools could be easily implemented us-
ing a strongly typed functional programming lan-
guage, such as Standard ML or Haskell.

0 Introduction

In many places, it has been told or written that
TEX is a wonderful tool for typesetting texts. But it
deals only with its own formats: that is well-known,
too. However, the information contained in source
file texts processed by TEX —or any format or en-
gine built out of it —may be of interest for purposes
other than typesetting, e.g., enriching the metadata
usable by Web search engines.

Doing such jobs by means of (LA)TEX commands
arranged into an option of a class or a package is pos-
sible, but we think that this is misusing TEX. From
our point of view, this tool does not aim to be a
universal multi-task program, able not only to type-
set texts, but also to generate Web pages or fulfill
any other purpose we can imagine. From a point of
view related to theoretical computer science, TEX’s
language has the same expressive power as a Tur-
ing machine, so any function can be programmed
using TEX’s primitives,1 but as with any specialised
language, using it for a purpose other than its in-
tended one is tedious.2 In addition, this language’s
syntax is old, its parsing uses old-fashioned conven-
tions, it does not provide advanced data structures,
as we can find in many more recent programming
languages.

Hereafter we describe a way to connect Scheme
functions to TEX commands when a (LA)TEX source
file is parsed and these commands recognised. Our
basic idea is that often only a little information is
relevant, e.g., the metadata of a document. Extract-
ing them from (LA)TEX source files allows us to avoid
information redundancy. Section 2 explains the ori-

1 Interested readers can consult [2, 19] about this subject.
2 As another accurate example, any programmer knows

that using Prolog [4] outside logic programming is quite
painful.

gins and reasons for our choices, discussed further in
Section 3. Reading this article requires only basic
knowledge about TEX and LATEX commands [14, 18]
and the division of a LATEX source file into a pream-

ble and body. Some basic notions of programming
in Scheme are needed, too, as can be found in any
good introductory book to this functional program-
ming language, e.g., [23].

1 Our Scheme library

1.1 Why Scheme?

As mentioned above, we aim to extract accurate in-
formation from (LA)TEX source files; we are not in-
terested in processing the whole of such a file; we do
not want to put a ‘new TEX program’ into action.

Now let us recall that in functional program-
ming, functions are first-class objects, just like other
data. So functions can be arguments or results of a
computation. This feature allows us to write gener-

ators of functions. Our tool is a wonderful example
of such a generator. You choose which information
you would like to retain and how you plan to pro-
cess it. This step is done by a computation which
returns a function. This second function’s argument
is the input filename to be parsed.

In Section 2, we will see that some parts have
already been written using Scheme [22] for several
years. Let us recall that within this functional pro-
gramming language —as within any Lisp dialect —
data and programs have the same format. Here-
after, the description of our library’s main features
emphasises that functions and other data are mixed
by means of a unique format.

1.2 How to use our library

Building a function parsing a (LA)TEX source file is
done by the construct:3

(g-mk-tex-parsing-f directive ...)

with any number of directives.4 There are two kinds
of directives:

(g-retain-command command-name arg-nb

optional-arg? top-level?

recursive? preamble?

occ-nb-info function)

(g-retain-match command-name s top-level?

recursive? preamble?

occ-nb-info function)

3 Let us recall that Scheme systematically uses prefixed

syntax. All the definitions introduced by our library are pre-
fixed by ‘g-’.

4 This is the terminology used within our source files. You
can use g-mk-tex-parsing-f without arguments — that is, no

directive — in which case the result will just move along the
file’s preamble without performing any other operation.

doi.org/10.47397/tb/43-2/tb134hufflen-extract

Jean-Michel HUFFLEN

TUGboat, Volume 43 (2022), No. 2 137

where:

command-name is the name of the command to be
caught, without the initial ‘\’ character;

arg-nb is the argument number for this command;

optional-arg? is true5 if the first argument is op-
tional, surrounded by square brackets,6 false
otherwise;

top-level? is true if we have to look for this com-
mand only at the top level, false otherwise;

recursive? is used when \input commands are
encountered: if it is true, corresponding files are
searched recursively, otherwise such an \input

command is just skipped;

preamble? stops searching after a preamble if it is
bound to true; otherwise, search goes on;

occ-nb-info may be bound to:

• 0 or the false value: we check that this
command does not appear within files;

• a positive integer n: the first n occurrences
of this command are processed, and follow-
ing ones are ignored;

• the true value: all the occurrences of this
command are processed;

function the Scheme function to call; it must ac-
cept the same number of arguments than the
\command-name command. All the arguments
of such a function are supposed to be strings.

We can see that the directives introduced by the
g-retain-command function are suitable for most
LATEX commands, possibly with a leading optional
argument. More difficult cases are handled by the
g-retain-match function: its second argument is
the command’s pattern, given as a string, according
to TEX’s conventions used by the \def primitive,
the command’s name being omitted. Here are two
examples:

\csname ← "#1\endcsname"

\ifx ← "#1#2#3\else#4\fi"

All the other arguments of this g-retain-match

function have the same meaning as the namesake ar-
guments of g-retain-command. Let us notice that
g-retain-match and g-retain-command are func-
tions, whereas g-mk-tex-parsing-f is a macro.7

5 Let us recall that the boolean values true and false are
expressed in Scheme by the expressions #t and #f respec-
tively.

6 That is, according to LATEX’s conventions [15].
7 Let us recall that Scheme uses a call-by-value strategy

for functions: arguments are evaluated before applying the
function. Defining g-mk-tex-parsing-f as a macro allows us
to install the structures we need, before applying the direc-
tives to populate these structures, and finally building the
parsing function. The process put into action by that macro
may be viewed as a kind of compiling.

The result of g-mk-tex-parsing-f is a func-
tion that applies to a filename. It parses this file by
performing one pass and returns:

false if something went wrong, or a forbidden com-
mand is included into the file;

true in all other cases.

You have to use Scheme functions interfaced with
TEX constructs to update your own structures when
a file is parsed. Beware that if an error occurs, these
structures may be in an inconsistent state.

1.3 Other functions

Scheme’s initial library and our basic functions in-
clude a rich set of functions dealing with strings. For
example, s being a string:

(normalize-space s) whitespace-normalises the s
string, that is, leading and trailing spaces are
stripped, multiple occurrences of whitespace are
replaced by a single space character; the result
is a newly allocated string.

The next two functions can be useful to destruc-
ture an argument of a TEX command; the succes-
sive characters of the s0 string are supposed to be
a comma-separated list, s1 is any string:

(g-parse-to-list s0) returns its elements within
a linear list, e.g.:

(g-parse-to-list "New-York, New-York")

=⇒ ("New-York" "New-York")

(g-parse-to-alist s0 s1) returns the successive
pairs key=value of s0 within an association

list ; if a key is given without a value, this miss-
ing value is replaced by s1, e.g.:

(g-parse-to-alist "town=LA,state" "CA")

=⇒ (("town" . "LA")

("state" . "CA"))

In both cases, the original order is preserved.

1.4 A simple example

As a simple example, let us consider a source text
for LATEX. We would like to know:

• its title,

• the options given to the babel package8 [18,
Ch. 9] if it is loaded,

• the number of occurrences of the \emph

command.

The function we build and run is given in Fig. 1.
Some remarks:9

8 We do not consider the ‘main=...’ construct.
9 You may notice that we specify the commands of inter-

est in alphabetical order. This is just a personal habit; the
order of directives inside the g-mk-tex-parsing-f macro is
irrelevant.

Extracting information from (LA)TEX source files

138 TUGboat, Volume 43 (2022), No. 2

(define tug-2022-example-emph-occ-nb ’0) ; Initialisations needed.
(define tug-2022-example-language-name-list ’*dummy-value*) ; (. . .)
(define tug-2022-example-title ’*dummy-value*)

(define tug-2022-example-function

(g-mk-tex-parsing-f (g-retain-command "emph" 1 ; One argument.
#f ; No optional argument.
#f ; May be located at any level.
#f ; Look for it recursively.
#f ; Search the preamble and body.
#t ; Process all the occurrences of this command.
(lambda (ignored-s) ; The argument is ignored.

(set! tug-2022-example-emph-occ-nb

(+ tug-2022-example-emph-occ-nb 1))))

(g-retain-command "title" 1 #f ; One non-optional argument.
#t ; Top level only.
#f ; Recursively search.
#f ; Search the preamble and body.
1 ; Process only the first occurrence.
(lambda (title-s)

(set! tug-2022-example-title (normalize-space title-s))))

(g-retain-command "usepackage" 2 #t ; Two arguments, including an optional one.
#t ; Search only at the top level.
#t ; Recursive search.
#t ; Search only the preamble.
#t ; Process all the occurrences.
(lambda (option-s package-names-s)

(when (member "babel" (g-parse-to-list package-names-s)

string=?)

(set! tug-2022-example-language-name-list

(g-parse-to-list option-s)))))))

(tug-2022-example-function "ïthis article’s source fileð") =⇒ #t ; Parsed successfully!

tug-2022-example-emph-occ-nb =⇒ 39 ; Variables updated.
tug-2022-example-language-name-list =⇒ ("french" "english") ; (. . .)
tug-2022-example-title =⇒ "Extracting Information from \AllTeX\ Source Files"

Figure 1: Example of using our Scheme functions.

• the \title command may or may not be given
in the preamble, but is unique;

• if babel package is loaded, it can only be lo-
cated in the preamble; but there may be sev-

eral \usepackage commands, possibly for other
packages;

• the innermost occurrences of the \emph com-
mand are processed first: some additional de-
tails about this point are given in App. A.

The evaluation given in Fig. 1 applies to the source
of the present text. The three Scheme variables used
are initialised at Fig. 1’s top.

1.5 Types used

Scheme is a dynamically typed language. This prop-
erty allows variables to be bound to a value being
any type, a priori. Scheme is not strongly typed,

since variables are not given types, as in the C pro-
gramming language [13]. This feature may be viewed
as an advantage or drawback, depending on pro-
grammers’ feelings. However we mention that our
tool could be implemented using a strongly-typed
functional programming language, such as Standard
ML [20] or Haskell [21]. Let us recall that program-
mers of these languages do not have to put down the
types associated with variables, but a type-checking
mechanism is in charge of determining such types. If
this operation fails, your program is rejected. So in
practice, programmers of these languages pay great
attention to types used.

When arguments of our directives are strings or
booleans— true or false values — there is no prob-
lem. The information about the number of occur-
rences to be processed can be viewed as the union

of natural numbers and boolean values. Since these

Jean-Michel HUFFLEN

TUGboat, Volume 43 (2022), No. 2 139

two sets are disjoint, modern strongly-typed func-
tional programming languages can implement such
a construct by means of a disjoint union:10

Occ-nb-info-type
def
= Boolean ⊎Natural

The type of the functions connected to TEX
commands can be specified by a direct sum, too,
due to a limitation of TEX. Let us consider that all
the possible results of such a function are encom-
passed into a type called ’Result ’. Let n be a nat-
ural number, the type of a function associated with
a n-argument command is Stringn → Result, where
‘String’ is the type of strings.11 Since the greatest
argument number for a TEX command is ‘#9’ [14],12

the complete functions are finally of the type:

Function-for-TEX
def
=

�

0≤i<10

(Stringi → Result)

2 History

2.1 Genesis

Let us recall that we implemented MlBibTEX13, a
possible successor of BibTEX, the bibliography pro-
cessor that was commonly associated with LATEX for
a long time. In particular, MlBibTEX has aimed to
ease the production of multilingual bibliographies.

When we put MlBibTEX’s first public version
into action [9], we realised that we needed to parse
the beginning of source .tex files, in order to get
the way to process the languages used throughout
a document; this information was not given in .aux

files.14 There was at most one occurrence of load-
ing the babel package or an ad hoc package such as
french or polski.15 Such a load order could be located
in a subfile grouping the packages for the set up of
a document. On another point, we did not have to
parse the whole of a LATEX document: we stopped
either after encountering such a load order, or en-

10 Let S0 and S1 be two sets, the disjoint union [8] of S0

and S1 is defined by:

S0 ⊎ S1

def
= ({0} × S0) ∪ ({1} × S1)

If we connect this formula with an abstract data type defi-
nition, ‘0’ and ‘1’ may be viewed as the constructors of this
data type.

11 This definition includes zero-argument commands, since
a zero-argument function f0 : → Result may be viewed as
f0 : {∅} → Result, as mentioned by [6]. In programming
languages such as Standard ML or Haskell, the {∅} set is
implemented by the unit type, containing only the () value.

12 There are workarounds if more arguments are needed, as
explained in [14]. This point is obviously out of this article’s
scope.

13 MultiLingual BibTEX.
14 Incidentally, BibTEX only parses .aux files and never

reads .tex files.
15 At this time, the polyglossia package [3] had not yet come

out, and babel did not yet support the Unicode TEX engines.

countering ‘\begin{document}’, that is, at the end
of the document’s preamble. When we designed the
second version [10], we needed to get the encoding
used through a document. To do that we proceeded
in an analogous way. In other words, we had al-
ready created a kind of mini-TEX parser, possibly
recursive.

2.2 Apotheosis

In December 2020, we became the new editor of
the Cahiers GUTenberg , the journal of the French-
speaking TEX user group.16 For many reasons, we
decided to revise the class used for this journal and
discovered that the previous version was used to
build other files, such as metadata for Web search
engines. On another point, we also decided to au-
tomate as many tasks as possible. For example, we
plan to extract the information about the title, au-
thor(s), and pages from each article’s source file, in
order to build the table of contents of an issue. In
addition, we wished to check the succession of page
numbers for successive articles.

We did not implement the production of meta-
data from issues of Cahiers GUTenberg . But we
adapted our mini-parser into a library customisable
as shown in §1.2 and we succeeded in generating
automatically the table of contents of [1], although
several engines were used for separate articles.

3 Discussion

Coupling engines based on TEX’s kernel with a more
modern programming language has shown increased
interest for more than a decade. The best-known ex-
ample is LuaTEX [7], where the engine can call pro-
cedures written using the Lua language [12], other
experiments connect TEX with Python [16]; applica-
tions based on such a modus operandi can be found
in [17, 24].

Using functions written using the Lua program-
ming language— as allowed by LuaLATEX —for the
tasks described in §2.2 was impossible: some arti-
cles of [1] needed pdfTEX or X ELATEX, and compiling
them with LuaLATEX crashed. Besides, we confess
that we were not disappointed. Extracting meta-
data from a source text is not tightly tied to type-
setting texts — so it should work regardless of the
engine used— and should be performed by a sepa-
rate program.

An alternative could be given by the use of
regular expressions17 for most cases. However, let

16
GUTenberg : Groupe francophone des Utilisateurs de

TEX .
17 Interested readers can consult [5] for a good introduction

to this field.

Extracting information from (LA)TEX source files

140 TUGboat, Volume 43 (2022), No. 2

us notice that TEX’s conditional and iterative ex-
pressions are not balanced as in modern program-
ming languages, as we showed in [11]. So we are
not sure that difficult matching cases can be rea-
sonably handled by regular expressions, which are
‘naturally’ static. In addition, let us recall that our
functions resulting from constructs performed by the
g-mk-tex-parsing-f macro work in one pass, which
seems to us to be more efficient than using several
regular expressions.

In practice, we have applied such Scheme func-
tions to examples in LATEX, or close to this format,
that is, X ELATEX or LuaLATEX. We think we could
build functions able to parse plain TEX or ConTEXt
documents and extract suitable information from
them, in which case the g-retain-match function
will be used more intensively.

4 Conclusion

Our contribution consists in a bridge between TEX
and more ‘classical’ programming. More experience
will be needed in order to evaluate the relevance of
our method. We can be told that using our tool
requires mastering Scheme. But there is a price to
pay for interesting applications outside typesetting
texts. In other words, this program is not intended
for end-users who just typeset texts. But we think
that our tool may be enjoyed by LATEX users who
can program. Finally, we can observe that simple
requirements can be put into action easily, as shown
for getting an article’s title.

Acknowledgments

I thank Denis Bitouzé for his impressions about a
first version of this article. I am also grateful to the
very efficient proofreaders of TUGboat: Karl Berry
and Barbara Beeton.

A How (LA)TEX files are parsed

You can discover the behaviour of the Scheme func-
tions generated by the g-mk-tex-parsing-f macro
by choosing some commands judiciously and asso-
ciating them with functions that trace their argu-
ments. Hereafter we give broad outlines of the com-
plete process. Let us recall that a token recognised
by TEX may be a command name, a begin or end
of a group, or a single character. Some groups of
characters can be processed globally, e.g., two or
more consecutive occurrences of end-of-line charac-
ters, equivalent to the \par command.

Our parser processes such tokens in turn. If a
command is associated with a Scheme function, its
arguments are parsed recursively, either by using the
information about the argument number provided

by the g-retain-command function, or by process-
ing the pattern introduced by the g-retain-match

function. As soon as these arguments are built,
the associated Scheme function is applied to these
corresponding arguments. Getting such arguments
causes tokens to be processed, so commands located
with these arguments will be processed according
to a kind of call by value.18 So if we consider the
following example:

An \emph�{emph’d \emph�{internal} text}.

if all the occurrences of the \emph command are
to be processed, the ‘. . . �’ occurrence will be pro-
cessed first, then the ‘. . . �’ occurrence will be pro-
cessed, according to a leftmost-innermost strategy.
Of course, as soon as a Scheme function associated
with a command is executed and returns its result,
the process of exploring successive tokens in turn is
resumed.

References

[1] Association GUTenberg : Ils sont de retour !,
Vol. 58 de Cahiers GUTenberg. Septembre 2021.
https://www.gutenberg-asso.fr/

-Cahiers-GUTenberg-

[2] Pieter Belmans: TEX is Turing-Complete.
December 2010. Universiteit Antwerpen,
https://pbelmans.files.wordpress.com/2010/

12/textalk.pdf

[3] François Charette, Arthur Reutenauer,
Bastien Boucariès and Jürgen Spitzmüller:
polyglossia: Modern Multilingual Typesetting

With X

E

LATEX and LuaLATEX. 18 July 2022.
https://ctan.org/pkg/polyglossia

[4] William F. Clocksin and Christopher S.
Mellish: Programming in Prolog. 5th edition.
Springer-Verlag. 2003.

[5] Jeffrey E. F. Frield: Mastering Regular

Expressions. 3rd edition. O’Reilly. August 2006.

[6] George Grätzer: Universal Algebra. 2nd edition.
Springer-Verlag. 1979.

[7] Hans Hagen: “LuaTEX: Howling to the Moon”.
Biuletyn Polskiej Grupy Użytkowników Systemu

TEX, vol. 23, pp. 63–68. April 2006. Also
published in TUGboat vol. 26, no. 2, pp. 152–157.
https://tug.org/TUGboat/tb26-2/hagen.pdf

[8] Paul Richard Halmos: Naive Set Theory.
Undergraduate Texts in Mathematics.
Springer-Verlag. 1987.

[9] Jean-Michel Hufflen: “MlBibTEX’s Version 1.3”.
TUGboat, vol. 24, no. 2, pp. 249–262. July 2003.
https://tug.org/TUGboat/tb24-2/tb77hufflen.

pdf

18 If such commands are to be processed. Let us recall
that we can restrict our process to work at the top level for
a precise number of occurrences.

Jean-Michel HUFFLEN

TUGboat, Volume 43 (2022), No. 2 141

[10] Jean-Michel Hufflen: “MlBibTEX Now Deals
with Unicode”. In: Tomasz Przechlewski,
Karl Berry and Jerzy B. Ludwichowski,
eds., Premises, Predilections, Predictions. Proc.

TUG@BachoTEX 2017, pp. 39–41. April 2017.
Also published in TUGboat vol. 38, no. 2,
pp. 245–248. https://tug.org/TUGboat/tb38-2/
tb119hufflen-mlbibtex.pdf

[11] Jean-Michel Hufflen: “Which Success for TEX
as an Old Program?”. ArsTEXnica, vol. 30,
pp. 24–30. In Proc. GUIT 2020 meeting. October
2020.

[12] Roberto Ierusalimschy: Programming in Lua.
2nd edition. Lua.org. March 2006.

[13] Brian W. Kernighan and Dennis M. Ritchie:
The C Programming Language. 2nd edition.
Prentice Hall. 1988.

[14] Donald Ervin Knuth: Computers & Typesetting.

Vol. A: The TEXbook. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1986.

[15] Leslie Lamport: LATEX: A Document Preparation

System. User’s Guide and Reference Manual.
Addison-Wesley Publishing Company, Reading,
Massachusetts. 1994.

[16] Mark Lutz: Programming Python. O’Reilly
& Associates. October 1996.

[17] Henri Menke: “Parsing Complex Data Formats
in LuaTEX with LPEG”. TUGboat, vol. 40, no. 2,
pp. 129–135. In Proc. TUG. 2019. https://tug.
org/TUGboat/tb40-2/tb125menke-lpeg.pdf

[18] Frank Mittelbach and Michel Goossens,
with Johannes Braams, David Carlisle,
Chris A. Rowley, Christine Detig and Joachim
Schrod: The LATEX Companion. 2nd edition.
Addison-Wesley Publishing Company, Reading,
Massachusetts. August 2004.

[19] Walter Moreira: A Turing Machine in TEX.
April 2004. Montevideo, Uruguay. http:
//www.cmat.edu.uy/%7Ewalterm/turing/turing.

html#download

[20] Lawrence C. Paulson: ML for the Working

Programmer. 2nd edition. Cambridge University
Press. 1996.

[21] Simon Peyton Jones, ed.: Haskell 98 Language

and Libraries. The Revised Report. Cambridge
University Press. April 2003.

[22] Alex Shinn, John Cowan, and Arthur A.
Gleckler, with Steven Ganz, Aaron W. Hsu,
Bradley Lucier, Emmanuel Medernach,
Alexey Radul, Jeffrey T. Read, David
Rush, Benjamin L. Russel, Olin Shivers,
Alaric Snell-Pym and Gerald Jay Sussman:
Revised7 Report on the Algorithmic Language

Scheme. 6 July 2013. https://small.r7rs.org/
attachment/r7rs.pdf

[23] George Springer and Daniel P. Friedman:
Scheme and the Art of Programming. The MIT

Press, McGraw-Hill Book Company. 1989.

[24] Uwe Ziegenhagen: “Combining LATEX with
Python”. TUGboat, vol. 40, no. 2, pp. 126–128.
In Proc. TUG 2019. https://tug.org/TUGboat/
tb40-2/tb125ziegenhagen-python.pdf

⋄ Jean-Michel HUFFLEN
FEMTO-ST (UMR CNRS 6174)

& University of Bourgogne
Franche-Comté

16, route de Gray
25030 BESANÇON CEDEX

France
jmhuffle (at) femto-st dot fr

Extracting information from (LA)TEX source files

142 TUGboat, Volume 43 (2022), No. 2

LATEX profiling of author submissions—

completeness & usability checking

Apu V, Rishi T, Aravind Rajendran

Abstract

Due to the permissive nature of LATEX, authors who
prepare their manuscripts in LATEX for publishing
their research articles in academic journals often
knowingly or unknowingly indulge in non-standard
markup practices. Since article submission systems
of most publishers are primarily designed for Mi-
crosoft Word-based articles, problems in LATEX man-
uscripts go undetected during submission and review
processes, and later cause avoidable delays and hard-
ships in processing their submissions.

A tool for pre-submission check followed by re-
quests to fix as much as possible at their end be-
fore submission will thus have benefits of earlier
publication and reducing turnaround time consider-
ably. TEXFolio Alpha is such a web-based tool for
pre-submission profiling, completeness and usability
checking of LATEX manuscript submissions.

1 Introduction

LATEX is not just a markup language for document
preparation. The programmable nature of LATEX
allows authors to customize every aspect of the docu-
ment. When typesetting documents for personal use,
this flexibility of LATEX is a great advantage. But
in the case of academic publishing, journal publish-
ers prefer author-submitted documents to follow a
common template and style so that the article pub-
lication process, which involves reviewing, editing,
typesetting, proofing and final online and print de-
liverables, can be done within the turnaround time,
and as cost effectively as possible.

Journal publishers often provide authors docu-
ment templates in the preferred layouts and style
for both LATEX and Microsoft Word. Word being a
WYSIWYG document preparation system with lim-
ited customization capabilities compared to LATEX,
manuscript processing at the typesetters’ end is easier
for a non-math-intensive document prepared using
Word templates. Processing of LATEX manuscripts
depends on many factors, such as the author’s exper-
tise and coding style in LATEX, the journal submission
system’s compatibility with LATEX, the journal type-
setter’s expertise in handling LATEX manuscripts, etc.
Novice LATEX authors may ignore compilation errors
or may not follow instructions given in LATEX tem-
plates, while authors expert in LATEX may use fancy
or cutting-edge packages that may not work with the
submission system or that break journal house style.

This results in much communication between the
author and typesetter which can cause avoidable de-
lays and difficulties in processing authors’ submission
within a normal turnaround time. A pre-submission
check tool that will ensure the requirements for fast
article publishing are met would be a solution for
these problems.

There are a number of reasons why a pre-submis-
sion profiling tool for LATEX manuscripts is needed.
First, it can help to ensure that the manuscript is
properly formatted and meets all of the submission
requirements by providing the facility to edit and
compile the manuscript. Second, it can help to iden-
tify any potential problems with the manuscript be-
fore it is submitted by walking the authors through
a checklist of the problems detected and providing
instructions to fix them. Finally, it can help to save
time and effort in the article production process by
allowing the author to fix any problems before the
submission process begins.

2 LATEX submission profiling process

LATEX profiling is the process of analyzing an author’s
submitted manuscript files for errors, missing files,
use of recommended class files and packages, use of
unsupported LATEX packages, author definitions of
macros, use of mandatory items in the submitted
manuscript required by the publisher, and then gen-
erating a consolidated checklist based on the analysis.
The author needs to review the checklist, which re-
ports both the items that are safe to move forward
and the items that need action from the author to fix.
Thus the profiling process checks the completeness
and usability (C&U) of the manuscript.

TEXFolio Alpha is a cloud LATEX profiling tool
which can be used as a web application and a micro-
service. Fig. 1 shows a high level block diagram
of TEXFolio Alpha’s workflow as a web application.
Instead of directly uploading the manuscript files to
the submission system, an author first uploads to
TEXFolio Alpha. The C&U server on which TEXFolio
Alpha is running processes the submitted files. This
involves checking submitted LATEX manuscripts and
associated files using TEXFolio’s analyzing scripts,
written in Python and Perl, to detect the class files
and packages used in the manuscript, missing input
files and figures. If the author is not using the class
file preferred by the publisher, TEXFolio Alpha will
alert the author about the advantages of using that
class file. If figures or input files are used in the
manuscript but not uploaded to TEXFolio Alpha,
they will be listed and the author prompted to upload
them.

doi.org/10.47397/tb/43-2/tb134apu-submissions

Apu V, Rishi T, Aravind Rajendran

https://doi.org/10.47397/tb/43-2/tb134apu-submissions

TUGboat, Volume 43 (2022), No. 2 143

Figure 1: High level block diagram of TEXFolio Alpha.

Once the initial analysis and checking are done,
the C&U server compiles the manuscript. If LATEX
compilation errors are encountered, the author will
be prompted with details of the errors and possible

solutions to solve the errors. The author can edit the
manuscript in TEXFolio Alpha’s LATEX editor (Fig. 2).
On the left side of the LATEX editor interface there
is a file manager. Authors can view the list of files

Figure 2: TEXFolio Alpha’s LATEX editor.

LATEX profiling of author submissions—completeness & usability checking

144 TUGboat, Volume 43 (2022), No. 2

Table 1: List of checks performed by TEXFolio Alpha while profiling LATEX manuscripts.

No. Items Severity

1 Multiple source files Major*
2 Check usage of Elsarticle class Major
3 Check missing Macro packages Major
4 Check missing Macro definitions Major
5 Check presence of Title Major
6 Check presence of Author Major
7 Check presence of Corresponding Author Major
8 Check presence of Affiliation Major
9 Check presence of Abstract Minor†

10 Check presence of Keyword Minor
11 Check Bibliography Environment Minor
12 Check Bibliography Database Minor
13 Check Undefined References Minor
14 Check Undefined Control Seq. Major
15 Check Multiply Def. Labels Minor
16 Check Missing Input files Major
17 Check Iffalse Condition Minor
18 Check Nomenclature Minor
19 Check Appendix/Supplementary materials Minor
20 Check possible Overfull content Minor
21 Check private email address(es) Minor
22 Check Bibliographic citations—Crossref Minor
23 Check other cross-references Minor
24 Check presence of Highlights Minor
25 Check presence of Conflict of Interest Minor
26 Check presence of sci-hub links Major
27 Check presence of notes Minor
28 Check non-standard Math coding Minor
29 Check missing Bibliographic citation Minor
30 Check missing other cross-references Minor

* Major: Cannot proceed with submission. Author must correct the issue.
† Minor: Can proceed with submission. Typesetter will take care to
correct the issue.

submitted and upload, and delete, rename or copy
files. TEX files can be opened in the editor in the
middle of the interface and changes can be made.
Below the editor, the log window will show compila-
tion errors and prompt authors with instructions to
fix the errors. On the right-hand side, the document
viewer will display the pdf document generated from
the manuscript.

Once the author corrects all compilation errors,
the C&U server will start validating the manuscript.
The document viewer will display the checklist gener-
ated by TEXFolio Alpha after the validation process.
This checklist is generated by several operations, such
as processing the log and auxiliary files using Python
and Perl scripts, and a checklist in XML format that

is generated during LATEX compilation. This check-
list can be seen in the document viewer in Fig. 2.
A few examples and more details about this XML

checklist generation are given in Section 3. Items
that are already satisfied by the manuscript will be
listed with status ‘Safe to Go’. Items that need ac-
tion by the author will be listed with details of the
problem. Table 1 lists the current checks performed
by TEXFolio Alpha.

TEXFolio Alpha will also assign a score to the
manuscript relating on the status of the items and its
severity. If the score does not meet the threshold set
by the publisher, the submission will not be moved
to the publishers’ submission system; instead, the
author will be asked to correct the critical problems.

Apu V, Rishi T, Aravind Rajendran

TUGboat, Volume 43 (2022), No. 2 145

To help the author solve problems, FAQs, chatbot or
human support can be integrated into the TEXFolio
interface. Since the issues and instructions to solve
them are presented in a checklist format it will often
be easier for the authors to correct the problems
themselves. After the author completes the valida-
tion process with a sufficient validation score, the
manuscript will be moved to the publisher’s submis-
sion system and a preprint pdf will be generated.

TEXFolio Alpha can be configured as a micro-
service as well, which can be integrated with other
applications and used with API calls.

3 Role of LATEX in the manuscript

validation process

As discussed above, TEXFolio Alpha uses Python
and Perl for processing and analyzing LATEX source
files, logs and auxiliary files to generate the C&U

checklist. Details like missing input files, checking
for the use of recommended class files and pack-
ages, uncited references etc., can be detected using
these methods. But a few critical ingredients for
the checklist can only be extracted with the help of
LATEX during a compilation. TEXFolio Alpha uses
LATEX’s hook mechanisms and the etoolbox pack-
age’s patching commands to extract checklist details
during compilation. All hooks and patching com-
mands are kept in a configuration file and this file
is loaded in the manuscript before \documentclass
using \input. The example in this article uses a
manuscript using the elsarticle.cls; this is a pop-
ular document class for preparing preprint pdfs and
it is the recommended document class by one of the
largest academic publishers.

In this example, elsarticle-pre-hooks.tex
contains the hook macros and patching commands.
This pre-hooks file contains publisher and journal
specific configuration for documents generated using
elsarticle.cls:

\input{elsarticle-pre-hooks}

\documentclass[final]{elsarticle}

This is the only change in the manuscript made
for profiling in TEXFolio Alpha. By using hooks
and patching there is no need to add any additional
packages or macro definition in the preamble part of
author manuscript for profiling. This makes sure the
author’s manuscript is kept intact during TEXFolio
Alpha’s profiling process.

We will next discuss three examples where we
used LATEX hook mechanism in TEXFolio Alpha.

3.1 Detection of sensitive macro

redefinitions

An author may redefine macros, either intentionally
or unintentionally, that are defined in the class file.
Although LATEX normally reports ‘already defined’ er-
rors, the author may use \def or \renewcommand to
skip this error without considering the reasons for the
error. In some cases a package loaded by the author
may redefine macros without showing any errors.

We use a hook in the configuration which check
for definitions by the author or by loaded packages
that override already-defined macros in the class file,
per publisher requirements. If such redefinitions go
undetected during submission they will raise style
error flags later, during journal production at the
typesetter, causing delays in the article production as
the typesetter must contact the journal and authors
to query whether to keep the custom style. If such
cases are detected at the submission stage, the author
can explain the rationale behind changing the macro,
or revert to the original macro defined in the class if
the redefinition was unintentional and does not have
any particular significance.

Let’s look at the implementation of the hook.
We create a clist (comma-separated list) that holds
the names of sensitive macros. In this example,
two commands \textmarker and \author are the
sensitive macros.

\clist_new:N \cu_macros_for_verification

\clist_gset:Nn \cu_macros_for_verification

{textmarker,author}

Two property lists are created to hold a hash
value of the macro definitions.

\prop_new:N \cu_elsarticle_macro_hash

\prop_new:N \cu_document_macro_hash

This hash value will be used to verify if the macro
definition has been modified.

Using the hook mechanism, we add macro calls
after the class file is loaded which compute the
hash value of the meaning of the macros listed in
\cu_macros_for_verification to the property list
\cu_elsarticle_macro_hash.

\AddToHook{class/after}[elsarticle]{

\clist_map_inline:Nn

\cu_macros_for_verification

{ \str_if_eq:nnTF { #1 } { }

{ \clist_map_break: }

{ \prop_gput:Nnx

\cu_elsarticle_macro_hash { #1 }

{ \tex_mdfivesum:D{\csmeaning{#1}} }

}

}

}

LATEX profiling of author submissions—completeness & usability checking

146 TUGboat, Volume 43 (2022), No. 2

Next, to capture any cases of redefinition of the
macros listed in \g_macros_for_verification we
add an \enddocument hook to save hash values for
the macro definitions to \g_document_macro_hash.

\AddToHook{enddocument}{

\clist_map_inline:Nn

\cu_macros_for_verification

{ \str_if_eq:nnTF { #1 } { }

{ \clist_map_break: }

{ \prop_gput:Nnx

\cu_document_macro_hash { #1 }

{ \tex_mdfivesum:D{\csmeaning{#1}}

}

}

}

Continuing in the same hook, we compare the
hash values on both property lists. If hash values
are different, authors need to verify if the macro
redefinition is necessary.

\prop_map_inline:Nn

\cu_elsarticle_macro_hash {

\str_if_eq:nnTF { #1 } { }

{ \prop_map_break: }

{ \str_if_eq:eeTF { #2 }

{ \prop_item:Nn

\cu_document_macro_hash { #1 } }

{ }

When we identify such a difference in hash value,
we add a checklist item with description of the prob-
lem to a custom XML file.

{ \iow_now:Nx \cu_report

{<checklist

type="redefined-macros">}

\iow_now:Nx \cu_report

{<description id="redefined-#1">

\cumacrodescription{#1}

</description>}

\iow_now:Nx \cu_report {</checklist>}

}

}

}

}

The XML elements are given attributes @type
and @id to simplify generation of a report which can
be viewed in the TEXFolio Alpha web interface.

3.2 Check for mandatory items in the

manuscript

Here we look at another case, this time checking
for the use of mandatory items in the document.
When using the class file suggested by the publisher,
some commands defined in the class file, for example,
macros for keywords, corresponding author, etc., will

be mandatory for submission. One way to detect
if authors have not omitted these commands is to
add error messages if they are not used. But in the
case of popular class files such as elsarticle.cls,
authors use it for typesetting documents for personal
use like lecture notes too. The implementation of
errors specific for publisher requirements will create
difficulties in those type of non-academic use cases.
So using a hook configuration in the profiling tool is
a better solution.

To ensure whether authors use these mandatory
commands in manuscripts, a list of such macros are
maintained:

\clist_new:N \cu_mandatory_macros

\clist_set:Nn \cu_mandatory_macros

{corref,cortext}

\corref and \cortext are commands used to tag
corresponding authors in elsarticle.cls.

We iterate through the list, adding a hook to
each macro itself which sets a definition to indicate
the macro has been used.

\clist_map_inline:Nn

\cu_mandatory_macros

{\str_if_eq:nnTF { #1 } { }

{ \clist_map_break: }

{ \AddToHook{cmd/#1/before}

{ \csgdef{cu_macro_#1_done}{1}} }

}

Then a hook at \enddocument verifies if the
command has been used, and writes to the checklist
XML.

\AddToHook{enddocument}{

\clist_map_inline:Nn

\cu_mandatory_macros {

\str_if_eq:nnTF { #1 } { }

{ \clist_map_break: }

{ \ifcsundef { cu_macro_#1_done }

{ \iow_now:Nx \cu_report

{<checklist

type="mandatory-macros">}

\iow_now:Nx \cu_report

{<description

id="mandatory-macro-#1">

\cumandatorymacrodescription{#1}

</description>}

\iow_now:Nx \cu_report

{</checklist>}

} { }

}

}

}

An analogous hook can be used to check for
use of mandatory environments: instead of hooking

Apu V, Rishi T, Aravind Rajendran

TUGboat, Volume 43 (2022), No. 2 147

to cmd/ïcommand nameð/before, we hook to env/

ïenvironment nameð/before.

3.3 Preventing the use of incompatible

or troublesome packages

Packages authors load in their manuscript may be
incompatible with the LATEX submission system of
the publisher. For instance, packages that require
the --shell-escape option will not be allowed with
these online submission systems, as they poses a
security risk. A commonly-used example of such a
package is minted.sty.

Via the package/ïpackage nameð/before hook
we can stop the compilation at the point where the
package is loaded and instruct author to use a simi-
lar package that is compatible with the submission
system, or suggest some alternate methods. A hook
as below can be used to stop compilation at the point
where minted is detected.

\AddToHook{package/minted/before}{

\AddToHook{enddocument}{

\iow_now:Nx \cu_report

{<checklist

type="problem-package">}

\iow_now:Nx \cu_report

{<description

id="problem-pkg-minted">

\cuproblempkgdescription{minted}

</description>}

\iow_now:Nx \cu_report

{</checklist>}

}

\AddToHook{begindocument/end}

{\enddocument}

\endinput

}

4 Objectives and scope of TEXFolio Alpha

The main objective of TEXFolio Alpha is to ensure
that authors submit the latest, single version source
material right the first time. The reports generated
by the checklists can be used by the publisher and
supplier workflow management systems to improve
customer experience. FAQs and chatbots can be inte-
grated into the system to walk authors through the
process. Being a cloud-based web service or micro-
service, authors and publishers can use TEXFolio
Alpha without the need of a local TEX installation.

References

[1] LATEX’s hook management.
https://mirror.ctan.org/macros/latex/

base/lthooks-doc.pdf

[2] The LATEX3 Sources. https://mirror.ctan.
org/macros/latex/contrib/l3kernel/

source3.pdf

⋄ Apu V

STM Document Engineering

Trivandrum, Kerala, India

apu.v (at) stmdocs.in

https://stmdocs.in

⋄ Rishi T

STM Document Engineering

Trivandrum, Kerala, India

rishi (at) stmdocs.in

https://stmdocs.in

⋄ Aravind Rajendran

Independent Consultant,

STM Document Engineering

Trivandrum, Kerala, India

aravind (at) stmdocs.in

https://stmdocs.in

LATEX profiling of author submissions—completeness & usability checking

https://mirror.ctan.org/macros/latex/base/lthooks-doc.pdf
https://mirror.ctan.org/macros/latex/base/lthooks-doc.pdf
https://mirror.ctan.org/macros/latex/contrib/l3kernel/source3.pdf
https://mirror.ctan.org/macros/latex/contrib/l3kernel/source3.pdf
https://mirror.ctan.org/macros/latex/contrib/l3kernel/source3.pdf

148 TUGboat, Volume 43 (2022), No. 2

LATEX News
Issue 35, June 2022

Contents

Introduction 1

Document metadata interface 1

The latex-lab bundle 2

A new mark mechanism for LATEX 2

A key/value approach to option handling 3

New or improved commands 3
Floating point and integer calculations 3
CamelCase commands for changing arguments

to csnames 3
Testing for (nearly) empty arguments 4
Better allocator for Lua command ids 4
Starred command version for \ref, \Ref and

\pageref 4
Preparation for supporting PDF in backends . 4

Code improvements 4
\protected UTF-8 character definitions 4
A small update to \obeylines and

\obeyspaces 4
doc upgraded to version 3 4
doc can now show dates in change log 5
ltxdoc gets options nocfg and doc2 5
LuaTEX callback improvements 5
Class proc supports twoside 5
Croatian character support 5
Cleanup of the Unicode declaration interface . 5
New hook: include/excluded 5
Input support for normalized angle brackets . . 5

Bug fixes 5
Using \DeclareUnicodeCharacter with C1

control points 5
Fix \ShowCommand when used with ltcmd . . . 6
Make \cite{} produce a warning 6
Fix adding cmd hooks to simple macros 6
Warn if shipout/lastpage hook is executed

too early 6
More consistent use of cramped math styles in

LuaTEX 6
Fixed bug when setting hook rules for

one-time hooks 6

Changes to packages in the amsmath category 6
amsopn: Do not reset \operator@font 6
amsmath: Error in \shoveleft 6
amsmath and amsopn: Robustify user commands 6

Changes to packages in the graphics category 7
Color in formulas 7
Fix locating files with \graphicspath 7

Changes to packages in the tools category 7
multicol: Fix \newcolumn 7
bm: Fix for amsmath operators 7

Introduction

The 2022 June release of LATEX is again focussing
on improvements made for our multi-year project to
automatically offer tagged PDF output [1]. These are
the new document metadata interface, the new mark
mechanism for LATEX, a standard key/value approach
for options, and the introduction of the latex-lab area
for temporary code that can be optionally loaded by
a document (when \DocumentMetadata is used with
certain test keys). These additions are described in the
first sections. Related to this effort there are updates
to hyperref and tagpdf, both of which have their own
distributions.

As usual, we also added a number of smaller
improvements and bug fixes in various components of
core LATEX. Perhaps the most interesting ones (for some
users) are direct support for floating point arithmetic
(via \fpeval; see below) and the ability to properly
color parts of math formulas without introducing
spacing problems. For this we now offer the command
\mathcolor; see the description near the end of the
newsletter. There is also a new major release of the doc

package that supports a more fine-grained classification
of code elements and properly supports hyperref.

Document metadata interface

Until recently there was no dedicated location to declare
settings that affect a document as a whole. Settings
had to be placed somewhere in the preamble or as class
options or sometimes even as package options. For some
such settings this may cause issues, e.g., setting the PDF
version is only possible as long as the PDF output file
has not yet been opened which can be caused by loading
one or the other package.

For the “LATEX Tagged PDF project” [1] further
metadata about the whole document (and its processing)
need to be specified and again this data should be all
placed in a single well-defined place.

For this reason we introduce the new command
\DocumentMetadata to unify all such settings in
one place. The command expects a key/value list
that describes all document metadata for the current
document. It is only allowed to be used at the very

doi.org/10.47397/tb/43-2/tb134ltnews35

LATEX News #35

TUGboat, Volume 43 (2022), No. 2 149

beginning of the document, i.e., the declaration has to
be placed before \documentclass and will issue an error
if found later.

At this point in time we provide only the bare
command in the format; the actual processing of the
key/value is defined externally and the necessary code
will be loaded if the command is used. This scheme
is chosen for two reasons: by adding the command
in the kernel it is available to everybody without the
need to load a special package using \RequirePackage.
The actual processing, though, is external so that we
can easily extend the code (e.g., offering additional
keys or changing the internal processing) while the
above-mentioned project is progressing. Both together
allows users to immediately benefit from intermediate
results produced as part of the project, as well as
offering the LATEX Project Team the flexibility to
enable such intermediate results (for test purposes or
even production use) in-between and independently of
regular LATEX releases. Over time, tested and approved
functionality can then seamlessly move into the kernel
at a later stage without any alterations to documents
already using it. At the same time, not using the new
consolidated interface means that existing documents
are in no way affected by the work that is carried out
and is in a wider alpha or beta test phase.

Documentation about the new command and already
existing keys are in ltmeta (part of source2e.pdf)
and documentmetadata-support.pdf and also in the
documentation of the pdfmanagement-testphase package.

Package and class authors can test if a user has used
\DocumentMetadata with \IfDocumentMetadataTF.

The latex-lab bundle

We added a new latex-laboratory bundle in which we
place new code that is going to be available only through
a \DocumentMetadata declaration and that is—most
importantly—work under development and subject
to change without further notice. This means that
commands and interfaces provided there may get altered
or removed again after some public testing. The code
can be accessed through the \DocumentMetadata key
testphase. Currently supported values are phase-I

and phase-II that enable code of the tagged PDF
project (phase I is frozen, and phase II is the phase we
are currently working on). With

\DocumentMetadata{testphase=phase-II}

you currently enable tagging for paragraphs and
footnotes; more document elements will follow soon.

For more detailed testing it is also possible to pass
other values to testphase; for example, the first
incarnation of a template design interface based on
l3keys can be accessed through the value prototype,
thus

\DocumentMetadata

{testphase={phase-II,prototype}}

will enable all of phase-II plus the draft template
interface (which is not yet integrated in phase-II).

Eventually, code will move (once considered stable)
from the testphase into the LATEX kernel itself.
Tagging will continue to require a \DocumentMetadata

declaration, but you will then be able to drop the
testphase key setting.

A new mark mechanism for LATEX

The mark mechanism is TEX’s way to pass information
to the page-building process, which happens asyn-
chronously, in order to communicate relevant data for
running headers and footers to the latter, e.g., what
is the first section on the page or the last subsection,
etc. However, marks may also be used for other pur-
poses. The new kernel module provides a generalized
mechanism for marks of independent classes.

The TEX engines offer a low-level mark mechanism
to communicate information about the content of the
current page to the asynchronous operating output
routine. It works by placing \mark commands into the
source document.

This mechanism works well for simple formats (such
as plain TEX) whose output routines are only called to
generate pages. It fails, however, in LATEX (and other
more complex formats), because here the output routine
is sometimes called without producing a page, e.g., when
encountering a float and placing it into one of the float
regions. When that happens TEX’s \topmark no longer
reflects the situation at the top of the next page when
that page is finally boxed.

Furthermore, TEX only offered a single mark while
LATEX wanted to keep track of more than one piece of
information. For that reason, LATEX implemented its
own mark mechanism where the marks always contained
two parts with their own interfaces: \markboth

and \markright to set marks and \leftmark and
\rightmark to retrieve them.

Unfortunately, this extended mechanism, while
supporting scenarios such as chapter/section marks, was
far from general. The mark situation at the top of a
page (i.e., \topmark) remained unusable and the two
marks offered were not really independent of each other
because \markboth (as the name indicates) was always
setting both.

The new mechanism now available in LATEX starting
with the 2022 release overcomes both issues:

• It provides arbitrary many, fully independent
named marks, that can be allocated and from that
point onwards used.

• It offers access for each such mark to retrieve its
top, first, and bottom value separately.

• Furthermore, the mechanism is augmented to give
access to marks in different “regions”, which may
be other than full pages.

The legacy interfaces, e.g., \markboth, are kept. Thus
classes and packages making use of them continue to
work seamlessly. To make use of the extended possibility
a new set of commands for the declaration of mark

LATEX News #35

150 TUGboat, Volume 43 (2022), No. 2

classes, setting their values and querying their state (in
the output routine) is now available in addition. You find
the documentation for the new interfaces together with
examples and further notes on the mechanism in the file
ltmarks-doc.pdf. Just call texdoc ltmarks-doc to
display it on your computer.

A key/value approach to option handling

The classical LATEX 2ε method for handling options,
using \ProcessOptions, treats each entry in the list as
a string. Many package authors have sought to extend
this handling by treating each entry as a key–value pair
(keyval) instead. To date, this has required the use of
additional packages, for example kvoptions.

The LATEX team have for some time offered the
package l3keys2e to allow keyvals defined using the L3
programming layer module l3keys to act as package
options. This ability has now been integrated directly
into the kernel. As part of this integration, the syntax
for processing keyval options has been refined, such that

\ProcessKeyOptions

will now automatically pick up the package name as
the key family, unless explicitly given as an optional
argument:

\ProcessKeyOptions[family]

To support creating key options for this mechanism,
the new command \DeclareKeys has been added. This
works using the same general approach as l3keys or
pgfkeys: each key has one or more properties which
define its behavior.

Options for packages which use this new approach
will not be checked for clashes by the kernel. Instead,
each time a \usepackage or \RequirePackage line is
encountered, the list of options given will be passed
to \ProcessKeyOptions. Options which can only be
given the first time a package is loaded can be marked
using the property .usage = load, and will result in a
warning if used in a subsequent package loading line.

Package options defined in this way can also be set
within a package using the new command \SetKeys,
which again takes an optional argument to specify the
family, plus a mandatory one for the options themselves.

New or improved commands

Floating point and integer calculations
The L3 programming layer offers expandable commands
for calculating floating point and integer values, but
so far these functions have only been available to
programmers, because they require \ExplSyntaxOn

to be in force. To make them easily available at the
document level, the small package xfp defined \fpeval

and \inteval.
An example of use could be the following:

\LaTeX{} can now compute:

\[\frac{\sin (3.5)}{2} + 2\cdot 10^{-3}

= \fpeval{sin(3.5)/2 + 2e-3} \]

which produces the following output:

LATEX can now compute:

sin(3.5)
2

+ 2 · 10−3 = −0.1733916138448099

These two commands have now been moved into the
kernel and in addition we also provide \dimeval and
\skipeval. The details of their syntax are described in
usrguide3.pdf. The command \fpeval offers a rich
syntax allowing for extensive calculations, whereas the
other three commands are essentially thin wrappers
for \numexpr, \dimexpr, and \glueexpr—therefore
inheriting some syntax peculiarities and limitations in
expressiveness.

\newcommand\calculateheight[1]{%

\setlength\textheight{\dimeval{\topskip

+ \baselineskip * \inteval{#1-1}}}}

The above, for example, calculates the appropriate
\textheight for a given number of text lines.

(github issue 711)

CamelCase commands for changing arguments to csnames

It is sometimes helpful to “construct” a command name
on the fly rather than providing it as a single \...

token. For these kinds of tasks the LATEX3 programming
layer offers a general mechanism (in the form of
\exp_args:N... and \cs_generate_variant:Nn).
However, when declaring new document-level commands
with \NewDocumentCommand or \NewCommandCopy, etc.
the L3 programming layer may not be active, and even
if it is, mixing CamelCase syntax with L3 programming
syntax is not really a good approach. We have therefore
added the commands \UseName and \ExpandArgs to
assist in such situations, e.g.,

\NewDocumentCommand\newcopyedit{mO{red}}

{\newcounter{todo#1}%

\ExpandArgs{c}\NewDocumentCommand{#1}{s m}%

{\stepcounter{todo#1}%

\IfBooleanTF {##1}%

{\todo[color=#2!10]%

{\UseName{thetodo#1}: ##2}}%

{\todo[inline,color=#2!10]%

{\UseName{thetodo#1}: ##2}}%

}%

}

which provides a declaration mechanism for copyedit
commands, so that \newcopyedit{FMi}[blue] then
defines \FMi (and the necessary counter).

The command \ExpandArgs can be useful with the ar-
gument cc or Nc in combination with \NewCommandCopy

if the old or new command name or both need construct-
ing. Finally, there is \UseName which takes its argument
and turns it into a command (i.e., a CamelCase version
of \@nameuse (LATEX 2ε) or \use:c (L3 programming
layer)) which was also used in the example above.

(github issue 735)

LATEX News #35

TUGboat, Volume 43 (2022), No. 2 151

Testing for (nearly) empty arguments

In addition to \IfNoValueTF to test if an optional
argument was provided or not, there is now also
\IfBlankTF, which tests if the argument is empty or
contains only blanks. Based on the result it selects a true
or false code branch. As usual, the variants \IfBlankT

and \IfBlankF are also provided for use when only
one branch leads to some action. Further details and
examples are given in usrguide3.pdf.

Better allocator for Lua command ids

In LuaTEX we already had the \newluafunction macro
which allocates a Lua function identifier which can
be used to define commands with \luadef. But this
always required two steps: \newluafunction defines
the passed control sequence as an integer, which then
has to be used to define the actual Lua command
with \luadef. After that, the integer is no longer
needed. This was inconsistent with other allocators.
Therefore we added two new allocators \newluacmd and
\newexpandableluacmd which directly define a control
sequences invoking the allocated Lua function. The
former defines a non-expandable Lua command, the
latter an expandable one. Of course, the associated Lua
function still has to be defined by assigning a function to
the lua.get_functions_table() table. The required
index is available in \allocationnumber.

An example could be

\newluacmd \greeting

\directlua {

lua.get_functions_table()

[tex.count.allocationnumber]

= function()

local name = token.scan_argument()

tex.sprint(9Hello 9, name, 9!9)

end

}

\greeting{world}

(github issue 536)

Starred command version for \ref, \Ref and \pageref

For a long time hyperref has provided starred versions
for the reference commands which do not create active
links. This syntax extension required users and package
authors to check if hyperref was loaded and adjust the
coding accordingly or take the starred forms out if
text was copied to a document without hyperref. The
commands have now been aligned with the hyperref

usage and always allow an optional star. The showkeys

package has been updated to handle the starred versions
too, both with hyperref or nameref and without. The
commands are defined with \NewDocumentCommand and
so no longer expand when written to auxiliary files.
This reduces the number of compilations needed to
resolve references in captions and sectioning commands.
The package ifthen has been updated to ensure that
\pageref can still be used inside tests like \isodd.

Preparation for supporting PDF in backends
At the current point in time, basic support for PDF
in backends is not part of LATEX core; it is provided
by an external package like hyperref. At some time
in the future that work will be placed into the kernel
but for now it is separate and has to be explicitly
loaded in the document. To enable class and package
authors to support PDF-specific tasks like the creation
of link targets without having to test first if hyperref

has been loaded, dummy versions of the commands
\MakeLinkTarget, \LinkTargetOn, \LinkTargetOff
and \NextLinkTarget are provided.

Code improvements

\protected UTF-8 character definitions
The characters defined via utf8.def are now defined
as \protected macros. This makes them safe to
use in expansion contexts where the classic \protect

mechanism is not enabled, notably L3 programming
layer e and x arguments.

Related to this change \MakeUppercase and
\MakeLowercase have been updated to use the Unicode-
aware case changing functions \text_lowercase:n in
place of the TEX primitive \lowercase. A similar
change will be made in the textcase package.

Note: for technical reasons these low-level character
handling changes will not be rolled back if the format
version is rolled back using the latexrelease package
rollback mechanism. (github issue 780)

A small update to \obeylines and \obeyspaces

The plain TEX versions of \obeylines and \obeyspaces

make ^^M and ' active and force them to execute \par

and \space, respectively. Don Knuth makes a remark
in the TEXbook that one can then use a trick such as

\let\par=\cr \obeylines \halign{...

However, redefining \par like this may lead to all kinds
of problems in LATEX. We have therefore changed the
commands to use an indirection: the active characters
now execute \obeyedline and \obeyedspace, which in
turn do what the hardwired solution did before.

This • means • that • it • is • now • possible • to

• achieve • special • effects • in • a • safe • way.

• This • paragraph, • for • example, • was •

produced • by • making • \obeyedspace • generate

• {\'\textbullet\'} • and • enabling •

\obeyspaces • within • a • quote • environment.

Thus, if you are keen to use the plain TEX trick, you need
to say \let\obeyedlines=\cr now. (github issue 367)

doc upgraded to version 3
After roughly three decades the doc package received a
cautious uplift, as already announced at the 2019 TUG
conference—changes to doc are obviously always done in
a leisurely manner.

Given that most documentation is nowadays viewed on
screen, hyperref support is added and by default enabled
(suppress it with option nohyperref or alternatively

LATEX News #35

152 TUGboat, Volume 43 (2022), No. 2

with hyperref=false) so the internal cross-references
are properly resolved including those from the index
back into the document.

Furthermore, doc now has a general mechanism to
define additional “doc” elements besides the two Macro

and Env it has known in the past. This enables better
documentation because you can now clearly mark
different types of objects instead of simply calling them
all “macros”. If desired, they can be collected together
under a heading in the index so that you have a section
just with your document interface commands, or with
all parameters, or . . .

The code borrows ideas from Didier Verna’s dox

package (although the document level interface is
different) and it makes use of Heiko Oberdiek’s hypdoc

package, which at some point in the future will be
completely integrated, given that its whole purpose
it to patch doc’s internal commands to make them
hyperref-aware.

All changes are expected to be upward compatible,
but if you run into issues with older documentation
using doc a simple and quick solution is to load the
package as follows: \usepackage{doc}[=v2]

doc can now show dates in change log
Up to now the change log was always sorted by
version numbers (ignoring the date that was given
in the \changes command). It can now be sorted
by both version and date if you specify the option
reportchangedates on package level and in that case
the changes are displayed with

ïversionð – ïdateð

as the heading (instead of just ïversionð), when using
\PrintChanges. (github issue 531)

ltxdoc gets options nocfg and doc2

The LATEX sources are formatted with the ltxdoc class,
which supports loading a local config file ltxdoc.cfg.
In the past the LATEX sources used such a file but it
was not distributed. As a result reprocessing the LATEX
sources elsewhere showed formatting changes. We now
distribute this file which means that it is loaded by
default. With the option nocfg this can be prevented.

We also added a doc2 option to the class so that it is
possible to run old documentation with doc version 2, if
necessary.

LuaTEX callback improvements
The LuaTEX callbacks hpack_quality and
vpack_quality are now exclusive and therefore
only allow a single handler. The previous type list

resulted in incorrect parameters when multiple han-
dlers were set; therefore, this only makes an existing
restriction more explicit.

Additionally the return value true for list callbacks
is now handled internally and no longer passed on to the
engine. This simplifies the handling of these callbacks
and makes it easier to provide consistent interfaces for
user-defined list callbacks.

Class proc supports twoside

The document class proc, which is a small variation on
the article class, now supports the twoside option,
displaying different data in the footer line on recto and
verso pages. (github issue 704)

Croatian character support

The default inputenc support has been extended to
support the 9 characters DŽ, Dž, dž, LJ, Lj, lj, NJ,
Nj, nj, input as single UTF-8 code points in the range
U+01C4 to U+01CC. (github issue 723)

Cleanup of the Unicode declaration interface

When declaring encoding specific commands for
the Unicode (TU) encoding some declarations (e.g.,
\DeclareUnicodeComposite) do not have an explicit
argument for the encoding name, but instead use the
command \UnicodeEncodingName internally. There
was one exception though: \DeclareUnicodeAccent

required an explicit encoding argument. This inconsis-
tency has now been removed and the encoding name
is always implicit. To avoid a breaking change for a
few packages on CTAN, \DeclareUnicodeAccent still
accepts three arguments if the second argument is TU or
\UnicodeEncodingName. Once all packages have been
updated this code branch will get removed.

At the same time we added \DeclareUnicodeCommand

and \DeclareUnicodeSymbol for consistency. They
also use \UnicodeEncodingName internally, instead of
requiring an encoding argument as their general purpose
counterparts do. (github issue 253)

New hook: include/excluded

A few releases ago we introduced a number of file
hooks for different types of files; see [2] and in
particular [4]. The hooks for \include files now have
an addition: if such a file is not included (because
\includeonly is used and its ïnameð is not listed
in the argument) then the hooks include/excluded

and include/ïnameð/excluded are executed in that
order—of course, only if they contain code. This
happens after LATEX has loaded the .aux file for this
include file, i.e., after LATEX has updated its counters to
pretend that the file was seen.

Input support for normalized angle brackets

Source files containing 〈 or 〉 directly written as Unicode
codepoints U+2329 and U+232A no longer break
when the source file gets normalized under Unicode
normalization rules. (github issue gh/714)

Bug fixes

Using \DeclareUnicodeCharacter with C1 control points

An error in the UTF-8 handling for non-Unicode TEX
has prevented \DeclareUnicodeCharacter being used
with characters in the range hex 80 to 9F. This has been
corrected in this release. (github issue 730)

LATEX News #35

TUGboat, Volume 43 (2022), No. 2 153

Fix \ShowCommand when used with ltcmd
When \ShowCommand support was added for ltcmd in
the previous release [3], a blunder in the code made it
so that when \ShowCommand was used on a command
defined with ltcmd, it only printed the meaning of the
command in the terminal, but didn’t stop for interaction
as it does elsewhere (mimicking \show). The issue is
now fixed. (github issue 739)

Make \cite{} produce a warning
When the \cite command can’t resolve a citation label
it issues a warning “Citation ‘ïlabelð’ on page ïpageð
undefined”. However, due to some implementation
details a completely empty argument was always
silently accepted. Given that there are probably people
who write \cite{} with the intention to fill in the
correct label later it is rather unfortunate if that is not
generating a warning that something in the document is
still amiss. This has finally been corrected and a warning
is now generated also in this case. (github issue 790)

Fix adding cmd hooks to simple macros
A bug in how LATEX detected the type of a command
caused a premature forced expansion of such commands,
which, depending on their definition, could be harmless
or could cause severe trouble. This has been fixed in the
latest release. (github issue 795)

(https://tex.stackexchange.com/q/637565)

Warn if shipout/lastpage hook is executed too early
The hook shipout/lastpage is intended to place
\specials into the last page shipped out. This is
needed for some use cases, e.g., tagging. If that hook is
nonempty and the user has added additional pages since
the last run, then LATEX executes this hook too early,
but until now without giving any indication that the
document needs rerunning. This has now been corrected
and an appropriate warning is given. (github issue 813)

More consistent use of cramped math styles in LuaTEX
Using LuaTEX’s \Udelimiterover to place a horizontally
extensible glyph on top of a mathematical expression now
causes the expression to be set in cramped style, as used
in similar situations by traditional TEX math rendering.
Similarly, cramped style is now used for expressions set
under such a delimiter using \Uunderdelimiter, but is
no longer used when setting an expression on top of such
extensible glyphs using \Uoverdelimiter. This new
behavior follows TEX’s rule that cramped style is used
whenever something else appears above the expression.
Additionally the math style of these constructs can now
be detected using \mathstyle.

The old behavior can be restored by adding

\mathdefaultsmode=0

to a document.

Fixed bug when setting hook rules for one-time hooks
If a \DeclareHookRule command is set for a one-time
hook, it has to come before the hook gets used, because
otherwise it never applies—after all, the hook is used

only once. There was a bug in the implementation
in that the sorting mechanism was still applied if the
\DeclareHookRule declaration appeared while the
one-time hook was executed, causing the spurious
typesetting of the code labels and the hook name. This
bug is now fixed and an error is raised when a new
sorting rule is added to an already-used one-time hook.

A possible scenario in which this new error is raised
is the following: package AAA declares a hook rule for
begindocument (i.e., \AtBeginDocument) to sort out
the behavior between itself and some other package.
Package BBB wants to load package AAA but only if
it hasn’t been loaded in the preamble, so delays the
loading to begindocument. In that case the hook rule
declared by AAA can no longer be applied and you get
the error. If that happens the solution is to load the
package in begindocument/before, which is executed at
the very end of the preamble but before begindocument

is processed. (github issue 818)

Changes to packages in the amsmath category

amsopn: Do not reset \operator@font

The package amsopn used to define \operator@font

but this command has been provided by the LATEX
format for at least 14 years. As a result the definition in
amsopn is equivalent to a reset to the kernel definition,
which is unnecessary and surprising if you alter the
math setup (e.g., by loading a package) and at a later
stage add amsmath, which then undoes part of your
setup. For this reason the definition was taken out and
amsmath/amsopn now relies on the format definition.

In the unlikely event that you want the resetting to
happen, use

\makeatletter

\def\operator@font{\mathgroup\symoperators}

\makeatother

after loading the package. (github issue 734)

amsmath: Error in \shoveleft

If \shoveleft started out with the words “plus” or
“minus” it was misunderstood as part of a rubber length
and led either to an error or was swallowed without
trace. By adding a \relax this erroneous scanning
into the argument of \shoveleft is now prevented.

(github issue 714)

amsmath and amsopn: Robustify user commands

Most user-level commands have been made robust in
the LATEX kernel during the last years, but variant
definitions in amsmath turned them back into fragile
beings. We have now made most commands in amsmath

and amsopn robust as well to match the kernel behavior.
This also resolves a bug recently discovered in the
mathtools package, which was due to \big not being
robust after amsmath was loaded. (github issue 123)

LATEX News #35

154 TUGboat, Volume 43 (2022), No. 2

Changes to packages in the graphics category

Color in formulas
While it is possible to color parts of a formula using
\color commands the approach is fairly cumbersome.
For example, to color a summation sign, but not its
limits, you need four \color commands and some
seemingly unnecessary sets of braces to get coloring and
spacing right:

\[X = \color{red} \sum

% without {{ the superscript below is misplaced

_{{\color{black} i=1}}

% without {{ the \sum is black

^{{\color{black} n}}

\color{black} % without it the x_i is red

x_i \]

Leaving out any of the \color commands or any of
the {{...}} will give you a wrong result instead of the
desired

X =
n�

i=1

xi

So even if this is possible, it is not a very practical
solution and furthermore there are a number of cases
where it is impossible to color a certain part of a formula,
for example, an opening symbol such as \left(but not
the corresponding \right).

We have therefore added the command \mathcolor

to the color and xcolor package, which has the same
syntax as \textcolor, but is specially designed for use
in math and handles sub and superscripts and other
aspects correctly and preserves correct spacing. Thus,
the above example can now be written as

\[X = \mathcolor{red}{\sum}_{i=1}^n x_i \]

This command is only allowed in formulas. For details
and further examples, see mathcolor.pdf.

Fix locating files with \graphicspath

If a call to \includegraphics asked for a file (say,
image) without extension, and if both A/image.pdf and
B/image.tex existed (both A/ and B/ in \graphicspath,
but neither in a folder searched by TEX), then
A/image.pdf would not be found, and a “file not
found” error would be incorrectly thrown. The issue
is now fixed and the graphics file is correctly found.

(github issue 776)

(https://tex.stackexchange.com/q/630167)

Changes to packages in the tools category

multicol: Fix \newcolumn

The recently added \newcolumn didn’t work prop-
erly if used in vertical mode, where it behaved
like \columnbreak, i.e., spreading the column ma-
terial out instead of running the column short.

(https://tex.stackexchange.com/q/624940)

bm: Fix for amsmath operators
An internal command used in the definition of operator
commands such as \sin in amsmath has been guarded in
\bm to prevent internal syntax errors due to premature
expansion. (github issue 744)

References

[1] Frank Mittelbach and Chris Rowley: LATEX Tagged

PDF—A blueprint for a large project.
https://latex-project.org/publications/

indexbyyear/2020/

[2] LATEX Project Team: LATEX 2ε news 32.
https://latex-project.org/news/latex2e-news/

ltnews32.pdf

[3] LATEX Project Team: LATEX 2ε news 34.
https://latex-project.org/news/latex2e-news/

ltnews34.pdf

[4] Frank Mittelbach, Phelype Oleinik,
LATEX Project Team: The ltfilehook documentation.
Run texdoc ltfilehook-doc to view.

LATEX News #35

TUGboat, Volume 43 (2022), No. 2 155

Introductory LATEX workshop en français

Éric Guichard, Jean-Michel Hufflen

We have greatly enjoyed organizing the first French
workshop about LATEX for the TUG 2022 conference.
It can be viewed online at youtube.com/watch?v=

lUssT1NlcfU; the duration is about three hours.
It was a course for beginners, and we felt that

we had to offer a different presentation than those
found online or in books, tutorials, etc. All of those
are very well made, and it did not seem useful to
copy them. For this reason, we decided to begin
with a historical and philosophical presentation of
writing, to explain, rather than the qualities and
easiness of LATEX, the invention of Donald Knuth in
a wide frame— from Euclid and Aristotle through
to Frutiger and digital writing.

Why? Generally, people who write a lot, or who
edit books or reviews, split between Word, InDesign
or LATEX users, and often debate endlessly about
the qualities of their preferred tool. But writing is
more complicated than what we think. And it seemed
interesting to remind viewers that (for instance before
the invention of computers and of Word) it is a
technology of the intellect, as Jack Goody described
it (en.wikipedia.org/wiki/Jack_Goody).

Goody showed that writing is a technology with-
out which we cannot think in a sophisticated way
(no Hilbert spaces without writing) and which some-
times formats our thoughts and representations (e.g.,
law, religions) and of course which is essential in
the notion of culture (from our aesthetic tastes till
our analysis of Greek philosophers, which we know
through written commentaries of the analysts of their
analysts).

Astonishly, this understanding of the link be-
tween matter and spirit (technology and thought) is
very recent, compared to the 5300 years of history of
writing. This fact may explain why we have so many
difficulties to understand the contribution of Donald
Knuth, who had the same analysis as Goody.

After this presentation, we began to introduce
LATEX, focusing mostly on beginners in social sci-
ences and humanities. Here is the summary of our
presentations:

1. Thinking LATEX, thinking with LATEX, by E. Gui-
chard.

After a short story of writing, concepts and
advantages of TEX and LATEX.

2. LATEX, first steps for beginners, by E. Guichard.
How to put a first document into action with

LATEX; interactive show with simple examples.

3. Questions of typography, by J.-M. Hufflen.

We did not attempt to be exhaustive about
the points specific to French typography, but
just showed that most are now well-handled,
by packages such as babel and polyglossia.
We also separated the points which should be
addressed last—e.g., improperly hyphenated
words — and the precautions we should get used
to adopting systematically — e.g., signalling un-
breakable space characters.

4. LATEX in humanities contexts (writers, designers,
publishers), by E. Guichard.

Standards, easiness for reading, dialogues with
publishers, design, communication with other
typesetting systems.

5. Bibliographies, by J.-M. Hufflen.
First we show that generating ‘References’

sections manually is error-prone and leads to
bibliographies that are difficult to reuse, because
there are far too many possible layouts. Then
we explain why several passes are needed when
a bibliography processor is used in conjunction
with LATEX. This demonstration uses BibTEX
but is suitable for any other biblography proces-
sor. After an example of cross-references among
bibliographical entries, additional demonstra-
tions aim to illustrate the expressive power of
advanced bibliography styles used in conjunc-
tion with LATEX packages such as natbib and
jurabib. This part ends with an introduction
to the biblatex package and the biber bibliog-
raphy processor.

Rappel du programme en français

1. Penser LATEX, penser avec LATEX (EG)— Thè-
mes : histoire de l’écriture, concepts et apports
de TEX et LATEX.

2. LATEX, premiers pas (EG)— Thèmes : réaliser
un premier document en LATEX ; présentation
illustrée d’exemples simples.

3. Points de typographie (JMH)— Thèmes : gé-
néralités, coupures, polices, langues.

4. LATEX en milieu littéraire (EG)— Thèmes :
normes, confort de lecture, design, dialogue avec
les éditeurs, communication avec d’autres sys-
tèmes éditoriaux.

5. Bibliographies (JMH) — Thèmes : processeurs
de bibliographies, styles de base, exemples.

⋄ Éric Guichard

Eric.Guichard (at) ens-lyon dot fr

⋄ Jean-Michel Hufflen

jmhuffle (at) femto-st dot fr

doi.org/10.47397/tb/43-2/tb134guichard-ltxworkshop-fr

Introductory LATEX workshop en français

https://youtube.com/watch?v=lUssT1NlcfU
https://youtube.com/watch?v=lUssT1NlcfU
https://en.wikipedia.org/wiki/Jack_Goody
https://doi.org/10.47397/tb/43-2/tb134guichard-ltxworkshop-fr

156 TUGboat, Volume 43 (2022), No. 2

Self-publishing, LATEX, and Markdown

Lloyd Prentice

Abstract

Considering LATEX plus markdown for serious self-
publishers—possibilities and challenges. Crying
need, promise on the horizon, but much work to do.

1 introduction to self-publishing

Step into your virtual time machine. Zip back to the
much-storied age of expatriate Left Bank writers in
Paris. Meet and greet the artisans, craftspeople, and
marketing specialists toiling to bring Ulysses, say, to
the reading public. Drop into the typesetting shop
churning out galleys. Imagine the sound of clanking
brass matrices; smell of molten lead.

Now, flit forward. 2019. Bowkers tells us that
1.68 million ISBNs were issued to U.S. self-publishers
in 2018, up 40 percent from the year before [1].
Wordsrated tells us that as of 2022, more than 300
million self-published books are sold each year [2].

Here’s the thing. A self-publisher is an army
of one striving to publish and market books single-
handedly, that is, to functionally replicate the Shake-
speare and Company workflow that brought us Ulys-

ses and so many other wonderful books of the time.
Writing a book is challenge enough. But self-

publishers soldier on under a slew of hats—author,
development editor, copy editor, book designer, type-
setter, proofreader, publicist, book sales rep, book-
seller, . . .

A remarkable number of indie writers manage to
launch and market their books within constraints of
shoestring budgets with zero line-items for freelance
consulting help.

For the intrepid self-publisher it’s safe to say:
Time is her most precious asset.

The personal computer and the Internet are
indispensable tools that make self-publishing possible.
For the vast majority of self-publishers, I’d venture,
it’s the writing that counts. Knowing which GUI

icons to click to produce the PDF and HTML files
they send off to KDP is all they care to know about
the black magic of bringing their books to folks they
hope will buy and read.

But here’s the downside—all too many poorly
designed and formatted books that pop up on Ama-
zon and elsewhere give self-publishing a bad rep on
the street.

Muse away—300 million self-published books
sold each year. That’s a staggering number of titles
eagerly seeking readers willing to shell out the cover
price.

How many book sales lost, one wonders, due to
amateurish book design and typography? How many
hopes and dreams crushed?

2 In my humble experience

I’m a self-publisher. Life-long book lover. Writing is
the core of my checkered career in magazine publish-
ing, corporate communication, academia, and soft-
ware development. I’m a sloppily organized generalist
striving at publishing tasks that demand meticulous
attention to minute detail.

At this point I’ve self-published two novels and a
technical programming book—all available on Ama-
zon, the programming book also available on Lean-
pub. I have more books in various stages of develop-
ment; fear that there’s not enough time left in my
life to bring them all to print and screen. Time is

my most precious asset.

This, then, brings me to LATEX.
I typeset my novels with LYX. Found LYX com-

fortable and efficient. Novels turned out well enough
with default LYX settings. I set out to write the
programming book in LYX. But code boxes looked
atrocious. LATEX consultants Amy Henderson and
Kathryn Hargreaves bailed me out.

I needed to stand on my own two feet so I dove
cold turkey into LATEX—much appreciated the cre-
ative potential for book styling, but learned quickly
that tedious text markup was not congenial with my
clumsy fingers and skip-about mind.

In all likelihood I would have pushed LATEX to
not now, maybe not ever.

The discovery of V́ıt Novotný’s LATEX markdown
package was lightning out of the blue. I knew mark-
down from software development experience— loved
the simplicity and readability.

Markdown! I can have my cake and eat it too.
So I set out to write a book about LATEX mark-

down for self-publishers.

3 Markdown

Now, more than a year of hard work later, the book is
95% ready for launch—nonfiction totally composed
on a plain-vanilla text editor, marked up for styling
with markdown and, with generous help from V́ıt and
Tereza Vrabcová, styled with LATEX. But, I decided
to defer publication. Why? I don’t understand the
templates. On me and my inexperience, yes. But the
templates feel like a tech-stretch too far for tech-wary
self-publishers.

Here’s what I’ve learned plus a few no-doubt
naive thoughts on how LATEX and markdown can in-
spire self-publishers to publish more beautiful books:

doi.org/10.47397/tb/43-2/tb134prentice-selfpub

Lloyd Prentice

https://doi.org/10.47397/tb/43-2/tb134prentice-selfpub

TUGboat, Volume 43 (2022), No. 2 157

• Markdown imposes minuscule cognitive friction.
The author can efficiently mark up work for
styling simultaneously with creative composi-
tion. A big productivity win.

• The markdown package is still a work-in-progress,
but quite productive for simply-styled works of
fiction and nonfiction.

• There’s a disconnect, however, between the pro-
ductive efficiency of the current version of mark-
down and the book styling potential of (LA)TEX.

• The (LA)TEX ecosystem is arguably too vast and
daunting for the average self-publisher, but with
will and work this can be overcome with benefits
to all. . .

4 Will? Work?

Who has time for that?
Actually, it’s a matter of bringing work that’s

already business as usual across the broad TEX com-
munity into tighter focus. It starts, I believe, with a
question: “What can we do to make (LA)TEX-based
workflow for book publishers as efficient and produc-
tive as possible?”

Note that I’ve broadened the constituency be-
yond self-publishers to include indie and traditional
publishers as well. Here, however, I’m mainly think-
ing self-publishers.

There are opportunities here for many across the
greater (LA)TEX community to contribute experience,
insights, technical know-how, and sound pedagogy.

So let’s don our virtual reality glasses to consider
the competencies and needs of Cindy, Marcos, and
Sophia—fictional self-publishers all.

Cindy is a talented 22-year-old single mother
striving to earn more by self-publishing romance
novels. Her PC runs Windows and Word. She brings
several years of social media engagement to her self-
publishing venture.

Marcos is a 36-year-old software engineer. He
spends his working day developing code on a Ubuntu
Linux workstation. His ambition is to write the
definitive work on Haskell for game programmers.

Sophia is a tenured astrophysicist with consider-
able LATEX competencies hard-earned while writing
her thesis. She needs an up-to-the-minute textbook
for her sparsely attended graduate seminars. Tradi-
tional textbook publishers across the board tell her
that the potential market is too niche to touch.

Our core question now boils down to this: “How
can we help Cindy, Marcos, and Sophia publish
commercial-quality books?”

I see three areas worthy of thought and attention:
outreach, tools, documentation.

5 Outreach

All three of our self-publishing avatars need to un-
derstand:

• the principles and benefits of competent book
design and readable typography;

• that LATEX offers a superior typesetting option;

• how to install a TEX distribution, likely TEX
Live, MacTEX, or MiKTEX; compose with mark-
down; and style with LATEX.

It seems evident that, given the vast population
of self-publishers, the Internet and social media are
the only wheels in town. We need crisp, clear how-
to blogs and tutorials that invite self-publishers to
experiment with markdown and (LA)TEX and guide
them to quick and dramatic success.

6 Tools

Two or perhaps all three of our avatars need to install
TEX Live. Indeed, they need to know how to update
TEX Live every year to keep abreast of technical and
security concerns. And this, in my experience, is a
challenging obstacle.

In effort to serve every popular operating system
and every niche in the LATEX ecosystem, TEX Live
installation docs require meticulously close reading
and confident computer skills. Contrast with MS

Word, which comes batteries-included with the PC,
and Ubuntu Linux which installs software with a
single command “sudo apt install myprogram”.

A second concern is that the full TEX Live sys-
tem installs several GB of files on a poor author’s
hard drive, including all too many packages that
she’ll never in her lifetime use.

Turns out that there’s a promising mitigation,
that is, TEX Live schemes [3].

6.1 Schemes

Schemes are subsets of the full collection of TEX Live
package offerings.

Karl Berry has taken the first step by creating
a TEX Live scheme specifically dedicated to book
design, styling, and publishing (scheme-bookpub).
The goal: significantly reduce installed hard disk
footprint (180MB), pave the way toward more in-
tuitive installation, and provide the foundation for
a welcoming and friendly LATEX ecosystem for self-
publishers.

Peter Flynn and Vı́t Novotný have contributed
package ideas. TUGboat readers can contribute by
reviewing the selection of packages and adding their
own must-have packages related to book publishing.

Self-publishing, LATEX, and Markdown

158 TUGboat, Volume 43 (2022), No. 2

6.2 Dedicated website

But we need more to welcome in self-publishers. So
I further contend that we need a website under TUG

auspices explicitly devoted to (LA)TEX in book pub-
lishing. The website must be simple, attractive, and
engaging. It should provide dead-simple, clear, and
concise TEX Live book scheme download instructions
as well as links to tutorials and resources.

We have a domain: texlibro.net; work is in
progress. Our hope is to bring up a beta site by the
end of October.

6.3 The LATEX markdown package

The LATEX markdown package in my view is worthy
of center stage in book publishing workflow. But first,
we need an elegant solution to a major disconnect.

A beautiful book harmonizes three elements—
content, structural design, and page layout. Mark-
down facilitates composition of content. LATEX facil-
itates structural design and, arguably, page layout.
But in my experience there is a missing link—clean
and elegant harmonization between these two realms.

HTML incarnations of markdown seamlessly in-
terface with CSS—a standardized and extensively
documented digital page styling language. Is such
possible for (LA)TEX plus markdown?

V́ıt Novotný has proposed several technical fixes
to bridge the gap:

• Markdown options
• Referrers
• Referrer prototypes
• Themes
• Snippets

To my limited understanding they each show
promise in their own way. But can I integrate them
into my workflow? To do so, it seems, I need to
have deep experience with TEX, LATEX, markdown
intricacies and, arguably, Lua. I hardly know where
to begin; I do know that all too many self-publishers
would throw up their hands.

Naive thought: HTML has a simple bridge to
CSS that cleanly separates content from structure
and style. CSS, in turn, is a fairly easy to learn
styling language. So, question, is a similar innovation
possible for LATEX markdown and LATEX?

This brings me to documentation.

7 Documentation

The TEX ecosystem is extensively documented in
books, websites, tutorials, and forum snippets.

But in my experience it’s overwhelming. Simple
formatting question? There’s no end of outstanding
info and guidance out there. But where to start?

How to separate sheep from goats from inside-TEX-
baseball? You’ve no doubt been there, and know
what I mean.

As noted earlier, self-publishers care about their
words and how to publish their works as efficiently
as possible. They need concise and well-structured
how-to tutorials with recipes they can follow along
and implement to experience eye-opening success.

We need models for such tutorials, many tuto-
rials to cover the book design and formatting chal-
lenges of fiction, nonfiction, and academic books,
and a well-organized, curated, portal to this font of
wisdom, experience, and how-to lore. The website
proposed above would be the perfect portal.

Indeed, we need more—a few good books that
skip over history and the inside-TEX-baseball to in-
spire the imagination and creative energies of Cindy,
Marcos, Sophia and the countless other self-publish-
ers struggling with book publishing challenges of
their own.

Here’s where LATEX professionals and corporate
publishers can step in—by contributing know-how;
sponsoring the work outlined above.

Yes, there’s much work to do. But if it enables
future literary talents in the tradition of Joyce, Hem-
ingway, and Fitzgerald to bring beautiful books into
the world, then it’s well worth the effort.

References

[1] Number of Self-Published Titles Jumped 40%
in 2018. www.publishersweekly.com/pw/by-
topic/industry-news/publisher-news/

article/81473-number-of-self-published-

titles-jumped-40-in-2018.html

[2] Self-published Books & Author Sales Statistics.
wordsrated.com/self-published-book-

sales-statistics/

[3] The TEX Live Guide—2022, “Selecting
what is to be installed”. tug.org/texlive/
doc/texlive-en/texlive-en.html#x1-

240003.2.2

[4] Book publication topic on CTAN.
ctan.org/topic/book-pub

⋄ Lloyd Prentice

lloyd (at) writersglen dot com

texlibro.net

Lloyd Prentice

https://www.publishersweekly.com/pw/by-topic/industry-news/publisher-news/article/81473-number-of-self-published-titles-jumped-40-in-2018.html
https://www.publishersweekly.com/pw/by-topic/industry-news/publisher-news/article/81473-number-of-self-published-titles-jumped-40-in-2018.html
https://www.publishersweekly.com/pw/by-topic/industry-news/publisher-news/article/81473-number-of-self-published-titles-jumped-40-in-2018.html
https://www.publishersweekly.com/pw/by-topic/industry-news/publisher-news/article/81473-number-of-self-published-titles-jumped-40-in-2018.html
https://wordsrated.com/self-published-book-sales-statistics/
https://wordsrated.com/self-published-book-sales-statistics/
https://tug.org/texlive/doc/texlive-en/texlive-en.html#x1-240003.2.2
https://tug.org/texlive/doc/texlive-en/texlive-en.html#x1-240003.2.2
https://tug.org/texlive/doc/texlive-en/texlive-en.html#x1-240003.2.2
https://ctan.org/topic/book-pub

TUGboat, Volume 43 (2022), No. 2 159

The story of a silly package

Paulo Cereda, Phelype Oleinik

Abstract

In this article, Paulo and Phelype recollect the untold
story of two friends writing a silly package just for the
fun of it. The story, however, takes a turn when the
TEX community decides to embrace silliness. You
are invited to gather around to learn about TEX,
friendship, community, silly walks, and, of course,
the air speed velocity of an unladen swallow.

1 A silly introduction

The story begins with two friends, Phelype and Paulo,
talking about random things, as usual. At a certain
point, the conversation shifted to flipbooks. You
probably know what a flipbook is—even if the name
does not ring a bell at all, you most certainly have
seen one in action.

A flipbook is a booklet with a series of images
that very gradually change from one page to the next,
so that when the pages are viewed in quick succession,
the images appear to animate by simulating motion
or some other change. These images are typically
placed at page corners.

What if they implement such concept in TEX?
Granted, it is not a novel idea, but it is definitely a
new use case of how powerful and expressive TEX is.
And it could bring a lot of fun too!1

Of course, Phelype and Paulo were thrilled with
the idea of having a TEX implementation of a flip-
book. It should be simple enough, as they could
exploit the document page numbering to achieve the
desired visual effect. But they definitely needed way
more than just a good plan: they needed an actual
series of images to be animated.

2 A silly brainstorming

The two friends had lots of ideas, but they all lacked
the sort of expressiveness principle Phelype and
Paulo were looking for. If this package was supposed
to reach an international audience just counting on a
series of images, the visual message should be easily
identified and understood regardless of language or
any other cultural aspect.

They needed something. . . completely different.
And, unsurprisingly, they found it in an emblematic
sketch from Monty Python’s Flying Circus.

For those unfamiliar with the name, Monty

Python’s Flying Circus was a British sketch comedy

1
Editor’s note: A cousin to the flipbooks idea

appeared in William Adams’ article “There is no end:

Omega and Zapfino”, TUGboat 24:2, pp. 183–199,

tug.org/TUGboat/tb24-2/tb77adams.pdf.

series created by and starring Graham Chapman,
John Cleese, Eric Idle, Terry Jones, Michael Palin
and Terry Gilliam. They relied on a form of a hu-
mour called surreal, which is based on deliberate
violations of causal reasoning, thus producing events
and behaviours that are obviously illogical.

The sketch that inspired the two friends is named
The Ministry of Silly Walks, first aired on September
15, 1970. The sketch, as originally depicted in the
series, begins with John Cleese playing Mr. Teabag,
a civil servant who, after purchasing The Times from
the newsagent in the previous sketch, walks through
the streets of London (at the crossing of Thorpebank
Road and Dunraven Road) in a very peculiar man-
ner. He eventually arrives at his place of business:
The Ministry of Silly Walks, on the northern end of
Whitehall. In the hallway, he passes other employees
all exhibiting their own silly walks before arriving at
his office. Once there, he finds Mr. Putey (portrayed
by Michael Palin) waiting for him and apologizes
for the delay, explaining that his walk has become
particularly silly of late and it takes longer for him
to reach his destination.

On January 7, the International Day of Silly

Walks is celebrated around the world by all loyal fans
of Monty Python’s Flying Circus. In the Czech city
of Brno, a Silly Walk City March is held annually
since 2012.

3 A silly implementation

So far they had a great, if not the greatest, idea
for a package, but they were still in need of proper
assets. Thankfully, the Wikipedia entry for The

Ministry of Silly Walks had a chart on silly walk gaits
with instructions, done by Jazeen Hollings under a
Creative Commons CC BY-SA (attribution / share
alike) 3.0 license. At least they had something to get
started.

Instead of having 12 independent image files—
one for each step in the silly walk gait chart—Phe-
lype and Paulo decided to use a sprite sheet instead.
Sprite sheet is the name of a big image containing
several smaller images or icons. It is a technique
employed by designers to reduce the number of re-
quests the browser makes to the server—reducing
the number of such requests could make a web page
load faster. This technique is also used in animation
engines.

They ended up with a silly walk stripe with
12 blocks, each block (a 48-pixel square) contain-
ing an image corresponding to a step in the silly
walk gait chart. The implementation was straight-
forward: they simply had to map page numbers to
their corresponding blocks, in a circular fashion.

doi.org/10.47397/tb/43-2/tb134cereda-silly

The story of a silly package

https://tug.org/TUGboat/tb24-2/tb77adams.pdf
https://doi.org/10.47397/tb/43-2/tb134cereda-silly

160 TUGboat, Volume 43 (2022), No. 2

The package had to have a name, and the choice
was clear. Since the package provided John Cleese’s
iconic silly walk routine as a page numbering style,
they named it sillypage, of course.

3.1 Version 1.0

Version 1.0 was ready! The package documentation
was perhaps far too terse, but that did not stop
Phelype and Paulo from sending it to CTAN on
January 10, 2022.

This version, however, was not fully compliant
with CTAN guidelines. To name a few, they missed
a top level folder hierarchy, a proper README and an
actual example. Thankfully, Petra R. was amazing
in helping them shape a new version. Her feedback
was fantastic!

Besides working on the issues reported by CTAN,
Phelype and Paulo enhanced the documentation a
bit, included a new macro to provide the silly walk
routine step and added an example. Phelype walked
the extra mile and made the package fully compliant
with the LATEX3 build system for build and test
purposes. Version 1.1 was ready!

3.2 Version 1.1

Phelype and Paulo sent this new version to CTAN

on the same day of the previous version, January
10. This time, there were no issues reported from
CTAN’s side. In one or two days, barring any un-
foreseen events, this little package would hit TEX
distributions.

In the meantime, they started working on a new
version of our package.

3.3 Version 1.2

Version 1.2 had improved documentation to better
explain the background and implementation details.
On January 11, they were ready to send it to CTAN!
For whatever reason, Paulo had to postpone the
update to the next day, and it proved to be a wise
choice.

On January 12, the two friends got their first
issue in the package repository. The culprit was a
corrupted image file caused by a blip on the server
side. They then took this opportunity to send version
1.2 to CTAN instead of repacking the previous one.

This time, the package was successfully deployed.
Little did they know, their lives were about to be
changed forever.

As Phelype and Paulo had quite a succession
of updates in the span of a few days, version 1.2
was used for the official package announcement on
January 13. Of course, they had to go silly on the
announcement text as well.

Paulo then announced their package via an inno-
cent tweet and decided to tag John Cleese. Needless
to say, the LATEX corner of Twitter made it viral.
People and companies joined the fun. Even the offi-
cial TUG account announced our new package and
tagged Cleese as well! DANTE and GUTenberg also
spread the news.

Given the engagement and excitement around
their package, Paulo was actually hoping for any
comment or reply from John Cleese himself, the
silly walk ultimate authority, at some point, but
unfortunately that did not happen yet. Maybe he is
not being annoyed sufficiently—more mentions on
Twitter would definitely help!

On that same day, Paulo realised the community
comments section of their package page on CTAN

got a new entry. More importantly, he realised he
could add a comment to our own package! Of course,
Paulo wrote a very serious text.

A couple of days later, on January 16, samcarter
wrote Paulo about a vector-based silly walk routine
she just had created. Vector graphics are not com-
posed of pixels as raster images, so they can be scaled
to any size without losing quality. It was definitely
a quantum leap from their current approach!

Phelype simplified the code to use a multipage
PDF file containing the silly walk steps in vector
format instead of the original single raster image.
Version 1.3 was then sent to CTAN on January 20.

3.4 Version 1.3

Paulo opened an issue on that same day about a
future improvement to their package. The silly walk
animation was repeated over on a circular fashion,
which was not ideal when unique page references had
to be used, hence the need of support for a proper
silly numeral system.

The next day, on January 21, Ulrike Fischer
opened an issue with yet another improvement to
their package, this time a code update to make it
hyperref-friendly. Those two newly created issues
were actually a good opportunity to work on a new
version as soon as possible!

In the meantime, on January 22, CTAN pub-
lished the package update announcement for version
1.3, which was released two days earlier. Of course,
they had another serious text.

Paulo tweeted about it. The feedback was over-
whelmingly positive. Apparently, the idea of having
your own life-sized John Cleese-like silhouette card-
board in your living room is appealing to a significant
number of TEX users!

Paulo Cereda, Phelype Oleinik

TUGboat, Volume 43 (2022), No. 2 161

3.5 Version 1.4

Back to the package. Phelype rewrote the entire code
using the LATEX3 programming interface and added
the silly numeral system and hyperref support. On
February 2, version 1.4 was sent to CTAN, their latest
and greatest version to date.

Incidentally, since samcarter and Ulrike greatly
contributed to the package since the beginning, they
were invited to join the team and, of course, the
blame list.

Since this is a silly package, Phelype and Paulo
added a few Monty Python references next to the
author names in the documentation. Phelype’s name
has an explicit reference to a line that keeps pop-
ping up in one episode, Paulo’s refers to a sketch
about letter dictation woes, samcarter’s points to
the famous cheese shop sketch, and Ulrike’s refers to
another sketch where someone wants to learn how
to fly an aeroplane.

The next day, on February 3, CTAN published
the package update announcement for the latest ver-
sion. Of course, as was by now a tradition, they had
another serious text.

Paulo tweeted about it, making sure to tag John
Cleese. Again, the feedback was overwhelmingly
positive. People really enjoyed our silly package!

4 Silly things

Thanks to Phelype, the package was fully LATEX3-
compliant, so they decided to register the prefix.
This registration is of course not compulsory but is
encouraged. Paulo promptly contacted the LATEX
project team and kindly asked them to add the silly
prefix to the database under their care. Since this
was an unusual and fun prefix, the LATEX team had
some fun discussing its potential use in the kernel.

A couple of days later, samcarter wrote Paulo
telling that we’ve made into pop culture. The Wiki-
pedia article on The Ministry of Silly Walks has a
section named References in popular culture. Appar-
ently, someone thought their silly package was worth
a mention in this section! Quite the achievement!

Frank Mittelbach is working on the third edition
of The LATEX Companion, so Paulo decided to write
to him. Frank agreed it was a good addition to
the book and mentioned their package in one of the
appendices!

In issue 45 of La Lettre GUTenberg , the editors
used the silly page numbering on every verso page!
Their description of the package is fantastic: no one

knows what this package is for. What a jewel this
issue is!

On June 24, during the summer DANTEmeeting,
samcarter presented a lightning talk about the silly
package! It was a lot of fun, the attendees really
liked it!

5 Silly interfaces

Using a silly package like this is quite straightforward.
For starters, make sure to include it in your document
preamble through \usepackage{sillypage}. Then
write \pagenumbering{silly} somewhere in your
document body to use our silly page numbering style.

You can also use the \silly macro on a LATEX
counter to typeset the corresponding image for the
value of that counter. It is worth mentioning that
this particular macro is applied to counters and not
to integers. The \sillystep macro, as the name
implies, prints the provided step number from the
sequence of steps. This macro works exactly like
\silly, but on integers instead of counters.

For sillier documents, specially articles, theses
and books, you can write

\pagenumbering{sillynumeral}

somewhere in your document to use a silly numeral
system, in which each page will be converted to a
unique composition of silly steps. Note that this
macro differs from its sillypage style, as the former
is a proper base 12 numeral system whereas the latter
simply walks through a 12-cycle silly routine.

Finally, the \sillynumeral macro provides the
silly numeral system representation from the pro-
vided integer value. Again, this is a proper base
12 numeral system. What a silly yet marvellous
interface!

6 Silly remarks

To impress your supervisor, the authors highly rec-
ommend you to use this package in your thesis, print
it and ask them to view those pages in quick succes-
sion, so the images appear to animate by simulating
motion! It is known to work with thesis committees
as well.

That’s the story of how a silly package brought a
smile to the TEX community in these difficult times,
warmed their hearts and made people have legitimate
fun.

⋄ Paulo Cereda

cereda (at) duck dot com

⋄ Phelype Oleinik

oleinik (at) duck dot com

The story of a silly package

162 TUGboat, Volume 43 (2022), No. 2

Key–value setting handling in the

LATEX kernel

Joseph Wright, LATEX Project Team

1 Introduction

LATEX2ε introduced the idea of classes and packages,
and along with that the concept of class and pack-
age options. These are nowadays very familiar to
LATEX authors, with the first optional argument to
\documentclass and \usepackage used in the vast
majority of LATEX documents:

\documentclass[10pt,final]{article}

\usepackage[T1]{fontenc}

\usepackage[numbers]{natbib}

This system is a powerful way of controlling
behaviours, but is limited as the options are string
literals. This is perhaps best exemplified by the font
size options: 10pt, 11pt and 12pt in the standard
classes. Rather than being dimensions parsed and
interpreted, these options are used to load hard-
coded configurations for the three nominal sizes.

For the programmer, creating options is easy,
requiring only one command for each option, plus a
separate one to process the list of options given by
the user:

\DeclareOption{foo}{...}

\DeclareOption{bar}{...}

\ProcessOptions\relax

2 Third-party key–value support

It is natural to want to have a more flexible system,
and key–value methods are the obvious way to obtain
this. As the kernel hasn’t to-date offered this, a
number of third-party packages have been developed
to support programmers in providing these interfaces.

Fundamentally, all of these packages work in
the same way. Keys are defined using an existing
key–value implementation, ready to be used when
the options are examined. A dedicated command is
provided to do the latter, and this examines each
option recorded by LATEX and tries to match it as
a key or a key–value pair. If that is possible, the
key–value process is called, while if the option is not
known as a key, an unknown key process is used.

Perhaps the most convenient package for provid-
ing key–value options to date is kvoptions, written
by Heiko Oberdiek. Rather than try to provide a
full setup for generic key–value work, this package
provides a small set of commands which define the
most common types of key–value interface with clear
names:

\RequirePackage{kvoptions}

\DeclareStringOption[me]{name}

\DeclareBoolOption{draft}

\DeclareComplementaryOption{final}{draft}

\DeclareDefaultOption{\ERROR}

\ProcessKeyvalOptions*

As we can see, kvoptions supports ‘strings’ (saving the
tokens given in the input), boolean (switch) options
and inverse booleans. It also provides a way to handle
unknown options.

Using kvoptions or similar approaches has al-
lowed programmers to provide key–value options for
a number of years. But there are some downsides.
First, ideally one wouldn’t need to load a package
to do this. It would also be better if there was one
mechanism, not several with slightly different syn-
taxes. More fundamentally, the LATEX kernel carries
out space stripping and expansion of options before
they are passed to packages to examine. This makes
handling some option texts awkward.

There is also the issue of option clashes. The
LATEX kernel checks that the option list of a package
is identical if you try to load it twice:

\usepackage[option = a]{mypkg}

\usepackage[option = b]{mypkg}

This is an issue even without key–value options, but
with them it’s much worse: it’s not possible to know
if there is a true clash or if the settings simply can
override each other. So there needs to be a way to
let packages themselves handle this.

3 The new kernel mechanism

In the 2022-06 release of the LATEX kernel, a new
built-in approach is available for processing options
using key–value methods. This is based on the expl3

module l3keys, which is nowadays built into the ker-
nel. You don’t, though, need to know anything about
expl3 to use the new approach: everything is made
available under standard LATEX2ε names.

As for the classical approach, we need to do three
things: create options (keys), define how to deal with
unknown options, and process the options. Unlike
\DeclareOption, the new command \DeclareKeys

can create multiple options in one go. Each option
(key) is created by setting one or more properties:
these are given after the key name as .ïpropð. The ba-
sic properties are .store, .if and .code. These set
up keys, respectively, to store the input, to use it to
set a switch or to insert arbitrary code. We can also
set the .default for a key: the value that is assumed
if none is given by the user. We will also be adding
.notif for the Fall 2022 release: that will be the
same as kvoptions’ \DeclareComplementaryOption.

doi.org/10.47397/tb/43-2/tb134wright-keyval

Joseph Wright, LATEX Project Team

TUGboat, Volume 43 (2022), No. 2 163

\DeclareKeys{

name .store = \mypkg@name ,

name .default = me ,

draft .if = mypkg@draft ,

% final .notif = mypkg@draft ,

demo .code =

\protected@edef\mypkg@demo{#1}

}

To deal with unknown keys, we can declare a dedic-
ated handler: here we simply issue an error.

\DeclareUnknownKeyHandler{%

\PackageError{mypkg}

{Unknown option "\CurrentOption"}

\@ehc

}

Finally we need to process the options: the command
name here is pretty simple.

\ProcessKeyOptions

This approach will provide the key–value setup
we want, and the kernel will automatically use the
new approach to repeated loading: there will be
no option clash warnings. We might, though, want
more control: that can be obtained using the .usage
property:

\DeclareKeys{

name .store = \mypkg@name ,

name .default = me ,

name .usage = load ,

draft .if = mypkg@draft ,

draft .usage = preamble ,

demo .code =

\protected@edef\mypkg@demo{#1}

}

With this, the kernel will automatically issue an error
if an option is used in the wrong place: after first
loading for load options, outside of the preamble for
preamble options.

4 Options are keys

You might have picked up from the above that ‘op-
tions’ and ‘keys’ are used almost interchangeably.
That’s because, when processing key–value options,
they are simply keys that are created before a call
to \ProcessKeyOptions. That means that we can
use options as keys: all we need is a way to set them.
This is available in a command called \SetKeys: you
might notice the name is similar to the long-standing
\setkeys from the keyval package.

As most of the time we want to set keys after
loading a package, we need to pass the family the
keys are in. This is given in an optional argument
to \SetKeys. (The optional argument applies to
all of the other new commands, but most of the
time we don’t need to worry about it, as LATEX will
automatically use the package or class name.) So we
might have something like

\NewDocumentCommand\mypkgsetup{m}{%

\SetKeys[mypkg]{#1}%

}

We can then use this new setup command to work
with exactly the same keys as we have created as
options: provided of course we do not try to do that
outside their usage scope.

5 More flexibility

As the new approach is based on l3keys, we can use
any key properties that are defined by l3keys. That
is because of the fact that options are keys and vice

versa: all we need to do is define the keys in the
right place.

⋄ Joseph Wright

Northampton, United Kingdom

joseph dot wright (at)

morningstar2.co.uk

⋄ LATEX Project Team

Key–value setting handling in the LATEX kernel

164 TUGboat, Volume 43 (2022), No. 2

siunitx: Launching version 3

Joseph Wright

1 Introduction

Typesetting units is an important task for scientists
and engineers. When done in (LA)TEX, it is natural
to use a macro-based approach to carry out the
formatting. I entered this area in 2008 with the LATEX
package siunitx, which I’ve looked at in TUGboat
before (Wright, 2011; Wright, 2018). Last year, I
launched version 3 of siunitx after development over
several years. Here, I will recap why this came about
and how I went about launching the latest version.

2 Looking back

I started developing siunitx in late 2007, when I
answered a question about a bug in a previous pack-
age, SIunits (Heldoorn and Wright, 2007). I quickly
decided to write a new package, which combined
SIunits and SIstyle (Els, 2008) with a key–value in-
terface and bringing in some new ideas. The first
release of siunitx was available at Easter 2008.

This first release worked well, and soon picked
up lots of users. However, internally it was essentially
a mix of material from the previous packages put
together. It also had some poor choices for key names,
which I very much wanted to address. I therefore
wanted to work on a second implementation, and got
on to that in 2010.

Around this time, I started working with expl3

coding, and quickly decided to move siunitx to using
expl3 internally. The re-write meant starting from
scratch in some ways, but I got a lot of work done
pretty quickly and was quite happy with the results.

3 Moving forward again

Version two retains most of the features that version
one had, but as well as the good ones, it turns out
it retained some issues, particular in the internal
API. I needed to look at a system where the different
parts of the siunitx system communicated with each
other using a documented approach. To support that,
and to keep things working with existing sources, I
needed tests. And there was a big issue with fonts.

The font assumptions in versions 1 and 2 carry
all the way through from SIstyle (Els, 2008), and
which I adjusted only slightly. The approach was:

1. Detect the current font type using LATEX
internal data.

2. Insert everything inside \text (an \mbox).

3. Apply \ensuremath inside the box.

4. Perhaps apply \text again (for text mode
output).

5. Force the font by using e.g. \mathrm or
\rmfamily.

That requires a lot of work, and it’s not always
easy to get it right. So there is a new approach for
version three:

1. Detect current font type using LATEX internal
data.

2. Set any aspects that are needed.

3. Only use an \mbox if math version has to be
altered.

This ‘minimal change’ approach is much faster
than the current one, and is much better at respecting
font changes. The downside is that this is quite hard
to map in all cases to the older keys: we were going
to need a way to deal with this.

3.1 Making it all work

Getting version 3 out needed me to solve three major
issues:

1. Testing;

2. Backward compatibility;

3. Handling multi-part and complex values.

Only one of those (the third) is an area for
just me: the first two are general, and tools from
the LATEX team have helped. Over the past few
years, we have developed l3build (Wright, 2022) as an
automated testing tool. So development of version 3
has been backed by testing for everything : each code-
level API and all of the key–value interfaces have
dedicated tests.

It’s not possible to be entirely backward-com-
patible with the scale of the changes I’ve made in
siunitx. Luckily, the LATEX team have also provided
a mechanism to handle this. The user can add

\usepackage{siunitx}[=v2]

and this will load the last version of v2; all I have to
do is set things up as a package author. The siunitx

source thus contains:

% Set up a couple of commands in recent-ish

% \LaTeXe{} releases.

\providecommand\DeclareRelease[3]{}

\providecommand\DeclareCurrentRelease[2]{}

%

% Allow rollback to version~2: if we need to,

% version~1 could eventually be added here too.

\DeclareRelease{2}{2010-05-23}{siunitx-v2.sty}

\DeclareRelease{v2}{2010-05-23}{siunitx-v2.sty}

\DeclareCurrentRelease{}{2021-05-17}

The third issue above was dealing with multi-
part quantities (e.g. 2m×3m) and complex numbers
(1 + 2i). I decided to keep the core code faster, and
to provide dedicated document commands for these.

doi.org/10.47397/tb/43-2/tb134wright-siunitx3

Joseph Wright

TUGboat, Volume 43 (2022), No. 2 165

Again, this means you might have to update a source
to go from version 2 to 3, but I think this is the right
call.

4 Conclusions

It’s taken a few years, but with the tools available
from the LATEX team, creating a new version of siunitx
has worked well. Over a year after the launch, the
code is performing well and I’ve dealt with the minor
issues that came up. I’m now looking forward to
developing new features that have been outstanding
for years.

References

Els, D. “The SIstyle package”. 2008.
ctan.org/pkg/sistyle.

Heldoorn, Marcel, and J. Wright. “The SIunits

package: Consistent application of SI units”.
2007. ctan.org/pkg/siunits.

Wright, Joseph. “siunitx: A comprehensive
(SI) units package”. TUGboat 32(1),
95–98, 2011. tug.org/TUGboat/tb32-1/
tb100wright-siunitx.pdf.

Wright, Joseph. “siunitx: Past, present and future”.
TUGboat 39(2), 119–121, 2018. tug.org/
TUGboat/tb39-2/tb122wright-siunitx.pdf.

Wright, Joseph. “l3build: The beginner’s guide”.
TUGboat 43(1), 40–43, 2022. tug.org/
TUGboat/tb43-1/tb133wright-l3build.html.

⋄ Joseph Wright

Northampton, United Kingdom

joseph dot wright (at)

morningstar2.co.uk

Case changing: LATEX reaches Unicode-land

Joseph Wright, LATEX Project Team

1 Introduction

The concept of letters having case is familiar to
speakers of several languages, most obviously those
from Europe using Latin, Greek or Cyrillic scripts.
The ability to convert between upper and lower case,
case changing, is something we might take for granted
both for people and for computer systems. However,
there are subtleties that a careful implementation
needs to take into account.

The Unicode Consortium have defined four dif-
ferent case-related operations that are required to
support the range of applications that come up in
practical use cases:

• Upper casing

• Lower casing

• Title casing

• Case folding

Here, title casing means making the first letter (broad-
ly speaking) upper case, then making the rest of the
text lower case. Case folding means removing case,
and is needed for programmers: often lower casing
is used, but this is not appropriate for true caseless
text comparisons.

Unicode have also identified that case changing
is not a simple fixed operation: depending on the
context around a character, the right outcome can
vary, while different languages can have different
rules. All of this means that the TEX primitives
\lowercase and \uppercase are not suitable for
case changing with the variety of text we might see
today.

2 An expl3 implementation

In 2015, I spoke at the TUG meeting about an expl3

implementation that sought to provide a full set of
Unicode-compliance case changing tools. At that
time, only Unicode engines (X ETEX and LuaTEX)
were supported. However, the code could provide all
of the requirements of Unicode in an approach that
works by expansion: this meant that one could case
change text inside an \edef.

Since that talk, the LATEX team have refined
ideas about the future of LATEX, meaning that the
case changer needed to be extended to work with
pdfTEX. It also needed to be able to carry out
something similar to \protected@edef by expan-
sion. Both of those ideas have been covered over the
past few years.

The expl3 implementation now also incorporates
ideas from David Carlisle’s textcase package. This is

doi.org/10.47397/tb/43-2/tb134wright-case

Case changing: LATEX reaches Unicode-land

166 TUGboat, Volume 43 (2022), No. 2

mainly about being able to exclude content from case
changing: math mode material should never be case
changed, and it’s important to be able to mark indi-
vidual items as unaffected by case operations. Both
of those ideas are relatively easy to do by expansion,
as we need to examine each token anyway.

3 Bring it to LATEX2ε

Since \uppercase and \lowercase have long been
known to have limitations, I am not the first person
to look at supporting the needs of different languages.
There have been a number of clever approaches to
getting the required mappings from implementa-
tions using the TEX primitives. However, the new
code provides a single consistent interface: it can
handle different languages, multiple scripts and so
on without needing to load potentially incompatible
code.

More importantly for the team, we needed to
look again at how active characters are handled in
pdfTEX. The change, to use engine protection for
these active bytes, makes life a lot easier in general
but breaks the previous approaches to case changing
these characters. The expl3 code, in contrast, works
fine with the protected definitions. So this drove the
change.

For users, the long-standing \MakeUppercase

and \MakeLowercase commands stay unchanged:
only the implementation has been adjusted. Title-
casing has some subtleties that mean it needs a
dedicated document command, so now it has one:
\MakeTitlecase. The command \NoCaseChange,
originally defined by textcase, is also now integrated
into the kernel.

For package authors, we have added a com-
mand \AddToNoCaseChangeList to add commands
to the set which are skipped for case changing: things
like \ref and \label are already there. We have
also provided \CaseSwitch, a command that selects
between different outcomes (no change, upper, lower,
title case): this is useful if you have something that
doesn’t expand to text but where you want a different
result inside and outside of case changing. Finally,
we have added \DeclareCaseChangeEquivalent for
situations where a package author needs to entirely
swap the functionality of a command inside a case
changing context.

4 The data: pdfTEX

One minor wrinkle is the data support, particularly
for pdfTEX. For the Unicode engines, we can read
all of the data automatically. For pdfTEX, we don’t
have \lccode and \uccode storage for the whole of
Unicode, only for the 8-bit range. That means that
most of the case changing data has to be stored in
macros. To avoid wasting a lot of memory, only code
points that are typically typeset with 8-bit engines
are included here. That does mean that it’s possible
a few get missed: if there is something to add, please
let us know.

5 Looking ahead

For the Spring 2022 release, we have not included
support for language variation in the document com-
mand interface. But that’s on the agenda, and likely
to appear in the Fall 2022 LATEX2ε update. The most
likely approach there is as an optional argument to
\MakeUppercase, etc.: watch this space.

æ Joseph Wright

Northampton, United Kingdom

joseph dot wright (at)

morningstar2.co.uk

æ LATEX Project Team

Joseph Wright, LATEX Project Team

TUGboat, Volume 43 (2022), No. 2 167

Using spot colors in LATEX

Ulrike Fischer

Abstract

In this paper I recount some practical experiences
with spot colors we gained while working on the third
edition of The LATEX Companion. I describe what
spot colors are, how to use them for text and (TikZ)
graphics, how to mix them properly, and some of the
pitfalls we found and how we worked around them.

1 Introduction

The LATEX Companion is printed in two base colors:
CMYK black and PANTONE 3005 U, called “blue” in
the document. The second is a so-called spot color,
a special ink in the printer, and not a mix of CMYK

colors.
To prepare the book for print we had to ensure

that the CMYK black, the spotcolor and mixes of
both are used where needed, and we had to remove
or replace all uses of non-black CMYK colors, and
all uses of RGB colors.

Using color is quite normal nowadays and so
color was found in various places added by a variety
of code and packages.

• Various text parts such as headings, side notes
and text in examples are colored.

• Page numbers in the header could be colored.

• Crop marks from the crop package are
colored.

• Various boxes from the tcolorbox package
looked gray but were actually a mix of RGB

colors.

• In one example the use of the Color key of
fontspec led to RGB colors.

• Examples with todo notes and examples with
TikZ pictures contained various colors.

Colors are not used only as pure colors. The
ease of the xcolor syntax means that mixes like
\mouse@body!50!black are found in many places.
So it is not enough to redefine \mouse@body; one
also has to ensure that the mix uses only the in-
tended colors.

Which colors are used on a page can be checked
with various tools. For example Adobe Pro has a tool
where one can deselect color plates like black and
the Pantone ink and so see if the page also contains
other colors.

2 What are spot colors?

A spot color is a color described not in CMYK or RGB

but in a special color model.1 Such a color model
describes the ink or inks to use. The amount of ink
to use is given with the tint, a number between 0
and 1. To also allow devices like a screen or a normal
printer to represent the color the spot color model
contains also a fallback in a generic color model like
CMYK.

The simplest type of a spot color model is a
“separation” which describes the use of a single ink.
Such a separation has a rather simple setup in a PDF.
First one has to add an object with an array which
contains the name of the ink, and a function which
maps a tint to a CMYK color:

6 0 obj % <-- object number

[/Separation/PANTONE#203005#20U

% ^-- name of the ink, PANTONE 3005 U

/DeviceCMYK % <-- fallback CMYK

<< /FunctionType 2

/Domain [0 1]

/C0 [0 0 0 0]

/C1 [1 0.56 0 0]

/N 1

>>

]

endobj

Then one has to declare a name for this ob-
ject. This is done in the page resources in the
/ColorSpace array with a simple mapping between
the chosen name and the object number:

/ColorSpace <<

/color1 6 0 R

% ^-- name to reference the Separation object

...

>>

After the setup the color model can then be
activated with the cs and CS operators and the value
of the tint can be given with the scn and SCN opera-
tors,2 where the lowercase operators set the fill color,
and the uppercase version the stroke color.

name value/tint

/color1 cs 1.0 scn %<-- fill color

/color1 CS 1.0 SCN %<-- stroke color

[(TEXT)] %<-- following text

1 The PDF reference calls color models “color spaces”, but

I will stick mostly to “color model” here.
2 PostScript uses a reversed notation, so typically a value

is before an operator

doi.org/10.47397/tb/43-2/tb134fischer-spotcolor

Using spot colors in LATEX

https://doi.org/10.47397/tb/43-2/tb134fischer-spotcolor

168 TUGboat, Volume 43 (2022), No. 2

3 Methods provided by the LATEX kernel

3.1 Setup of a separation model

A separation color model can be set up with com-
mands included in the L3 programming layer of
LATEX. \color_model_new:nnn is the main com-
mand. It has three arguments, the first is a freely
chosen name for the color model, the second describes
the type of the model — here “Separation” — and the
third is a key/value argument to set the details. As
such a color model has to write to the PDF page
resources, it is required to load the new PDF man-
agement of LATEX [2]. This can be done by using the
\DocumentMetadata command at the begin of the
document.

The color model for our Pantone ink can then
be declared as in the following listing.

% required, loads pdfmanagement:

\DocumentMetadata{}

\documentclass{article}

\ExplSyntaxOn

\color_model_new:nnn { pantone3005 }

{ Separation }

{ name = PANTONE~3005~U , % ink

alternative-model = cmyk , % fallback

alternative-values = {1, 0.56, 0, 0}

}

\ExplSyntaxOff

Colors in this model can then be defined with the
\color_set:nnn command, which has three argu-
ments: a name for the color, the just-defined model,
and a value for the tint.

\ExplSyntaxOn

% define color spotA:

\color_set:nnn{spotA}{pantone3005}{1}

% define color spotB (less tint):

\color_set:nnn{spotB}{pantone3005}{0.5}

\ExplSyntaxOff

These colors can then be used with the command
\color_select:n. To ease use in a document it is
sensible to define an alias which can be used without
having to switch on the expl3 syntax:

\ExplSyntaxOn

% define user command \colorselect:

\cs_set_eq:NN \colorselect \color_select:n

\ExplSyntaxOff

\colorselect{spotA} spot A

% result in the PDF:

%/color1 cs 1.0 scn /color1 CS 1.0 SCN

\colorselect{spotB} spot B

% result in the PDF:

%/color1 cs 0.5 scn /color1 CS 0.5 SCN

3.2 Mixing colors

The color commands of the L3 programming layer
support mixing colors in similar ways to the methods
provided by the xcolor package: You specify integers
describing the percentage surrounded by exclamation
points between defined color names.

Mixing colors defined in the same color model,
e.g., two CMYK colors or two RGB colors or two
different tints of a separation model, is straightfor-
ward and involves only some math. But when mixing
colors of different models one has to decide which is
the target color model and then convert all colors
into this target model to be able to mix them. There
exist various formulas on how to convert RGB into
CMYK or Gray and so normally users don’t have
problems to mix colors defined in these standard
models. Converting a spot color into CMYK is easy
too as it can be done with the fallback function, but
converting an arbitrary CMYK color into a spot color
is not always possible, as it is not clear how to map,
e.g., a red to a tint value of a bluish spot color.

The color command of LATEX L3 programming
layer uses as the target color model of a mix the color
model of the first color3 and then tries its best to
output some color. It will not report an error even
if the models are not compatible. It is thus your
responsibility to check that the mixes do what you
want them to do.

3.2.1 Mixing with white

Mixing a spot color with white normally works fine.
It changes the tint and makes the color light, and
this is the expected outcome in most cases. You need
only pay attention to the order: always start with
the spot color.

\colorselect{spotA!50!white}

%/color1 cs 0.5 scn /color1 CS 0.5 SCN %good

\colorselect{white!50!spotA}

%/color1 cs 1.0 scn /color1 CS 1.0 SCN %wrong

3.2.2 Mixing with black

Mixing with black is more difficult. Black is an ink
of its own and when mixing it into the spot color one
wants to add some of this ink. With the standard
mix, this does not happen. As the following listing
shows, our spotA doesn’t change at all if black is
mixed in, while spotB gets a bit darker as the tint
value increases, but this is also not what we want:
we don’t want more tint but more black ink.

3 It is possible to force another target model, but this is

not discussed here; check the documentation for details.

Ulrike Fischer

TUGboat, Volume 43 (2022), No. 2 169

\colorselect{spotA!50!black}

%/color1 cs 1 scn /color1 CS 1 SCN

\colorselect{spotB!50!black}

%/color1 cs 0.75 scn /color1 CS 0.75 SCN

The right way to mix in black is to set up another
spot color model. This case is not a simple separation
model, but a DeviceN color model which supports
describing ink mixtures.

In the PDF such a DeviceN model is again
a rather simple object. It contains the keyword
/DeviceN, an array which describes the ink compo-
nents,4 and again a function for the CMYK fallback.
Similar to the separation model a name must be de-
clared in the /ColorSpace resource which can then
be used to select the color in the page stream.

44 0 obj

[/DeviceN % the components:

[/PANTONE#203005#20U /Black]

/DeviceCMYK 45 0 R % fallback info

...

]

% name declaration:

/ColorSpace [... /color2 44 0 R ...]

A color in this model can then be called in the
PDF as before, but now the scn/SCN operator expects
two values, one for the Pantone component and the
other for the black ink:

name two values

/color2 cs 0.5 0.5 scn /color2 CS 0.5 0.5 SCN

Such a DeviceN color model can also be set up in
LATEX with the \color_model_new:nnn command.
The type argument then takes the string DeviceN

and in the third argument the names of the compo-
nents are given, here our previously-defined Pantone
color, and black as a predefined ink.

\color_model_new:nnn { pantone+black }

{ DeviceN }

{

names = {pantone3005,black} % components

}

After the DeviceN model has been set up, colors
can be defined in this model. Definitions of “pure”
colors which use only one component are useful, as
such colors can be used to mix colors of this model
on the fly.

4 This can be also three or more components

\color_set:nnn{mix} {pantone+black}{0.5,0.5}

\color_set:nnn{purepantone}{pantone+black}{1,0}

\color_set:nnn{pureblack} {pantone+black}{0,1}

\colorselect{mix}

%/color2 cs 0.5 0.5 scn /color2 CS 0.5 0.5 SCN

\colorselect{purepantone!70!pureblack}

%/color2 cs 0.7 0.3 scn /color2 CS 0.7 0.3 SCN

3.3 Multi-model colors

While defining and using a color like pureblack

solves the problem of mixing in black, it is a bit
of a problem that a new color name has to be used.
Mixtures with black are quite common and one has
to change the name in various places. One option to
avoid this could be to redefine black to always use
the DeviceN model.

Another option is to make use of the capability
of the LATEX color implementation to define a color
in more than one model at once as shown in the next
listing. Such a model will behave like a CMYK color
if used on its own or when mixed with other CMYK

colors, but behave like a DeviceN color when used
in this context.

Again, be aware that the order of the colors in
the color expression matters and that the main color
of the first color is used as the target color model!

\color_set:nnn {black}

{cmyk / pantone+black}

{0,0,0,1 / 0,1}

\colorselect{black}

% cmyk black in the PDF:

% 0 0 0 1 k 0 0 0 1 K

\colorselect{purepantone!50!black}

% Mix as DeviceN:

%/color2 cs 0.5 0.5 scn /color2 CS 0.5 0.5 SCN

\colorselect{black!50!purepantone}

% cmyk mix:

%0.5 0.28 0 0.5 k 0.5 0.28 0 0.5 K

3.4 Fill and stroke color

Up to now we have always set the fill and stroke color
to the same value. This is quite normal for text, but
not for graphics, and so the kernel color code allows
to select the colors independently. Figure 1 shows an
example with the help of the l3draw package. The
two spot colors are faked by two shades of gray.

Using spot colors in LATEX

170 TUGboat, Volume 43 (2022), No. 2

\usepackage{l3draw}

\draw_begin:

\draw_linewidth:n {6pt}

\draw_path_moveto:n { 0cm , 0cm }

\draw_path_lineto:n { 4cm , 0cm }

\draw_path_lineto:n { 4cm , 4cm }

\draw_path_close:

\color_fill:n { spotA }

\color_stroke:n { mix }

\draw_path_use_clear:n

{ stroke,fill }

\draw_end:

/color1 cs 1.0 scn %fill

/color2 CS 0.5 0.5 SCN %stroke

Figure 1: Setting fill and stroke color independently.

3.5 Coloring fonts with fontspec

One of the examples in the book demonstrates the
use of the Color key of the fontspec package [3].
Test compilations showed that regardless of how the
color is defined, the fontspec package inserts an
RGB color into the PDF. When using X ELATEX this
probably cannot be changed, but with LuaLATEX a
solution was implemented. If the color is defined
with the kernel commands, the PDF management is
loaded, and a current luaotfload is used, the model
of the color is honored by fontspec and even spot
colors can be used without problems.

3.6 Summary of spot colors with the

kernel methods

• It is easy to set up the models and the colors.
• It should work with all backends.
• The colors work fine for text.
• One has to pay attention when mixing colors of

different models.
• It is possible to define colors in more than one

model.
• The kernel command can handle fill and stroke

color separately.
• The colors can be used with fontspec (Lua-

LATEX only).
• But: The kernel colors aren’t yet supported by

TikZ [4] (or don’t support TikZ, depending on
one’s point of view).

The last point meant that we had to look for
an alternative for tcolorboxes, todo notes, various
examples with pictures, etc.

4 The alternative: the colorspace package

The colorspace package [1] also offers tools to set
up spot colors. It supports only pdfLATEX and Lua-
LATEX.

Unlike the kernel commands it doesn’t offer sep-
arate commands to use the colors but hooks into the
xcolor package. This allows documents to use the
standard \color command, and it also means that
TikZ is at least in part supported.

The setup of spot colors is quite similar to the
kernel commands, but a bit less verbose. The main
command for a separation model defines the model
and a color with tint directly in one step:

% definition of color spotC:

\definespotcolor{spotC}% color name

{PANTONE 3005 U}% ink

{1,0.56,0,0}% CMYK fallback

% use with standard \color command:

\color{spotC} Spotcolor

% in the PDF:

/&PANTONE#203005#20U cs

/&PANTONE#203005#20U CS

1 sc 1 SC

When mixing colors into a spot color, colorspace
will give an error for every mix of color models it
doesn’t know and will not try, like the LATEX com-
mands, to produce a color nevertheless. This can be
sometimes a blessing as it warns you if a faulty mix
is somewhere, but also means that any code using
such a mix must be adapted; it is not possible to
simply accept a slightly imperfect fallback.

A DeviceN color model can also be defined
with the colorspace package. For this two com-
mands are needed. First you set up the model with
the command \definecolorspace and the keyword
mixed, and then you can define colors as usual with
\definecolor. Here too it makes sense to define
orthogonal, pure colors which can be used in mixes.

Ulrike Fischer

TUGboat, Volume 43 (2022), No. 2 171

\definecolorspace{pantone+black}

{mixed}

{spotC,black}

\definecolor{purepantone}{pantone+black}{1,0}

\definecolor{pureblack}{pantone+black}{0,1}

\color{purepantone!50!pureblack}

colorspace doesn’t support multi-model color
definitions (as it is built on xcolor which doesn’t
support this either), and so to mix a spot color with
black you either have to redefine black or use the
pureblack where needed.

colorspace also doesn’t have commands to set
stroke and fill color independently, and the method
it uses to store the spot colors into the xcolor data
model is not known to TikZ. The support for TikZ is
implemented through a number of patches, is sketchy
and even has a few bugs which we found during the
tests. The most problematic one is that it can “lose”
the color model during some \colorlet operations.
For example if a color is copied through the current
color, which is represented by a period, or copied
with the named keyword, the color model is suddenly
zero. This results in a broken, unusable PDF. As
such operations are very common in TikZ we had to
implement a few patches to get at least syntactically
correct color calls.

\colorlet{.}{spot}

\colorlet{newcolor}{.}

0 cs 0 CS 1 sc 1 SC %broken PDF

\colorlet[named]{test}{spot}

0 cs 0 CS 1 sc 1 SC %broken PDF

4.1 The fill and stroke color problem

As written above, colorspace supports TikZ only
partially. The core of the problem is that xcolor

(likewise color) doesn’t provide interfaces to access
and use fill and stroke colors independently. color
for example stores a color as backend instructions
for both colors:

% fill and stroke together:

{0 0 1 0 k 0 0 1 0 K}

xcolor stores more data, but still keeps the backend
instructions for fill and stroke together:

\xcolor@

{}

% fill and stroke together:

{0 0 1 0 k 0 0 1 0 K}

{cmyk}

{0,0,1,0}

This missing support for fill and stroke colors
means that TikZ and other graphic packages cannot
rely only on the interface provided by xcolor, but
have to implement and use their own backend com-
mands in various places to split out the two parts.
The resulting mix of interface commands and low-
level commands makes it difficult for colorspace (or
for the kernel) to fully support spot colors in TikZ.

5 Special TikZ problems

Beside the general problem of missing support for
fill and stroke colors, there are a few more specific
problems regarding spot colors in TikZ.

5.1 Shadings

Shadings are not simply drawn with some color, but
are special objects defined in the PDF and typically
contain instructions about which color model to use.

By default TikZ only creates RGB shadings. If
you use a shading, you can then see in the PDF lines
where the DeviceRGB points to RGB color model:

/Shading << /Sh <<

/ShadingType 2 /ColorSpace /DeviceRGB ...

Some time ago David Purton also added sup-
port for CMYK shadings, which you get if you force
xcolor to use CMYK everywhere.

/Shading << /Sh <<

/ShadingType 2 /ColorSpace /DeviceCMYK

There is no support for shadings using spot
colors yet, and there was no time to investigate this
use, so the book restricted the use of shadings to
grayscale and CMYK shadings which use only the
black component.

5.2 Patterns

A similar problem was found with patterns. In PDF

format, patterns are also special objects and refer to
a color model. All patterns, colored and uncolored
alike, created by TikZ use hard-coded RGB. To
change this we added an additional declaration to
the /ColorSpace resource and patched an internal
command to force the use of this declaration and
with this, were able to show at least a black and
white pattern:

\pgfutil@addpdfresource@colorspaces

{ /tlc3pattern [/Pattern /DeviceCMYK] }

\def\pgfsys@setpatternuncolored#1#2#3#4{%

\pgfsysprotocol@literal{%

/tlc3pattern cs 0 0 0 1

/pgfpat#1\space scn}}

Using spot colors in LATEX

172 TUGboat, Volume 43 (2022), No. 2

6 Conclusion

With the kernel commands and the colorspace pack-
age two robust options to use spot colors for text and
rules are available. The main work for authors here
is to check color expressions which mix colors, and to
check and perhaps overwrite default color definitions
in packages they use.

The situation for major graphic packages such
as TikZ (PSTricks is probably similar) is not so sat-
isfactory, as they use low-level code to set fill and
stroke colors, making it difficult to add support for
new color models. Also they hard-code in various
places color models like RGB or CMYK. But resolv-
ing these problems should be possible as the kernel
now provides a more powerful color interface, and
the main task is to bring them together.

References

[1] J. Bezos. The Colorspace package. Provides
PDF color spaces. ctan.org/pkg/colorspace/

[2] LATEX Project Team. The Pdfmanagement-

testphase package. ctan.org/pkg/

pdfmanagement-testphase

[3] W. Robertson, LATEX Project Team.
The Fontspec package. Advanced font selection
in X ELATEX and LuaLATEX.
ctan.org/pkg/fontspec

[4] T. Tantau, C. Feuersänger, et al. The PGF

package. Create PostScript and PDF graphics in
TEX. ctan.org/pkg/pgf

⋄ Ulrike Fischer

LATEX Project Team

Bonn

Germany

ulrike.fischer (at)

latex-project.org

Ulrike Fischer

The luatruthtable LATEX package

Chetan Shirore, Ajit Kumar

Abstract

This paper describes the development and usage of
the luatruthtable package in LATEX. It is developed
to generate truth tables of boolean values in LATEX
documents. The package provides an easy way of
generating truth tables in LATEX. There is no need of
a special LATEX environment for generation of truth
tables with the package. It is written in Lua and the
TEX document is to be compiled with the LuaLATEX
engine.

1 Introduction

The Lua [1] programming language is a scripting
language which can be embedded across platforms.
With LuaTEX [4], it is possible to use Lua in LATEX.
TEX or LATEX has scope for programming in them-
selves. However, with the internals of TEX there are
several limitations especially for performing calcu-
lations on numbers in LATEX documents. There are
packages like pgf [5] and xparse [9] in LATEX which
provide some programming capabilities inside LATEX
documents. However, such packages are not meant
to provide the complete programming structure that
in general other programming languages (like Lua)
provide.

The generation of truth tables with these pack-
ages in LATEX gets complicated [7] and probably
without using Lua it can’t be done in an easier way
in LATEX. The programming facilities of Lua are effec-
tively used in the luatruthtable package. The xkeyval

package is used in its development, in addition to
the luacode package [2]. The time for generation of
truth tables using the package and compilation of
TEX document with LuaTEX is not an issue.

2 Installation and inclusion

The installation of the luatruthtable package is sim-
ilar to any LATEX package, where the .sty file is
placed in the LATEX directory of the texmf tree. The
package can then be used by including the usual com-
mand \usepackage{luatruthtable} in the pream-
ble of the LATEX document. The document is to be
compiled using LuaLATEX.

3 Core ideas used in the development of

the package

Lua [1] is an extensible language that can be em-
bedded in LATEX. The TEX [8] language has indirect
support for scripting languages [6].

The luatruthtable function toBinary(x,y) is
used to produce a sequence of True and False values

doi.org/10.47397/tb/43-2/tb134shirore-luatruthtable

Chetan Shirore, Ajit Kumar

TUGboat, Volume 43 (2022), No. 2 173

of boolean variables. This function converts the
decimal number x to a binary number by adding
y number of leading zeroes. The result of this is
stored in a table in Lua. Here y corresponds to the
number of boolean variables. As 2y permutations of
boolean variables are to be produced, the function
toBinary(x,y) runs inside a loop where x takes
values from 1 to y. The splitting of variables and
expressions is done using string methods available
in Lua. The nested metamethods in Lua are used to
define several logical operators. The load function
in Lua is used to evaluate logical expressions.

4 The \luaTruthTable command in the
luatruthtable package

The \luaTruthTable command is the main com-
mand in the luatruthtable package which generates
truth tables. It has the following syntax.

\luaTruthTable[ïtrtextð,ïfltextð]

{ïlist of boolean / logical variablesð}

{ïlist of expressionsð}

The command has two mandatory arguments:

i) ïlist of boolean / logical variablesð: The list of
boolean or logical variables should be separated
by commas.

ii) ïlist of expressionsð: The list of logical expres-
sions that are to be evaluated should also be
separated by commas.

And the command has two optional arguments:

i) ïtrtextð: the display value for the boolean value
True. It has the default value T in the pack-
age. It can be any string or number, although
assigning the value 0 would not make sense.

ii) ïfltextð: the display value for the boolean value
False. It has the default value F in the pack-
age. It can be any string or number, although
assigning the value 1 would similarly not make
sense.

The \luaTruthTable command should be used
within \begin{tabular} ... \end{tabular} envi-
ronment or any other environment in LATEX for tables.
The sequence of column heads should be the same
as the sequence of list of boolean / logical variables
and list of expressions. Without these correct inputs,
\luaTruthTable cannot produce the desired output.

5 Operations in the luatruthtable package

a) not : The value of not p is False when p is True
and it is True when p is False.

p not p
T F

F T

The command lognot* is used in the package
to generate a truth table for the not operation.

b) and : The value of p AND q is True if and only
if both p and q are True.

p q p and q

F T F

T F F

T T T

F F F

The command *logand* is used in the package
to generate a truth table for the and operation .

c) or : The value of p or q is False if and only if
both p and q are False.

p q p or q
F T T

T F T

T T T

F F F

The command *logor* is used in the package
to generate a truth table for the or operation.

d) implies : The value of p implies q is False if and
only if p is True and q is False.

p q p implies q
F T T

T F F

T T T

F F T

The command *imp* is used in the package to
generate a truth table for the implies operation.

e) if and only if : The value of p if and only if q
is True if and only if both p and q have same
truth values.

p q p iff q

F T F

T F F

T T T

F F T

The command *iff* is used in the package to
generate a truth table for the if and only if
operation.

f) NAND : The value of p NAND q is 0 if and only
if both p and q have value 1.

p q p NAND q

0 1 1
1 0 1
1 1 0
0 0 1

The command *lognand* is used in the pack-
age to generate a truth table for the NAND
operation.

The luatruthtable LATEX package

174 TUGboat, Volume 43 (2022), No. 2

g) XOR: The value of p XOR q is 0 if and only if
p and q have same values.

p q p XOR q

0 1 1
1 0 1
1 1 0
0 0 0

The command *logxor* is used in the package
to generate a truth table for the XOR operation.

h) NOR: The value of p NOR q is 1 if and only if
both p and q have value 0.

p q p NOR q

0 1 0
1 0 0
1 1 0
0 0 1

The command *lognor* is used in the package
to generate a truth table for the NOR operation.

i) XNOR: The value of p XNOR q is 1 if and only
if both p and q have same values.

p q p XNOR q

0 1 0
1 0 0
1 1 1
0 0 1

The command *logxnor* is used in the pack-
age to generate a truth table for the XNOR
operation.

Table 1 summarises logical operators in the package.

6 Examples and usage

The luatruthtable package accepts a finite number of
variables. It supports any finite number of variables
that one would need in practice. A few examples of
usage are given here.

The following example involves three variables,
p, q, and r.

\begin{tabular}{|ccc|c|}

\hline

\(p\) & \(q\) & \(r\) & \((p \land q)\)

\rightarrow \(\neg r\) \\

\hline

\luaTruthTable{p,q,r}{(p*logand*q) *imp*

(lognot*r)} \\

\hline

\end{tabular}

The output from the above is shown in Table 2.
Here lognot*r is enclosed in parentheses to pro-

duce correct results in the generated truth table.

Table 1: Operations in the luatruthtable package,

given boolean variables p and q.

Command Description

lognot*p Negates the boolean variable p.

p*logand*q Truth table for the expression
p and q.

p*logor*q Truth table for the expression
p or q.

p*imp*q Truth table for the expression
if p then q.

p*iff*q Truth table for the expression
p if and only if q.

p*lognand*q Truth table for the expression
p NAND q.

p*logxor*q Truth table for the expression
p XOR q.

p*lognor*q Truth table for the expression
p NOR q.

p*logxnor*q Truth table for the expression
p XNOR q.

The following is the code generated by the com-
mand \luaTruthTable in the above code.

F & F & T & T\\

F & T & F & T\\

F & T & T & T\\

T & F & F & T\\

T & F & T & T\\

T & T & F & T\\

T & T & T & F\\

F & F & F & T

With the use of optional arguments [trtext=True,
fltext=False] in the previous example, one gets the
following output:

p q r (p ' q) ³ ¬r
False False True True
False True False True
False True True True
True False False True
True False True True
True True False True
True True True False
False False False True

Chetan Shirore, Ajit Kumar

TUGboat, Volume 43 (2022), No. 2 175

Table 2: Example output from the \luaTruthTable

command.

p q r (p ' q) ³ ¬r
F F T T

F T F T

F T T T

T F F T

T F T T

T T F T

T T T F

F F F T

It is possible to give trtext and trfalse values
that are TEX math text. So with the use of optional
arguments [trtext=T, fltext=F] in the pre-
vious example, one gets the following output:

p q r (p ' q) ³ ¬r
F F T T

F T F T

F T T T

T F F T

T F T T

T T F T

T T T F

F F F T

Since the luacode* environment is used, the
backslash is to be escaped in setting trtext and trfalse.
For example: [trtext=\\(True\\),
fltext=\\(False\\)].

7 Known issues, limitations and scope of
the package

The associativity and precedence of operators is not
yet supported. Thus the package can give appropri-
ate results only when parentheses are used for each
of the operations, and gives erroneous results when
parentheses are not used. This point is of utmost
importance in using the package.

There is no native way of defining a custom
operator in Lua [3]. However, some metamethods
can be nested in a way to replicate an operator. All
operators defined in this package are instances of
such nesting. The question may be raised that are
there better ways of accomplishing these in Lua. The
answer is yes. The alternative ways may be better
in one way or another. For example, instead of
defining *logand* operator and using it in the fashion
p*logand*q, one could define function logand that
takes two arguments and use it in a way logand(p,q).
But when it comes to embedding in LATEX, one has
to use more and more nested parentheses as the
number of statements and operations increases. This

is the exact reason why this approach was not used
in the development of the package. Instead of using
implies(logand(p,logor(q,r)),s) it seems more natural
to use (p *logand* (q*logor*r))*implies* s.

Also, there is no error handling mechanism used
in the package. It relies on the error handling of Lua
and TEX itself. The package currently supports the
nine listed operations, viz. not, and, nand, or, xor,
implies, iff, nor, xnor. Error handling and extending
the number of operations may be considered in future
versions of the package.

The package, including source code, is released
through CTAN (ctan.org/pkg/luatruthtable),
and in the usual TEX distributions.

References

[1] Lua 5.4 reference manual.
https://www.lua.org/manual/5.4

[2] Luacode package page, 2012.
https://ctan.org/pkg/luacode

[3] Lua custom operators. http://lua-users.

org/wiki/CustomOperators

[4] Luatex package page.
https://ctan.org/pkg/luatex

[5] PGF package page.
https://ctan.org/pkg/pgf

[6] W.M. Richter. TEX and scripting languages.
TUGboat 25(1):71–88, 2004. https:

//tug.org/TUGboat/tb25-1/richter.pdf

[7] StackExchange. Macro for automating truth
tables. https://tex.stackexchange.com/

questions/505994

[8] Wikipedia. TeX.
https://en.wikipedia.org/wiki/TeX

[9] Xparse package page.
https://ctan.org/pkg/xparse

æ Chetan Shirore

Department of Mathematics,

K.T.H.M. College, Nashik

422002, Maharashtra, India

chetanshirore (at) kthmcollege

dot ac dot in

æ Ajit Kumar

Department of Mathematics,

Institute of Chemical

Technology, Mumbai

400019, Maharashtra, India

The luatruthtable LATEX package

https://ctan.org/pkg/luatruthtable
https://www.lua.org/manual/5.4
https://ctan.org/pkg/luacode
http://lua-users.org/wiki/CustomOperators
http://lua-users.org/wiki/CustomOperators
https://ctan.org/pkg/luatex
https://ctan.org/pkg/pgf
https://tug.org/TUGboat/tb25-1/richter.pdf
https://tug.org/TUGboat/tb25-1/richter.pdf
https://tex.stackexchange.com/questions/505994
https://tex.stackexchange.com/questions/505994
https://en.wikipedia.org/wiki/TeX
https://ctan.org/pkg/xparse

176 TUGboat, Volume 43 (2022), No. 2

LATEX classes for doctoral theses in Ukraine:

Interesting tips and painful problems

Oleksandr Baranovskyi

Abstract

In this paper, I introduce vakthesis, a bundle of LATEX
classes for typesetting doctoral theses according to
official requirements in Ukraine, discuss the current
status of the project and future development plans.
Some LATEX programming tricks that I have studied
are considered.

1 Introduction

vakthesis is a bundle of LATEX classes for typesetting
doctoral theses (or dissertations) in Ukraine [7].

The bundle consists of the following main com-
ponents: vakthesis and vakaref are traditional classes
for a thesis and for a summary (автореферат in
Ukrainian) respectively; while mon2017dev and mon-
2017dev-aref are modern classes for a thesis and for
a summary respectively.

Traditional classes conform to the now “obsolete”
official format required by the VAK (Вища атеста-
цiйна комiсiя, i.e., Higher Attestation Commission).
Now they are suitable for previously defended theses.

In 2017, the MON (Мiнiстерство освiти i науки,
i.e., Ministry of Education and Science) published
its own style guide. Modern classes conform to this
“new” official format by the MON. These classes are
recommended for persons defending their theses now.
They are based on the vakthesis and vakaref classes
respectively and cannot work without them.

The vakthesis bundle contains a number of ex-
ample files: the main LATEX file of a thesis/summary,
introduction, chapter 1, conclusion, bibliography,
and BibTEX files.

So, a thesis author can use these example files
as a template for his/her thesis and will receive a
thesis/summary with a properly formatted title page
of a thesis (and cover of a summary), headings of
chapters, sections, subsections, etc., numeration for
pages, chapters, sections, subsections, etc., as well as
appendices, captions of figures and tables, theorems,
lemmata, definitions, etc., list of references, and (in
modern classes only) an abstract and list of keywords.

2 Tips and problems

In this section, I will discuss some programming
tricks related to vakthesis development. The first
and second cases give tips on how one can define a
command with optional arguments of a special form
and avoid BibTEX restrictions, respectively. The
remaining three cases are devoted to the problems

with UTF-8 encoding, checking of package loading,
and building classes on the base of other classes.

2.1 Command \speciality with two

optional arguments

In Ukraine, any thesis should be classified according
to the so-called List of Specialities.

This is a list of correspondences between spe-
ciality code and speciality name and field of science.
For example, 01.01.01 is a code for speciality мате-
матичний аналiз (Mathematical Analysis) and field
of science фiзико-математичнi науки (Physical and
Mathematical Sciences). In this case, a PhD student
will be awarded the academic degree of кандидат
фiзико-математичних наук (Candidate of Physical
and Mathematical Sciences).

In the vakthesis bundle, there is a particular
command \speciality. In the standard situation
it requires one mandatory argument:

\speciality{01.01.01}

For a given speciality code, this command takes
a speciality name and a field of science from a special
plain-text database. Then this information is typeset
on the title page of the thesis.

The \speciality command has two optional
arguments if, for some reason, the user needs to
provide a speciality name or a field of science:

\speciality[@4F9@4F<KA<= 4A4?i;]{01.01.01}

[Hi;<>B-@4F9@4F<KA<I A4G>]

For example, some specialities in the list have
an ambiguous form such as теорiя та методика на-
вчання (з галузей знань). It means Theory and
Methodology of Learning (on some field of knowl-
edge).

In this case the thesis author should choose an
appropriate field of knowledge and write, for example,
теорiя та методика навчання математики (Theory
and Methodology of Learning of Mathematics) on
the title page.

On the other hand, for some specialities, a de-
gree can be awarded on various fields of science. For
example, for the speciality with code 01.04.07, a PhD
student can obtain a degree either of кандидат фiзи-
ко-математичних наук (Candidate of Physical and
Mathematical Sciences) or of кандидат технiчних
наук (Candidate of Technical Sciences) according to
the specific nature of the research.

These cases cannot be processed by an algorithm,
so optional arguments of the \speciality command
can be used:

\speciality[F9BDiS F4 @9FB8<>4 A46K4AAS

@4F9@4F<><]{13.00.02}

and

doi.org/10.47397/tb/43-2/tb134baranovskyi-vakthesis

Oleksandr Baranovskyi

https://doi.org/10.47397/tb/43-2/tb134baranovskyi-vakthesis

TUGboat, Volume 43 (2022), No. 2 177

\speciality{01.04.07}[F9IAiKA<I A4G>]

respectively. Of course both optional arguments may
be used simultaneously as in the above-mentioned
example for speciality code 01.01.01.

Hence the command \speciality cannot have
the following syntax:

\speciality[ïsomethingð][ïsomethingð]{ïsomethingð}

and cannot be defined by the standard LATEX com-
mand \newcommand.

To define the command with two optional ar-
guments around the mandatory argument we can
use commands \def and \@ifnextchar. Below I
will give a simplified pseudocode to demonstrate the
main idea.

\def\speciality{%

\@ifnextchar[\a@cmd\aa@cmd

}

\def\a@cmd[#1]{%

% Process speciality name #1

\@speciality

}

\def\@speciality#1{%

% Process speciality code #1

\@ifnextchar[\a@cmd@b\a@cmd@bb

}

\def\a@cmd@b[#1]{%

% Process field of science #1

}

\def\a@cmd@bb{%

% Find field of science in the DB

}

\def\aa@cmd#1{%

% Process speciality code #1

\@ifnextchar[\aa@cmd@b\aa@cmd@bb

}

\def\aa@cmd@b[#1]{%

% Process field of science #1

% Find speciality name in the DB

}

\def\aa@cmd@bb{%

% Find speciality name in the DB

% Find field of science in the DB

}

This is a very simple idea; and this idea just
works. But this code is difficult to maintain as well
as to extend to three or more optional arguments.

This is a reason why I reject this idea in a mod-
ern version of the classes. Now I use the xkeyval
package [1] to provide a simple key–value interface:

\speciality[

specialityname=&9BDiS i @9FB8<>4 CDBH9Ei=ABї

BE6iF<,

degreefield=C9847B7iKAi,

% specialityfile=ïfilenameð.csv
]{13.00.04}

A useful overview of how the LATEX key–value
system works is given in [8].

2.2 Environment bibset to make two

reference lists in a thesis

It is known that BibTEX can generate only one ref-
erence list in a document, i.e., only one command
\bibliography can be processed in standard situ-
ations. Nevertheless, sometimes there is a need to
have more than one reference list. In particular, in
Ukrainian theses, the following two lists may exist:
the list of referenced sources and the list of author’s
publications.

There are many solutions for multiple bibliogra-
phies [5, 6] but they are not suitable for me.

Essentially, the multibbl and multibib packages
provide a special bibliography “tag”. So, special
“tagged” \cite and \bibliography commands are
available for the user.

Similarly, with the splitbib package, the user
needs to categorize citations in the document.

The bibtopic package separates different bibli-
ographies on different .bib files and uses special
commands instead of the standard \bibliography.

The chapterbib and bibunits packages separate
bibliographies per chapter or per other logical units.

In the vakthesis bundle, the bibset environment
is provided that is used in the following way. Let
xampl-thesis.tex be a thesis file containing the
commands for the list of referenced sources and the
list of author’s publications.

\begin{bibset}{%C<EB> 6<>BD<EF4A<I 8:9D9?}

\bibliographystyle{ïbibliography style 1 ð}
\bibliography{ïreferenced sourcesð}

\end{bibset}

\begin{bibset}[a]{%C<EB> CG5?i>4Ji= 46FBD4}

\bibliographystyle{ïbibliography style 2 ð}
\bibliography{ïauthor’s publicationsð}

\end{bibset}

Standard \cite and \bibliography commands
are used in the text. There is no need to tag or
categorize them. Argument of any \bibliography

command may be any list of .bib files.
The bibset environment redefines commands

\bibliographystyle and \bibliography such that
they write commands \bibstyle and \bibdata to
the .aux file if they appear in the first environment
bibset and do not write otherwise.

Then during the first run BibTEX sees only one
copy of \bibstyle and \bibdata, corresponding to
the first environment bibset. At this point the
file xampl-thesis.bbl generated by BibTEX should

LATEX classes for doctoral theses in Ukraine: Interesting tips and painful problems

178 TUGboat, Volume 43 (2022), No. 2

be renamed to xampl-thesis1.bbl (manually or
programmatically).

During the second run the first and second
bibset environments are interchanged, i.e., com-
mands \bibstyle and \bibdata are written to the
.aux file if they appear in the second bibset envi-
ronment and are not written otherwise.

So now BibTEX sees commands \bibstyle and
\bibdata corresponding to the second bibset envi-
ronment. At this point the file xampl-thesis.bbl

should be renamed to xampl-thesis2.bbl.
At the last step LATEX includes the generated

files xampl-thesis1.bbl and xampl-thesis2.bbl

at the corresponding places. Hence the author has
two reference lists in the thesis.

In earlier versions of the official style guides by
VAK there was not any mention of the two refer-
ence lists. I just realised this for myself. However,
the modern official style guide by MON contains an
explicit recommendation to prepare up to three refer-
ence lists in a thesis. This solution works in modern
classes too.

2.3 The casus package and UTF-8

In the summary, authors write the name of the insti-
tution where they studied and worked on their thesis.
So a command \institution is provided by classes
whose argument is the name of this institution. This
name (in the nominative case) appears on the cover
page, for example, Нацiональний педагогiчний унi-
верситет iменi М. П. Драгоманова.

At the same time, there is a sentence on the re-
verse side of the cover page, where the author states
that this work is performed at this institution. Here
the name of institution is in the locative case, for
example, у Нацiональному педагогiчному унiвер-
ситетi iменi М. П. Драгоманова.

In the Ukrainian language, a noun (as well as
some other parts of speech) can change its form to
express its syntactic function in the sentence. There
exist seven cases of a noun: nominative, genitive,
dative, accusative, instrumental, locative, and voca-
tive.

For example, унiверситет is a university in
Ukrainian. This is the form of nominative case. If I
want to write that I study at a university, I would use
the form of locative case: я навчаюся в унiверситетi.
That is, the ending is changing and there is also a
preposition.

I think it is redundant to ask a thesis author to
provide different forms of the institution name if the
\institution command already gives a nominative
form of the name. The vakthesis or vakaref class can

“compute” genitive, dative or other form. This is
exactly what the auxiliary package casus does.

Briefly, the algorithm is the following. Suppose
the institution name is Нацiональний педагогiчний
унiверситет iменi М. П. Драгоманова. Here there
is a special word унiверситет from the list of “known
words”. All words before the known word are ad-
jectives. The casus package has rules to decline ad-
jectives as well as rules to decline nouns. All words
after the known word should not be changed.

The algorithm splits a given sentence into words,
finds a known word (унiверситет, iнститут, акаде-
мiя, коледж, мiнiстерство, бiблiотека, кафедра,
etc.), then declines adjectives and the known word
(as a noun), and then stops, i.e., do not touch the
words after the known word. In Ukrainian, any name
of institution has this form. So this algorithm works.

Unfortunately, one day an author reported to
me a problem he encountered in his thesis. He just
re-encoded all vakthesis files and his thesis files from
Windows-1251 encoding to UTF-8 encoding.

After this operation he received some mysterious
error messages such as

Missing number, treated as zero.

or

Undefined control sequence.

Skipping non-essential details, the main problem
is in the casus package.

To decline a word (in particular, an adjective
педагогiчний) the algorithm runs through the word
until it finds an ending from a given list of endings.
This is the ending -ий for this word. This ending is
skipped and the other ending that corresponds to
a given case is added. So the words педагогiчного,
педагогiчному and so on are received.

This simple idea should not depend on a file
encoding. However, my implementation of the algo-
rithm does not work if a file has an UTF-8 encoding.
My conjecture is that the algorithm implementation
fails for characters encoded by two or more bytes.

Maybe the better solution would be to use a
known stable package for string manipulation instead
of my quick and dirty solution implemented in the
casus package.

2.4 Incorrect checking if hyperref is loaded

Traditionally, theses are printed on paper and stored
at physical libraries. However, LATEX can generate an
electronic document with hyperlinks. In particular,
the hyperref package can be used to this end. Some
authors of theses want to use this possibility.

Oleksandr Baranovskyi

TUGboat, Volume 43 (2022), No. 2 179

Generally speaking, it is complicated to use vak-
thesis classes and the hyperref package simultaneously.
This can cause errors that are hard to diagnose.

In particular, vakthesis classes redefine some in-
ternal commands such as \@spart, \@schapter, and
\@ssect. The number of arguments is even changed.
The hyperref package makes its modifications care-
fully but cannot predict that these commands have
more arguments now. As a result, sectioning com-
mands do not work as expected.

Hence, to carefully interact with the hyperref
package, vakthesis classes should check if hyperref
is loaded, for example, by means of the internal
command \@ifpackageloaded:

\@ifpackageloaded{hyperref}

{ïtrue branchð}
{ïfalse branchð}

In the ïtrue branchð, classes should define versions
of commands and environments that are aware of
the hyperref package.

In particular, this approach would allow solv-
ing the above-mentioned problem with sectioning
commands.

But the internal command \@ifpackageloaded

can be used in a document preamble only. I cannot
use this command, for example, inside of the bibset

environment to check if hyperref is loaded. So I check
if some internal command of hyperref is defined:

\@ifundefined{hyper@warn}

{ïtrue branchð}
{ïfalse branchð}

It is easy; and it works. But, after a few years, I
received a bug report from a vakthesis user. If he uses
the bibset environment with hyperref loaded, then
any \cite command is not correctly hyperlinked.

The reason is that recent versions of hyperref
do not define \hyper@warn anymore. The command
\Hy@WarningNoLine is defined instead. Hence the
ïtrue branchð in that code is not executed at all.

Obviously, the quick patch is to restore the defi-
nition in the document preamble:

\@ifundefined{hyper@warn}

{\let\hyper@warn\Hy@WarningNoLine}

\relax

In the new version of vakthesis, the hyperref check is
also fixed.

However, checking if a package is loaded inside
of a command/environment is a bad thing anyway.
To make more robust software, I should prepare
two versions of a command/environment (with and
without hyperref) and then choose the corresponding
version.

2.5 Overwriting and overloading

I started to develop the vakthesis bundle in approx-
imately 2003. I was a PhD student at that time.
My experience with TEX and LATEX was very lim-
ited. Sure, I used LATEX for preparing my papers,
slides, etc.; but I did not try LATEX programming.
I should say also that Internet access was unstable
and expensive at that time.

As a result, I did not find any suitable templates
or LATEX classes for thesis typesetting compatible
with Ukrainian requirements. I thought the situation
required development of a LATEX class that I needed
myself.

At some point, I decided to start from the stan-
dard report class and modify it according to my needs.
It seemed that overwriting of an existing class is a
better approach. There exists a ready-to-use class
that almost complies with my requirements. I just
need to patch some parts of the code that do not
agree with the requirements.

However, in fact, it is not easy to maintain such
a new class. First of all, I should look at report class
development and update my code. At that time, I
thought that changes of the standard LATEX classes
are rare.

Moreover, careless overwriting may cause prob-
lems. For example, in the report class, the command
\part typesets part headings on separate pages. But
the vakaref class uses this command to typeset struc-
tural parts of summary; and they are typeset as usual
headings. So I removed any \newpage commands
and stopped.

One day a user encountered a problem when a
structural part heading occurs on the last line of the
page. As a result, a page break appears between the
heading and the following text. This is unwanted
behavior, of course, and fixing of the command is
required.

This is one of the reasons why modern classes
mon2017dev and mon2017dev-aref use another ap-
proach. They are designed as a “level” above the
traditional classes vakthesis and vakaref respectively.
They load these base classes and then redefine some
commands and environments.

Unfortunately, overloading may cause problems
too. Because the casus package (see Section 2.3)
works with Cyrillic letters directly it should be loaded
after the inputenc package. So, in the vakaref class,
there is a corresponding line:

\AtBeginDocument{\usepackage{casus}}

Since mon2017dev-aref is a level above the vakaref
class, the following line

\LoadClass{vakaref}

LATEX classes for doctoral theses in Ukraine: Interesting tips and painful problems

180 TUGboat, Volume 43 (2022), No. 2

is in the mon2017dev-aref.
For the mon2017dev-aref class, some modifica-

tions in casus are needed. So this class loads a modi-
fied version of this package:

\AtBeginDocument{\usepackage{casus2017dev}}

Of course casus2017dev cannot work without
casus. But we have the following chain. Firstly, the
mon2017dev-aref class loads the vakaref class, then
vakaref adds casus to the \AtBeginDocument hook.
Later the mon2017dev-aref class adds casus2017dev
to the \AtBeginDocument hook. As a result, in a
proper place, casus is loaded, and then casus2017dev
is loaded.

This colossus with feet of clay did its excellent
work. . . till one day when it fell. A user is in a slight
panic: declension does not work in his summary, and
the cover page of the summary is full of nonsense!
Oh, and he should submit his thesis and summary
today! More interesting, I do not see this problem
on my system.

The reason is in a new release of LATEX. In ver-
sion 2020-10-01, a general hook management system
was provided [3]. This affects standard hooks defined
by the command \AtBeginDocument too.

I am not sure if I understand correctly what
exactly happens. I suppose that, since casus and
casus2017dev are loaded in the different classes, we
have that they are added to hooks with different
labels. As a result, either code is executed in changed
order or the second \AtBeginDocument just executes
code instead of adding to the hook. The visible result
is that casus2017dev is loaded before casus. It cannot
work in this situation.

It is easy to fix this problem. It is enough to
add the line

\RequirePackage{casus}

to the casus2017dev package.
Clearly, such many-level overloading may be a

real headache for users as well as for maintainers.
Taking into account the above-mentioned prob-

lems, I do not know now what is the best way to de-
velop a new class: copy an existing class and rewrite
some parts of it, or load a base class and redefine
the commands/environments.

3 Current status

3.1 Two separate modules

Now the vakthesis bundle consists of two separate,
almost independent, modules: traditional vakthesis
classes and modern mon2017dev classes.

I started development of mon2017dev as a sep-
arate module to keep the vakthesis module stable
and harmless for users. In some aspects, modern

requirements by MON differ essentially from tradi-
tional requirements by VAK. Sometimes they are
unclear and ambiguous. So mon2017dev classes are
intended for clarifying development objectives and
obtaining feedback from users.

However this separation causes some problems
today. In particular, separate installation of two mod-
ules is more complicated for users. Documentation
is also divided between two modules.

For me as the maintainer, development and
maintenance of two modules also requires additional
effort. For example, problems similar to the case
with casus/casus2017dev (see Section 2.5) are mostly
caused by this separation.

3.2 Alternatives

Some alternative solutions for typesetting a thesis in
Ukraine exist.

First of all, I would like to mention a long-
standing dissert class by Andrew Martovlos. This
class is based on the report class and size14 class
option and published in 2002.

Unfortunately, the website where dissert was ini-
tially posted does not exist anymore. Also, there
exist a number of derivatives of dissert by now. Prob-
ably they are even mutually incompatible. One of
them with the name dissert_new is published at the
Linux.org.ua forum [4].

I have a copy of an Opus class by Andrii Se-
menov. Sergei Sharapov sent me this copy in 2009
and said that this class is used in Bogolyubov Insti-
tute for Theoretical Physics of the National Academy
of Sciences of Ukraine. However I do not know its
current status.

Another class is recently published at the above-
mentioned forum too [2]. This is ukrainethesis class
by Kostiantyn Hermash. He used it to prepare his
PhD thesis.

So, users that are unsatisfied with vakthesis
LATEX classes may choose another solution. Never-
theless, one considerable difference between vakthesis
and other classes is that I actively maintain vakthesis
and answer user questions about it.

3.3 Users of vakthesis

Despite the fact that some unsolved problems exist
and these problems can be critical for some users,
there exists some interest in vakthesis.

Many people use these classes to typeset their
doctoral theses belonging to various fields: biology,
computer science, mathematics, physics, etc. Also
some students adapt the classes for their student
qualifying works although vakthesis is not intended
for this task.

Oleksandr Baranovskyi

TUGboat, Volume 43 (2022), No. 2 181

A friendly community of vakthesis users is gath-
ered at the Linux.org.ua forum: linux.org.ua/.
Any user can ask questions here and receive sup-
port from the community.

Recently the Doctor Barbarus Services company
offers commercial support for all users that need it:
sites.google.com/view/drbarbarus/.

4 Future plans

I hope the following changes will resolve some com-
plicated problems mentioned in the above sections
as well as make the vakthesis bundle more convenient
for users and developers.

4.1 Combine vakthesis and mon2017dev

The modern classes mon2017dev are quite stable
software already. So they can be combined with
the base vakthesis classes. However, this is not just
mechanical work if we want to keep compatibility.

4.2 Make vakthesis fully UTF-8 compatible

Full rewriting of the casus package is the main prob-
lem in this direction. This is an important issue
because the UTF-8 encoding is a standard in the
modern world.

4.3 Provide more documentation

In particular, the installation process should be de-
scribed with more details for non-experienced users.

More useful and user-friendly example files are
also needed. Some information related to real persons
should be removed from the example files. For exam-
ples with traditional vakthesis classes, I used some
parts of my thesis. The modern classes mon2017dev
are illustrated by examples from the MON style guide
that contain real information too.

4.4 Upload to CTAN

I did not upload the vakthesis bundle to CTAN earlier
because I believed that it is not yet sufficiently stable
software.

However I hope that above-mentioned changes
will lead vakthesis to be more mature and usable.

Moreover having the software available at CTAN

under a free license will also make it available in the
main TEX distributions. So it will become easily
installable.

4.5 Use version control system

I did not use any version control system earlier. But
now I understand its importance for development
and maintenance.

Later I will upload code to GitLab, GitHub, or
my own server (to be decided).

This may help other developers continue this
project if I will not be able to maintain it for some
reasons. I am in Ukraine now; so such reasons can
occur any day.

5 Acknowledgments

I am grateful to Barbara Beeton and Karl Berry for
their careful reading the manuscript and improving
the presentation and English wording.

This paper was prepared in Ukraine during the
russian invasion. I sincerely appreciate the Armed
Forces of Ukraine’s heroic efforts to defend my coun-
try.

References

[1] H. Adriaens, U. Kern. xkeyval—new
developments and mechanisms in key
processing. TUGboat 25(2):194–199, 2004.
tug.org/TUGboat/tb25-2/tb81adriaens.pdf

[2] kostiantyn.hermash. Message at the
Linux.org.ua forum. linux.org.ua/index.

php?topic=689.msg204167#msg204167

[3] LATEX Project Team. LATEX2ε news 32,
Oct. 2020. www.latex-project.org/news/

latex2e-news/ltnews32.pdf

[4] sampleplasma. Message at the Linux.org.ua
forum. linux.org.ua/index.php?topic=689.

msg92080#msg92080

[5] TEX FAQ contributors. Multiple bibliographies?
texfaq.org/FAQ-multbib

[6] TEX FAQ contributors. Separate bibliographies
per chapter? texfaq.org/FAQ-chapbib

[7] Current homepage of the vakthesis project.
www.imath.kiev.ua/~baranovskyi/tex/

vakthesis/

[8] J. Wright, C. Feuersänger. Implementing
key–value input: An introduction. TUGboat

30(1):110–122, 2009. tug.org/TUGboat/

tb30-1/tb94wright-keyval.pdf

⋄ Oleksandr Baranovskyi

Doctor Barbarus Services & Institute of

Mathematics of the National Academy of

Sciences of Ukraine

ombaranovskyi (at) gmail dot com

https://sites.google.com/view/drbarbarus/

LATEX classes for doctoral theses in Ukraine: Interesting tips and painful problems

https://linux.org.ua/
https://sites.google.com/view/drbarbarus/
https://tug.org/TUGboat/tb25-2/tb81adriaens.pdf
https://linux.org.ua/index.php?topic=689.msg204167#msg204167
https://linux.org.ua/index.php?topic=689.msg204167#msg204167
https://www.latex-project.org/news/latex2e-news/ltnews32.pdf
https://www.latex-project.org/news/latex2e-news/ltnews32.pdf
https://linux.org.ua/index.php?topic=689.msg92080#msg92080
https://linux.org.ua/index.php?topic=689.msg92080#msg92080
https://texfaq.org/FAQ-multbib
https://texfaq.org/FAQ-chapbib
https://www.imath.kiev.ua/~baranovskyi/tex/vakthesis/
https://www.imath.kiev.ua/~baranovskyi/tex/vakthesis/
https://tug.org/TUGboat/tb30-1/tb94wright-keyval.pdf
https://tug.org/TUGboat/tb30-1/tb94wright-keyval.pdf

182 TUGboat, Volume 43 (2022), No. 2

XLingPaper’s use of TEX technologies
H. Andrew Black, Hugh J. Paterson III

Abstract
We discuss the use of TEX technologies by XLing-
Paper, an authoring tool for producing academically
oriented publications with features required for lin-
guistic publishing. We present the TEX modules
used and the rationale for the history of XLingPaper
development.

1 Introduction
Within the publishing industry, there are several no-
table products for producing complex documents in
beautiful formats. TEX [26, 27] is one of the well-
known publishing technologies used to meet these
needs. Since 2000, XML-based technologies such
as XSL-FO1 or the TEXML2 project [31] have been
used to integrate content and compose complex doc-
uments such as textbooks and maintenance manuals.
Requirements for composing these large, inter-linked
documents birthed the development of tools such
as XMLmind,3 the <oXygen/> XML Editor,4 and
Xpublisher.5 These tools can be used to compose
content within prede昀椀ned XML structures.

XLingPaper, as discussed in [7, 8, 9], seeks to
provide a constrained environment in which authors
of complex works dealing with language descriptions
and linguistic analyses can focus on content struc-
ture independently from the styling requirements
of documents. In this way the underlying design
principle of XLingPaper maximizes the SGML de-
sign practice of separating content from presentation.
With XLingPaper, authors can keep content struc-
ture independent from page layout information and
thereby provide maximal transferability between pub-
lishing styles. The software does this while providing
authors a clear structured interface for authoring
content.

XLingPaper is designed to reduce friction in the
process of writing, composing, and publishing lin-
guistic papers, grammars, and books by removing
common time-sinks related to inconsistent format-
ting (especially citations, references, and numbered

Editor’s note: This paper was presented at TUG2021. The
slides that accompanied the presentation can be found
at tug.org/tug2021/assets/pdf/Andrew-Black-slides.pdf,
and the video at youtube.com/watch?v=jBCJC1HI73Y.

1 w3.org/TR/xsl11
2 getfo.org/texml
3 xmlmind.com/xmleditor
4 oxygenxml.com/xml_author.html
5 xpublisher.com/products

Figure 1: XLingPaper’s prede昀椀ned document types
via DTD.

elements like examples). A full list of bene昀椀ts to all
parties in the publishing work昀氀ow is available [9].

The XLingPaper software has a growing num-
ber of users who have successfully typeset complex
documents which, among others, include:

• master theses [28, 37, 56],
• doctoral dissertations [18, 42],
• textbooks [33],
• linguistic grammars [12],
• books [1, 43],
• journal articles [11, 38], and
• bilingual software documentation [2, 3].

2 What is XLingPaper?
XLingPaper6 is a plug-in to the XMLmind XML Edi-
tor. XLingPaper bene昀椀ts from the XMLmind XML
Editor’s Java-based implementation which allows
it to be used on Mac OS X, Windows, and Linux.
Via a DTD, XLingPaper de昀椀nes several document
classes (articles, books, chapters, etc., as illustrated
in Figure 1), in each case providing document layout
sections (paragraphs, examples, endnotes, etc.). Fig-
ure 2 illustrates the main screen of the user-interface
of XMLmind XML Editor. By using this interface,
formatting errors are reduced because users are con-
strained on where in the document 昀氀ow they can
introduce block and line level document elements.

6 software.sil.org/xlingpaper

doi.org/10.47397/tb/43-2/tb134black-xlingpaper

H. Andrew Black, Hugh J. Paterson III

https://tug.org/tug2021/assets/pdf/Andrew-Black-slides.pdf
https://youtube.com/watch?v=jBCJC1HI73Y
https://w3.org/TR/xsl11
http://getfo.org/texml
https://xmlmind.com/xmleditor
https://oxygenxml.com/xml_author.html
https://xpublisher.com/products
https://software.sil.org/xlingpaper
https://doi.org/10.47397/tb/43-2/tb134black-xlingpaper

TUGboat, Volume 43 (2022), No. 2 183

Figure 2: XLingPaper’s user interface. Left side: document content editing.
Right side: block and line level units available for use at the cursor location.

That is, 昀椀rst, authors cannot input page layout in-
structions directly into the document and second, the
introduction of layout sections within the document
昀氀ow is constrained via the DTD.

For many, the PDF format is the quintessential
昀椀le format for 昀椀nal distribution of publishing outputs.
XLingPaper supports PDF production; however, as
illustrated in Figure 3, XLingPaper can produce doc-
uments in (currently) 昀椀ve formats, all from the same
source document:

• PDF (version 1.5),
• Web pages (HTML 4),
• Microsoft Word (.doc),
• Open O昀케ce Writer Document (.odt), and
• ePUB.

XLingPaper automatically numbers tables, ex-
amples, 昀椀gures, and sections. It keeps track of inter-
nal references to these entities along with citation
references, abbreviations, and gloss abbreviations.
This keeps numbering and reference links depend-
able and automated. XLingPaper also automatically
generates indexes, a table or list of abbreviations
used, and a section for references cited (using a cus-
tom references implementation).

Unlike most editing programs which are based
on either the WYSIWYG paradigm or are uncon-
strained text editors such as those used to code or
produce Markdown, XLingPaper (via the XMLmind
XML Editor) is a structured editor much more like

the block editors we see in tools like MailChimp7

or WordPress’s Gutenberg editor,8 albeit without
the drag-and-drop features. Rather than visually
structuring the document to look the way it is to
be formatted, the author “marks up” the items in
the document according to their kind. One of the
many bene昀椀ts of using a DTD is that there is a “gram-
mar” of what a well-formed linguistic document looks
like. This makes moving, replacing, switching, or
reordering sections, chapters, tables, 昀椀gures, and
examples less error prone because it prevents users
from inadvertently creating ill-formed documents.
The following sections of this paper discuss the TEX
technologies used by XLingPaper.

3 XLingPaper and TEX
Linguistic publishing has unique requirements when
compared to general publishing. The following sec-
tions provide more detail on the linguistic publishing
context, design requirements and LATEX packages
used by XLingPaper.

3.1 TEX and linguistic document production
TEX has long been embraced by linguists. Peter [40]
writes of a personal communication with Don Knuth
where Knuth suggests that linguists were some of the
earliest adopters outside of mathematicians. Thiele

7 mailchimp.com
8 developer.wordpress.org/block-editor

XLingPaper’s use of TEX technologies

https://mailchimp.com
https://developer.wordpress.org/block-editor

184 TUGboat, Volume 43 (2022), No. 2

Figure 3: XLingPaper’s data processing pipeline to multiple formats.

[51] in an interview given in 2007 states that she was
typesetting linguistic journals via TEX in 1983 — a
date prior to the formal publication of Knuth’s book
on using the TEX typesetting system [26]. Thiele
[50] gives an early overview of TEX use in linguistics
with mention of signi昀椀cant repositories outside of
CTAN. A slightly more recent (2004) update by
Peter [40] provides some additional tips and tools
for typesetting common information structures in
linguistic publishing.

The TEX community has produced many pack-
ages which have shaped the visual face of publishing
in linguistics, including tipa9 by Rei [44], which
provided access to an excellent typeface for pho-
netic transcriptions, and pst-asr10 by Frampton
[19] for autosegmental representations. Some pack-
ages used in linguistic publishing are special purpose
but are not exclusive to linguistics. For example,
Donnelly [17] describes how to use various packages
to draw phonetic pitch traces using TEX. Peter
[40] and Thiele [50] list and review (through 2004)
various packages across several areas of linguistics.
Among others, they discuss several packages used
to draw syntax trees such as qtree11 and forest12

and specialized packages for presenting examples and
interlinear glossed texts such as expex.13 Their re-

9 ctan.org/pkg/tipa
10 ctan.org/pkg/pst-asr
11 ctan.org/pkg/qtree
12 ctan.org/pkg/forest
13 ctan.org/pkg/expex

views also discuss packages such as covington14 and
gb4e15 whose collections of macros serve a variety
of page layout functions targeted at publishing in
linguistic topics.

The CTAN repository currently lists 昀椀fty-four
di昀昀erent TEX packages for linguistic typesetting,16

though some of these packages also include capabili-
ties targeted as multi-lingual or multi-script publi-
cations or are speci昀椀c style sheet implementations
for publications at linguistic programs within institu-
tions of higher education (there may be more pack-
ages which are not tagged but should be). Several
of the packages tagged “linguistic” pre-date Unicode
[52] but still see signi昀椀cant use. Sometimes it is the
case that secondary packages are developed in an
attempt to “昀椀x” publishing outputs in di昀昀erent ways,
to bring Unicode features along with the features of
the original package. For example, tipa is not Uni-
code compatible, but the packages unitipa17 and
tipauni18 seek to address di昀昀erent implications of
not publishing with Unicode while giving access to
the beautiful typeface of tipa. Understanding the
long history of publishing and the packages’ interde-
pendencies (including the order of loading packages)
constitute barriers of adoption to new TEX users.

We discuss TEX barriers of adoption for two
reasons. First, it exempli昀椀es some of the complexities

14 ctan.org/pkg/covington
15 ctan.org/pkg/gb4e
16 ctan.org/topic/linguistic
17 ctan.org/pkg/unitipa
18 ctan.org/pkg/tipauni

H. Andrew Black, Hugh J. Paterson III

https://ctan.org/pkg/tipa
https://ctan.org/pkg/pst-asr
https://ctan.org/pkg/qtree
https://ctan.org/pkg/forest
https://ctan.org/pkg/expex
https://ctan.org/pkg/covington
https://ctan.org/pkg/gb4e
https://ctan.org/topic/linguistic
https://ctan.org/pkg/unitipa
https://ctan.org/pkg/tipauni

TUGboat, Volume 43 (2022), No. 2 185

that XLingPaper seeks to simplify, as it presents
authors not just a visual environment for document
composition, but also a cohesive output solution.
Second, it speaks to the software design process in
昀椀nding the minimal viable product. That is, how
much (or little) of a software stack is needed to make
a usable software product for linguistic publishing?

The TEX community is divided on this. While
the diagrams in linguistic books and journals since
the 1980s exemplify many beautiful, sharp, crisp,
illustrations created directly in TEX, many trainers
of TEX tools,19 but not all,20 have steered authors
towards a more generic set of packages which do not
include speci昀椀c diagram-creating macros. Rather,
they suggest that authors use secondary illustration
tools to generate illustrations and then include them
as vector PDFs or images.

This second method is the document produc-
tion path that the XLingPaper philosophy follows.
That is, XLingPaper reduces the complexity of the
typesetting task for authors by requiring complex
visualizations to be produced via graphical tools. We
have found tools like Figma21 and Inkscape22 very
helpful in the graphic production task. The XLing-
Paper product seeks to: lower barriers of entry, only
produce valid documents, and keep the code base to
a minimum.

As mentioned in the discussion of tipa, linguis-
tic documents were typeset by TEX before Unicode
existed. Unicode was introduced in 1991 and by
the early 2000s Unicode along with document and
data storage in XML formats were being heralded in
academic linguistics as a best practice in order to
avoid vendor lock-in, increase interoperability across
use cases, and to separate data life-cycles from en-
coding or software life-cycles [5, 6, 53]. Due to the
heavy reliance on Unicode by today’s practition-
ers of language documentation and linguistic work,
XLingPaper speci昀椀cally uses X ELATEX and compati-
ble packages to produce PDF outputs. This brings
continuity to the text input process for users across
their work昀氀ows. It also makes importing and using
language or phonetically transcribed examples sim-
pler by removing the need to use macros to derive
characters.

19 Among others, see the Linguistics Dissertation guides
for the University of Hawai‘i at Mānoa [22], the University of
Pennsylvania [16], and Language Science Press Guidelines
[36].

20 For counterexamples see [21, 30, 41, 48].
21 figma.com
22 inkscape.org

3.2 Design desiderata for XLingPaper
outputs via TEX

Three goals have driven the development of XLing-
Paper:

• separation of content and style,
• software accessibility (license and size), and
• beautiful multi-format outputs.

Deciding how TEX technologies 昀椀t within the project
has been a journey. The development of XLingPaper
started in 2001 without any use of TEX technologies.
In 2006, XLingPaper added XSL-FO for PDF pro-
duction. Prior to 2009, XLingPaper used RenderX’s
XEP23 product to produce PDF documents. As far
as we know, there are two cross-platform XSL-FO
processors written in Java: RenderX’s XEP applica-
tion and the Apache FOP project.24 Using a Java
implementation reduces the size of the required stack
because the XMLmind XML Editor requires Java.

XSL-FO processors can have various degrees of
implementation of the XSL-FO standard. RenderX
has some limitations which a昀昀ect page layout but
has more complete coverage than the Apache FOP
project which lacks certain required table-oriented
capabilities.25 The limitations of RenderX are dis-
cussed in Section 5. In 2009 plans were made to
add X ELATEX-based output to XLingPaper because,
while there was a free version of RenderX, the output
contained a watermark. By implementing the ability
to export to PDF via X ELATEX, watermarks could be
avoided. The X ELATEX method of PDF production is
now the default method to produce PDF documents,
although the RenderX method is still possible.

Maintaining a separation of content and style
in the XLingPaper environment was a key design
requirement. When the X ELATEX method of PDF
production was introduced, XLingPaper already had
a way to format output per a user-created publisher
style sheet — allowing great 昀氀exibility due to the sep-
aration of style and content. Using TEX technologies
meant the developer (Andrew Black) needed to be
able to map from an XLingPaper publisher style sheet
to X ELATEX. It was known that LATEX was the ideal
TEX implementation to target. However, pure LATEX
came with prede昀椀ned output formatting for front
matter, chapters, sections, back matter, etc. Pure
LATEX, then, would not allow direct control of format-
ting of all of these per an XLingPaper user-de昀椀ned
publisher style sheet. This required overriding these
standard features of LATEX with a custom imple-
mentation of the TEX commands needed to control

23 renderx.com/tools/xep.html
24 xmlgraphics.apache.org/fop/index.html
25 xmlgraphics.apache.org/fop/compliance.html

XLingPaper’s use of TEX technologies

https://figma.com
https://inkscape.org
http://renderx.com/tools/xep.html
https://xmlgraphics.apache.org/fop/index.html
https://xmlgraphics.apache.org/fop/compliance.html

186 TUGboat, Volume 43 (2022), No. 2

formatting. XLingPaper takes a custom approach
in implementing 昀氀exibility here. Table 1 lists the
custom commands implemented.

The programmer of XLingPaper recently dis-
covered memoir26 [54, 55]. As a package, memoir
accomplishes many of the same tasks and could be
considered to replace some of the custom code if it
were shown to be easy to implement and that the size
of the total XLingPaper code base would be reduced.

The distributability of the software was also
seen as a design requirement. Distributability is
understood to have two components: license and
accessibility, including size.

From the outset, XLingPaper was designed to
be costless to the end user. It is licensed under the
MIT license, and its code is currently available on
Github.27 The XMLmind XML Editor had a costless
Personal Use License that met the distributability
goal for the majority of the initial target audience
of XLingPaper. The few XLingPaper users who did
not meet the terms of that license most likely would
be able to a昀昀ord to purchase (or have their organiza-
tion purchase) a professional license of the XMLmind
XML Editor. The XLingPaper plug-in has always
been free.

The software size of XLingPaper is a major de-
sign in昀氀uencer. Many of the expected users of XLing-
Paper live and work in places around the world where
Internet connections are characterized by high costs,
low bandwidth capacity, and general unavailability.
Therefore, the download required to install XLing-
Paper needed to be as small as possible. On Windows
the current full XLingPaper installer is 146 MB, and
the XMLmind XML Editor installer is 116 MB. Both
are required. This stands in contrast to the TEX Live
2010 installer which has a size of about 1.2 GB when
downloaded and 2.38 GB when uncompressed. The
size constraint impacts XLingPaper because its dis-
tribution must be independent of larger mainstream
TEX distribution solutions which have a large foot-
print. This, of course, includes TEX Live. Therefore
the developer identi昀椀ed which LATEX packages and
binaries were needed and created a custom installa-
tion package which met the required speci昀椀cations.
In keeping with limiting the installation size, XLing-
Paper still uses TEX Live 2010, although there is now
an option to use TEX Live 2020, especially for those
running on Mac OS X.28

26 ctan.org/pkg/memoir
27 github.com/sillsdev/XLingPap
28 See (software.sil.org/xlingpaper/

xelatex-package-from-tex-live-2020/) for instructions on
how to use TEX Live 2020 with XLingPaper.

XLingPaper currently uses the following LATEX
packages (in alphabetical order):

attachfile2 lineno
booktabs longtable
calc lscape
color mdframed
colortbl multirow
etoolbox polyglossia
fancyhdr setspace
fontspec tabularx
footmisc ulem
hyperref xltxtra

The twenty LATEX packages that are part of the cus-
tom XLingPaper distribution are still rather large
for someone for whom Internet bandwidth is an ex-
pensive and inconsistent commodity.

To reduce bandwidth requirements two assump-
tions were made which have more or less proven to
obtain. The 昀椀rst assumption was that the twenty
packages and binaries would not need to change over
time; in contrast, the second assumption was that
XLingPaper would acquire new features and need bug
昀椀xes. These assumptions resulted in an architecture
where page layout information expressed in XML is
translated via custom TEX commands to either TEX
directly or to commands understood by LATEX pack-
ages distributed with XLingPaper. This abstraction
layer was then executed when the X ELATEX 昀椀le was
processed.

This middle layer has granted XLingPaper 昀氀ex-
ibility in adding new code and capabilities while
keeping the “heavy” LATEX packages stable. The net
result is a “heavy” 昀椀rst install package (116 MB),
but light-weight upgrade packages (6.21 MB). In the
thirteen-year history of development, there have been
a few occasions where upgrades have required the
download of new “heavy” packages. One such case
was when the ability to use framed units was added.
These elements depend on the mdframed29 package
[14]. The architecture separating stable packages
from custom code, however, has generally worked
out well and kept update sizes low.

3.3 PDF production
We know of two existing pathways for converting
XML content into PDFs. The 昀椀rst is via XSL-FO, and
the second is via TEXML which converts XML content
to TEX-formatted documents for further processing
to PDF.

Given certain limitations in both XSL-FO and
TEXML, XLingPaper uses a custom (or third) method.
When an author instructs XLingPaper to produce

29 ctan.org/pkg/mdframed

H. Andrew Black, Hugh J. Paterson III

https://ctan.org/pkg/memoir
https://github.com/sillsdev/XLingPap
https://software.sil.org/xlingpaper/xelatex-package-from-tex-live-2020/
https://software.sil.org/xlingpaper/xelatex-package-from-tex-live-2020/
https://ctan.org/pkg/mdframed

TUGboat, Volume 43 (2022), No. 2 187

Table 1: Custom commands used by XLingPaper

Command for Purpose
Table of contents Store and retrieve page numbers; format the contents.
Lists Numbered and bulleted lists with control over indents, etc.
Examples Example number and example content, where the content can be a line, a list of

lines, a set of words, a list of a set of words, interlinear, a list of interlinears, etc.
Indexes Handle keeping track of XLingPaper’s indexing capability, including page numbers.
Interlinears Handle lines in an interlinear text or example, including dealing with an ISO 639-3

code in an interlinear example.
Block quotes Handle special cases needed for block quotes.
Table headers Attempt to calculate a column’s width via its contents.

PDF output via X ELATEX, XLingPaper produces a
TEXML-like XML 昀椀le. This is then converted into a
LATEX-formatted document via a set of XSLT trans-
forms and processed via X ELATEX to produce the
PDF. Figure 3 contains a diagram of the data han-
dling process.

3.4 TEXML
TEXML was discovered in the process of planning
for the transition of the default PDF renderer from
RenderX’s XEP to X ELATEX. Initial analysis con-
ducted in 2009 understood TEXML to have two infe-
licities for use-cases required in linguistic publishing
with XLingPaper:

1. TEXML has Python as a dependency and the
XLingPaper developer did not want to require
XLingPaper users to install a version of Python
speci昀椀cally for TEXML. The use of Python
raised two concerning issues. First, potential
con昀氀icts with other installed versions of Python;
and second, an increase in the required download
size due to the inclusion of Python.

2. XLingPaper users require a high degree of con-
trol of white space. The 昀椀ne grain control of
whitespace was not immediately clear how to
accomplish with TEXML.

3.5 Control characters
Even with the use of Unicode in the text of docu-
ments, there are some features of typesetting with
TEX-based implementations which require the use
of control characters. Additionally, XML also has
control characters. In TEX these include [,], <,
and >. When transforming data between XML and
TEX, TEX control characters and commands need to
be escaped to ensure proper data processing. This
has been implemented via Java since Java was al-
ready present in the dependency stack due to the
XMLmind XML Editor requiring it. Additionally,

Figure 4: XLingPaper combines style and content
information contained in its custom XML and then
exports it into three di昀昀erent formats for further
processing.

some small methods have been written in Java to
provide additional access to features via the graphi-
cal user interface. Among other things, these include
adding rows and/or columns to tables, automatically
converting glosses to abbreviation references, and
importing references from various XML formats.

3.6 Ling-TEX
One might ask, “Why not add more linguistic-related
TEX packages to the available stack, or use those
instead of creating custom code?” The answer has
two simple parts: First, in 2009 the linguistic ca-
pabilities of TEX packages were di昀昀erent than they
are today. Second, XLingPaper is more than a TEX
document producer. For example, some authors [2],
[3] use XLingPaper to manage multilingual content
on websites.

Besides TEX, XLingPaper also produces XSL-FO
and XHTML/CSS outputs. When new features are

XLingPaper’s use of TEX technologies

188 TUGboat, Volume 43 (2022), No. 2

considered for inclusion, they must be considered for
all output formats.

After excluding TEXML as a viable option, and
still seeking to create X ELATEX-based output, a so-
lution was needed to determine which set of mini-
mal TEX packages would be needed. The Ling-TEX
group,30 which also ran the Ling-TEX mailing list
from 1995–2018, was discovered.31 Ling-TEX seemed
to be the locus of activity in linguistic typesetting via
TEX even though other web pages discussing linguis-
tics and TEX also existed, e.g., Essex32 and UPenn.33

Today, now that the mailing list is no longer in oper-
ation, many of the mailing list participants can be
found interacting on the TEX stackexchange.34

State-of-the-art for TEX-based linguistic pub-
lishing in 2009, as recommended by the Ling-TEX
website, suggested using covington and ling-mac —
the list of macros discussed by Thiele in [50]. These
macros were used to solve similar use cases, among
others, to those already implemented by XLingPaper.
Their approaches and outputs, however, had more
limitations than what XLingPaper already o昀昀ered.
XLingPaper had the following capabilities for type-
setting interlinears:

• no limits on the number of lines within an inter-
linear grouping;

• no limits on the number of free translation and
literal translation lines;

• the ability to include a source reference within
the interlinear; and especially

• the ability to tag interlinear items with an ISO
639-3 code for the language used in the interlin-
ear.

At the time the best solution given the state of the
TEX packages available was custom TEX scripts, al-
though now similar features may be possible via
other packages. For example in 2019 Pellard [39]
discussed the limiting approaches in various TEX
packages related to interlinear glosses and his so-
lution typgloss.35 XLingPaper’s examples can be
seen in Figures 6–7 which contain output illustrating
some of the special capabilities XLingPaper o昀昀ers.

30 web.archive.org/web/20150702123633/http:
//heim.ifi.uio.no/~dag/ling-tex

31 ling-tex.ifi.uio.narkive.com
32 essex.ac.uk/linguistics/external/clmt/latex4ling
33 ling.upenn.edu/advice/latex.html
34 tex.stackexchange.com
35 github.com/tpellard/typgloss

4 Typesetting tasks XLingPaper users often
encounter

Linguistic documents have several formatting needs
that other kinds of documents do not. This section
discusses some of them.

4.1 Numbered example layouts
Linguistic documents usually have many numbered
examples. The prose often refers to examples which
are typographically nearby or to previous examples.
XLingPaper automatically keeps track of the example
identi昀椀ers. This is especially important in linguis-
tic publishing because authors, and publishing style
sheets, often make use of di昀昀erent kinds of exam-
ples, including sub-examples, and table-like design
layouts which can contain lists of words along with
their glosses (as shown in Figure 5) and interlinear
clauses (as shown in Figure 6). Some cases even have
headings in portions of the example.

Figure 5: List of words as seen in [42]

4.2 Interlinear glossed texts
There is a long tradition within linguistics and lan-
guage study of presenting phrases containing di昀昀er-
ent languages (but the same content) as interlinear
texts. Di Biase-Dyson et al. [15] trace the practice
back as far as the 1652 publication of Kircher [25].
More recent publications display signi昀椀cant variation
in page layout related to interlinear glossed texts
and interlinear examples. Variation exists in three
dimensions:

• content elements,
• data-structure of the encoded elements, and
• page layout (visual display of the elements).

A full demonstration of the variation in content and
its positioning across common style sheets in linguis-
tics is beyond the scope of this paper. Signi昀椀cant
variations include the presence or absence of the
following elements:

• index elements such as example numbers or sub-
numbers (as shown in Figure 6),

H. Andrew Black, Hugh J. Paterson III

https://web.archive.org/web/20150702123633/http://heim.ifi.uio.no/~dag/ling-tex
https://web.archive.org/web/20150702123633/http://heim.ifi.uio.no/~dag/ling-tex
https://ling-tex.ifi.uio.narkive.com
https://essex.ac.uk/linguistics/external/clmt/latex4ling
https://ling.upenn.edu/advice/latex.html
https://tex.stackexchange.com
https://github.com/tpellard/typgloss

TUGboat, Volume 43 (2022), No. 2 189

Figure 6: Interlinear example from [32]. Note the example numbers on the left
followed by example groups (a) and (b). Each interlinear then also has a language
indicator in square brackets. Customization allows for as many rows per group as is
required. Finally, on the right the hyperlinked citation to the reference for the source
text is indicated.

• headings to the interlinear,
• speaker indicator,
• language indicator,
• citation indicator pointing to the larger text

from which the example element is taken (see
Figure 6 for an example), and

• limits on the number of rows in the original,
gloss, translation, and free translation tiers.

Existing TEX packages approach these content re-
quirements in di昀昀erent ways. As far as we can tell,
the following commonly used packages for interlinear
glossing all have limitations to some degree. The
expex package does not o昀昀er a content solution for
the language code or the citation. The package
langsci-gb4e,36 a fork of gb4e, supports the Leipzig
Glossing Rules,37 a commonly adopted set of linguis-
tic typesetting conventions. While the Leipzig Gloss-
ing Rules do call for the language name or identi昀椀er
to appear on the right hand side of the interlinear
glossed text, it does not have a place for the citation.
The package linguex does not have either language
or citation content places built in. With these con-
siderations, it was clear in 2009 that XLingPaper
o昀昀ered more to authors than any single package in
the TEX ecosystem. In order to implement existing
XLingPaper features, it meant creating custom TEX
scripts to implement interlinear texts.

36 ctan.org/pkg/langsci
37 eva.mpg.de/lingua/pdf/Glossing-Rules.pdf

There are also some reasons related to data struc-
ture for considering XLingPaper over alternatives.
Interlinear glossed texts are often stored in one of a
few formats: ELAN 昀椀les,38 FLEx Text 昀椀les,39 Stan-
dard Format 昀椀les,40 LATEX 昀椀les,41 custom project-
speci昀椀c XML 昀椀les, or relational databases such as
MySQL, PostgreSQL, or FileMakerPro. Moving con-
tent from analysis and markup tools to typesetting
tools is an ever-present need for linguists. Several
tools such as ELAN and FLEx have well-established
work昀氀ows for data transfer [45]. FLEx is often con-
sidered the tool of choice for many 昀椀eld linguists, lan-
guage documenters, and lexicographers. For many
linguists entering the 昀椀eld, it is the tool of choice
over older tools like Toolbox (which uses Standard
Format 昀椀les) due to built-in collaborative features
and grammar parsers [4]. Interlinear text in FLEx
can be exported via XML and the data used within
XLingPaper documents. This presents FLEx users
the opportunity to typeset their texts rather easily.
Enabled by XML’s modular document referencing
features, XLingPaper documents can reference com-
ponents. Using the XML document referencing strat-
egy with XML-encoded FLEx texts allows authors to
re昀氀ow typesetting outputs easily if they make content
changes in their FLEx environment.

38 archive.mpi.nl/tla/elan
39 software.sil.org/fieldworks
40 software.sil.org/toolbox
41 For examples see [46] and [49].

XLingPaper’s use of TEX technologies

https://ctan.org/pkg/langsci
https://eva.mpg.de/lingua/pdf/Glossing-Rules.pdf
https://archive.mpi.nl/tla/elan
https://software.sil.org/fieldworks
https://software.sil.org/toolbox

190 TUGboat, Volume 43 (2022), No. 2

XLingPaper does not have a direct ELAN import
process. However, we have had reports of linguists
using the FLEx-XLingPaper publication pathway to
typeset ELAN texts in LATEX documents. One user
reports capturing the X ELATEX document prior to
rendering and then copying the relevant TEX sections
to their primary document and adding any required
packages required by XLingPaper to the header of
their primary TEX document.

Finally, there is the matter of page layout. The
main types of variation in page layout we have seen
include the grouping of lines into sets or subsets (see
Figure 6 for example), the labeling of sets and subsets,
wrapping of interlinear glosses across lines (recall
that these may themselves include three or more
lines), and the alignment of the various elements
of content within the interlinear glosses. We have
seen word and morpheme aligned interlinears. XLing-
Paper automatically wraps interlinears which makes
the author’s job much easier. Figure 7 demonstrates
the wrapping of interlinear glossed texts. It does
so by formatting each aligned word in an hbox and
then having X ELATEX put them together in a hanging
indent paragraph. This is based on the work of Kew
& McConnel 1990 [24]. Similar examples can be seen
in [34] and [35], among others.

4.3 Gloss abbreviations
Linguists use two types of abbreviations. First, they
might use abbreviations for names, titles, or com-
monly used words. This is much like standard pub-
lishing. The second way that linguists use abbre-
viations is to indicate the grammatical meaning of
pieces of words (morphemes). This second usage is
often referred to as ‘glossing’ with the abbreviations
referred to as ‘glosses’. One common set of glosses
is the Leipzig Glosses. Leipzig Glosses, however, are
not universally used for several reasons, including:

• some authors have established their own tradi-
tion within their works which they started prior
to the release of the Leipzig Glosses,42

• the typeset examples are quoted from a database
which does not use Leipzig Glosses,

• they are not comprehensive, and
• they are not theoretically su昀케cient for some

linguists.
XLingPaper supports both types. XLingPaper ap-
proaches this by providing built-in access to Leipzig
Glosses, but also allowing the author to 昀椀ne-tune
a set of abbreviations and their de昀椀nitions. When

42 For examples of the variation and scope of coverage
consider the works of Greville Corbett, William Croft, Denis
Creissels, and Martin Haspelmath.

producing the output, XLingPaper creates hyperlinks
between the abbreviation and its de昀椀nition. This
allows readers to quickly 昀椀nd the meaning of glosses
and for the automatic generation of a table or list of
abbreviations used.

4.4 Bibliographies
For better or worse XLingPaper has rolled its own
bibliography solution. Import options are provided
for MODS43 and EndNote XML formats. This enables
users to import from tools like EndNote,44 Zotero,45

and JabRef.46 XLingPaper uses custom TEX scripts
to output TEX code for 昀椀nal rendering. It does not
rely on BibTEX or BibLATEX. Figure 8 shows an
example of a bibliography created with XLingPaper.

5 Outputs LATEX allows that others do not
While XLingPaper has a large array of linguistically-
oriented formatting capabilities across all output for-
mats, there are some that only the X ELATEX output
can produce. This is, of course, due to the formatting
power of TEX and X ELATEX.

5.1 Automatically wrapping interlinears
One of the most popular features of XLingPaper
is its ability to automatically wrap long interlinear
examples and lines in interlinear texts. As seen in
Figure 7, wrapping occurs for the glossed text tiers
and free translation tiers.

For the RenderX output, the interlinear exam-
ples do not wrap; they run o昀昀 to the right, which can
mean completely o昀昀 the page. To 昀椀x this, the XLing-
Paper user must break the interlinear into smaller
units by hand.47

5.2 Font rendering
X ELATEX renders fonts extremely well. We show three
cases where XSL-FO (via RenderX) and/or XHTML
outputs have text rendering issues while X ELATEX
does not.

First, when a line of text contains material ren-
dered in di昀昀erent fonts on the same line, the two
fonts may not line up evenly in the vertical direction.
See Figure 9. This mismatch is due to the two fonts
having di昀昀erent ascender and descender values. In
order to overcome this when using XSL-FO, one has
to add custom commands to deal with the font that
di昀昀ers from the primary font.

43 loc.gov/standards/mods/
44 endnote.com
45 zotero.org
46 jabref.org
47 We note that current CSS technologies enable wrapping

for XHTML output, but XLingPaper does not employ it at
the moment.

H. Andrew Black, Hugh J. Paterson III

https://loc.gov/standards/mods/
https://endnote.com
https://zotero.org
https://jabref.org

TUGboat, Volume 43 (2022), No. 2 191

Figure 7: Wrapped interlinear text as seen in [57].

Figure 8: An XLingPaper bibliography demonstrating
mixed Latin and Chinese scripts.

Second, the RenderX way of producing PDF
cannot handle stacked diacritics, but the X ELATEX
way does it very well. See Figure 10.

Third, X ELATEX can even handle special features
requiring Graphite48 processing. Graphite is a multi-
part technology which includes a rendering engine
and a rule-based grammar which compiles against
a TrueType font and e昀昀ectively extends the font
allowing for additional glyph selection and context
shaping [13, 23, 47]. Figure 11 illustrates the spe-
cial font handling needed for the Awami Nastaliq
font. Of the four output renderings, the only one
which renders correctly is the X ELATEX implementing
Graphite.49

48 graphite.sil.org
49 One must use XLingPaper’s X ELATEX package

from TEX Live 2020 (software.sil.org/xlingpaper/
xelatex-package-from-tex-live-2020/) for this particular

5.3 Hyphenation for non-English languages
Since we use the polyglossia package, one can write
an XLingPaper document in any of the sixty-one
non-English languages listed in the polyglossia
documentation and indicate the language code for
this language in a document-wide attribute. XLing-
Paper passes this information to X ELATEX which will
hyphenate according to that language’s hyphenation
rules.

5.4 Author contact information
XLingPaper allows one to de昀椀ne sets of contact in-
formation for authors containing things like name,
address, a昀케liation, email address, phone number,
etc. With the X ELATEX output, these author con-
tact information boxes will wrap if there are more of
them than will 昀椀t on one line on the page. The lines
containing these boxes will also be justi昀椀ed. The
RenderX output neither automatically wraps these
boxes nor justi昀椀es them.

5.5 Vertical 昀椀ll
For title page material, only the X ELATEX output
allows using vertical 昀椀ll between items on a particular
page of output. This can be useful for automatically
inserting whatever vertical space is needed between,
say, the last author’s name and some publishing
information that needs to appear at the bottom of
the page. RenderX requires using overt, 昀椀xed vertical
spacing values. For the X ELATEX output, then, one
does not need to manually adjust this vertical space

font. The Graphite included in the 2010 version of X ELATEX
is not capable of rendering Awami Nastaliq well.

XLingPaper’s use of TEX technologies

https://graphite.sil.org
https://software.sil.org/xlingpaper/xelatex-package-from-tex-live-2020/
https://software.sil.org/xlingpaper/xelatex-package-from-tex-live-2020/

192 TUGboat, Volume 43 (2022), No. 2

Figure 9: Ascender/descender font di昀昀erences: The RenderX output is on the left;
XHTML output is in the middle; the X ELATEX output is on the right. Fonts used are
Times New Roman 12pt and Charis SIL 14pt.

Figure 10: Stacked diacritics on the third word from the left: The RenderX output is
on the left; the X ELATEX output is on the right.

RenderX:

XHTML:

X ELATEX:
(not using Graphite)

X ELATEX:
(using Graphite)

Figure 11: Awami Nastaliq rendering. Only the X ELATEX output using Graphite is
correct. Since Graphite requires a rendering engine and only the Firefox browser has
included it, support for Graphite rendering in XHTML is limited to Firefox.

The example text is in the Saraiki language (spoken in Pakistan) and is a section
from the Universal Declaration of Human Rights. We are grateful to Sharon Correll for
this example.

H. Andrew Black, Hugh J. Paterson III

TUGboat, Volume 43 (2022), No. 2 193

for each document. One must do so for the RenderX
output, however. This is a non-issue for the XHTML
output because there are no page breaks as there are
in PDF output.

5.6 Line numbering
When submitting an article for review, some publish-
ers want the PDF to have continuous line numbers
throughout the document. Only the X ELATEX output
does this.

6 Features other outputs have that the
LATEX output does not

X ELATEX does not allow for custom table cell padding
and spacing. Having said that, the developer cannot
remember any XLingPaper user ever asking for a way
to do this for the X ELATEX output. It just looks 昀椀ne.

Setting the background color is not available for
section titles.

Section 11.17.1.1 “Known limitations of using
X ELATEX” in the XLingPaper user documentation
lists other known problems [10].50

7 Conclusion
While the XLingPaper approach to composing docu-
ments via DTD-controlled user interface limitations
has great value in and of itself, the fact that it can
produce great looking output via X ELATEX makes the
learning curve rewarding. We feel that being able to
produce PDF via X ELATEX has made XLingPaper a
fantastic tool for linguists.

Additionally, XLingPaper serves as a model for
other developers who seek a modular approach to
creating custom publishing solutions. That is, one
does not need to deploy the whole TEX Live system
to create great looking outputs. Speci昀椀c packages
can be combined and redistributed to 昀椀t market
needs.

A Hyphenation supported languages
Language Two letter Three letter
name code code
Albanian sq sqi
Amharic am amh
Arabic ar ara
Asturian ast
Basque eu eus
Bengali bn ben
Bulgarian bg bul
Catalan ca cat
Coptic cop
Croatian hr hrv
50 software.sil.org/downloads/r/xlingpaper/

resources/documentation/xxe7/UserDocXMLmind.htm#
sXeTeXLimitations

Czech cs ces
Danish da dan
Dutch nl nld
English en eng
Esperanto eo epo
Estonian et est
Farsi fa fas
Finnish 昀椀 昀椀n
French fr fra
Galician gl glg
German de deu
Greek el ell
Hebrew he heb
Hindi hi hin
Hungarian hu hun
Icelandic is isl
Indonesian id ind
Interlingua ia ina
Irish ga gle
Italian it ita
Lao lo lao
Latin la lat
Latvian lv lav
Lithuanian lt lit
Lower Sorbian dsb
Malay ms msa
Malayalam ml mal
Marathi mr mar
Nynorsk nn nno
Occitan oc oci
Polish pl pol
Portuges pt por
Romanian ro ron
Russian ru rus
Sanskrit sa san
Scottish gd gla
Serbian sr srp
Slovak sk slk
Slovenian sl slv
Spanish es spa
Swedish sv swe
Syriac syr
Tamil ta tam
Telugu te tel
Thai th tha
Turkish tr tur
Turkmen tk tuk
Ukrainian uk ukr
Urdu ur urd
Upper Sorbian hsb
Vietnamese vi vie
Welsh cy cym

XLingPaper’s use of TEX technologies

https://software.sil.org/downloads/r/xlingpaper/resources/documentation/xxe7/UserDocXMLmind.htm#sXeTeXLimitations
https://software.sil.org/downloads/r/xlingpaper/resources/documentation/xxe7/UserDocXMLmind.htm#sXeTeXLimitations
https://software.sil.org/downloads/r/xlingpaper/resources/documentation/xxe7/UserDocXMLmind.htm#sXeTeXLimitations

194 TUGboat, Volume 43 (2022), No. 2

References
[1] Bartholomew, Doris A, and Louise C

Schoenhals. 2019. Bilingual Dictionaries for
Indigenous Languages. Edited by Thomas
L Willett. 2nd edn. Tlalpan, Ciudad de
México, México: Instituto Lingüístico
de Verano, A.C. [SIL International in Mexico].
sil.org/resources/archives/80401.

[2] Beadle, Jennie, and Matthew Lee.
2020a. Paratext 9 Manual — in English.
SIL International. lingtran.net.

[3] Beadle, Jennie, and Matthew Lee.
2020b. Paratext 9 Manual — in French.
SIL International. outilingua.net.

[4] Beier, Christine, and Lev Michael. 2022.
Managing Lexicography Data: A Practical,
Principled Approach Using FLEx (FieldWorks
Language Explorer). In The Open Handbook
of Linguistic Data Management, edited by
Andrea L. Berez-Kroeker, Bradley McDonnell,
Eve Koller, and Lauren B. Collister, 301–14.
Open Handbooks In Linguistics. Cambridge,
Massachusetts: The MIT Press.
doi.org/10.7551/mitpress/12200.003.
0029.

[5] Bird, Steven, and Gary Simons. 2002. Seven
Dimensions of Portability for Language
Documentation and Description. In ISCA
SALTMIL SIG: “Speech and Language
Technology for Minority Languages”, 23–30.
Las Palmas, Canary Islands, Spain: ELRA.
lrec-conf.org/proceedings/lrec2002/pdf/
ws15.pdf#page=29.

[6] Bird, Steven, and Gary Simons. 2003. Seven
Dimensions of Portability for Language
Documentation and Description. Language 79
(3):557–82. jstor.org/stable/4489465.

[7] Black, Cheryl A., and H. Andrew Black.
2012. Grammars for the People, by the People,
Made Easier Using PAWS and XLingPaper.
In Electronic Grammaticography, edited by
Sebastian Nordho昀昀, 103–28. LD&C Special
Publication 4. Honolulu, Hawai‘i: University of
Hawai‘i Press. hdl.handle.net/10125/4532.

[8] Black, H. Andrew. 2009. Writing Linguistic
Papers in the Third Wave. SIL Forum for
Language Fieldwork 2009 (004): 11 pages. sil.
org/resources/publications/entry/7790.

[9] Black, H. Andrew. 2017. Why Learn
to Use XLingPaper. Dallas, Texas: SIL
International. software.sil.org/downloads/
r/xlingpaper/resources/documentation/
WhyUseXLingPaper.pdf.

[10] Black, H. Andrew. 2020. XLingPaper User
Documentation [Software Documentation].
Dallas, Texas: SIL International.
software.sil.org/downloads/r/
xlingpaper/resources/documentation/
xxe7/UserDocXMLmind.htm.

[11] Brownie, John. 2013. Adverbs in the
Mussau-Emira Verb Phrase. Language
& Linguistics in Melanesia 31 (1):1–11.
langlxmelanesia.com/issues.

[12] Buck, Marjorie J. 2018. Gramática del
amuzgo Xochistlahuaca, Guerrero. (Serie
de gramáticas de lenguas indígenas
de México №16.) Tlalpan, Ciudad de
México, México: Instituto Lingüístico
de Verano, A.C. [SIL International in Mexico].
sil.org/resources/archives/75518.

[13] Correll, Sharon. 2000. Graphite: An Extensible
Rendering Engine for Complex Writing
Systems. Paper presented at the 17th
International Unicode Conference, San Jose,
California. rabbits.continuation.org/w/
images/7/73/Graphite_paper.pdf..

[14] Daniel, Marco, and Elke Schubert. 2013.
The mdframed Package: Auto-split Frame
environment version 1.9b.

[15] Di Biase-Dyson, Camilla, Frank Kammerzell,
and Daniel A. Werning. 2009. Glossing Ancient
Egyptian. Suggestions for Adapting the Leipzig
Glossing Rules. Lingua Aegyptia. Journal
of Egyptian Language Studies 17: 343–66.
wwwuser.gwdg.de/~lingaeg/lingaeg17.htm.

[16] Dimitriadis, Alexis. 2016. TeX/LaTeX
Information. Web page. ling.upenn.edu/
advice/latex.html.

[17] Donnelly, Kevin. 2013. Representing Linguistic
Pitch in X ELATEX. TUGboat 34 (2): 223–27.
tug.org/TUGboat/tb34-2/tb107donnelly.
pdf.

[18] Ebarb, Kristopher J. 2014. Tone and
variation in Idakho and other Luhya varieties.
University of Indiana Ph.D. dissertation.
pqdtopen.proquest.com/doc/1625743679.
html?FMT=ABS.

[19] Frampton, John. 2006. Pst-Asr: Tex
Macros for Typesetting Autosegmental
Representations. Version: 1.1. CTAN.
ctan.org/tex-archive/graphics/pstricks/
contrib/pst-asr/pst-asr-doc.pdf.

[20] Frampton, John. 2012. ExPex for Linguists:
Example Formatting, Glosses, and Reference.
Version: 4.1. mathserver.neu.edu/~ling/
tex/expex/base/doc/expex-doc.pdf.

H. Andrew Black, Hugh J. Paterson III

https://sil.org/resources/archives/80401
https://lingtran.net
https://outilingua.net
https://doi.org/10.7551/mitpress/12200.003.0029
https://doi.org/10.7551/mitpress/12200.003.0029
http://lrec-conf.org/proceedings/lrec2002/pdf/ws15.pdf#page=29
http://lrec-conf.org/proceedings/lrec2002/pdf/ws15.pdf#page=29
https://jstor.org/stable/4489465
http://hdl.handle.net/10125/4532
https://sil.org/resources/publications/entry/7790
https://sil.org/resources/publications/entry/7790
https://software.sil.org/downloads/r/xlingpaper/resources/documentation/WhyUseXLingPaper.pdf
https://software.sil.org/downloads/r/xlingpaper/resources/documentation/WhyUseXLingPaper.pdf
https://software.sil.org/downloads/r/xlingpaper/resources/documentation/WhyUseXLingPaper.pdf
https://software.sil.org/downloads/r/xlingpaper/resources/documentation/xxe7/UserDocXMLmind.htm
https://software.sil.org/downloads/r/xlingpaper/resources/documentation/xxe7/UserDocXMLmind.htm
https://software.sil.org/downloads/r/xlingpaper/resources/documentation/xxe7/UserDocXMLmind.htm
https://langlxmelanesia.com/issues
https://sil.org/resources/archives/75518
http://rabbits.continuation.org/w/images/7/73/Graphite_paper.pdf.
http://rabbits.continuation.org/w/images/7/73/Graphite_paper.pdf.
https://wwwuser.gwdg.de/~lingaeg/lingaeg17.htm
https://ling.upenn.edu/advice/latex.html
https://ling.upenn.edu/advice/latex.html
http://tug.org/TUGboat/tb34-2/tb107donnelly.pdf
http://tug.org/TUGboat/tb34-2/tb107donnelly.pdf
https://pqdtopen.proquest.com/doc/1625743679.html?FMT=ABS
https://pqdtopen.proquest.com/doc/1625743679.html?FMT=ABS
https://ctan.org/tex-archive/graphics/pstricks/contrib/pst-asr/pst-asr-doc.pdf
https://ctan.org/tex-archive/graphics/pstricks/contrib/pst-asr/pst-asr-doc.pdf
http://mathserver.neu.edu/~ling/tex/expex/base/doc/expex-doc.pdf
http://mathserver.neu.edu/~ling/tex/expex/base/doc/expex-doc.pdf

TUGboat, Volume 43 (2022), No. 2 195

[21] Freitag, Constantin and Antonio Machicao
y Priemer. 2019. LATEX-Einführung
Für Linguisten. Berlin, Germany:
Humboldt-Universität zu Berlin.
doi.org/10.13140/RG.2.2.29299.27682.

[22] Holton, Gary. 2021. Writing You
Dissertation with LATEX. Typescript.
Hawai‘i. Github.com. gmholton.github.io/
files/DissertationWriting.pdf.

[23] Kew, Jonathan. 2007. X ETEX Live. TUGboat
29 (1): 146–50.
tug.org/TUGboat/tb29-1/tb91kew.pdf.

[24] Kew, Jonathan and Stephen McConnel. 1990.
Formatting Interlinear Text. Occasional
Publications in Academic Computing, Number
17. Dallas, Texas: Summer Institute of
Linguistics.

[25] Kircher, Athanasius. 1652. Œdipus Ægyptiacus,
hoc est Vniuersalis Hieroglyphicæ Veterum
Doctrinæ temporum iniuria abolitæ Instauratio.
Opus ex omni Orientalium doctrina &
sapientia conditum, nec non viginti diuersarum
linguarum authoritate stabilitum, Romæ:
Ex Typographia Vitalis Mascardi.

[26] Knuth, Donald Ervin. 1984. The TEXbook.
Computers & Typesetting, vol. A. Reading,
Massachusetts: American Mathematical
Society; Addison-Wesley.

[27] Knuth, Donald Ervin. 1986. TEX: The
Program. Computers & Typesetting, vol. B.
Reading, Massachusetts: Addison-Wesley.

[28] Lamicela, Andrew Charles. 2020.
Distinguishing Passive from MP2-marked
Middle in Koine Greek. University of North
Dakota M.A. thesis.
commons.und.edu/theses/3277.

[29] Lehmann, Christian. 2004. Interlinear
morphemic glossing. In Morphologie: Ein
internationales Handbuch zur Flexion und
Wortbildung / Morphology: an international
handbook on in昀氀ection and word-formation,
edited by Geert E Booij, Christian Lehmann,
Joachim Mugdan, and Stavros Skopeteas,
2:1834–57. Handbücher zur Sprach- und
Kommunikationswissenschaft / Handbooks
of Linguistics and communication science 17.
Berlin, New York: Walter de Gruyter. doi.
org/10.1515/9783110172782.2.20.1834.

[30] Liter, Adam. 2017. LATEX Workshop (for
Linguists). adamliter.org/content/LaTeX/
latex-workshop-for-linguists.pdf.

[31] Lovell, Douglas. 1999. TEXML: Typesetting
XML with TEX. TUGboat 20 (3): 176–183.
tug.org/TUGboat/tb20-3/tb64love.pdf.

[32] Marlett, Stephen A. (compiler). 2012. La
Frase Nominal. In Stephen A. Marlett
(ed.) Los Archivos Lingüísticos Me’phaa.
Instituto Lingüístico de Verano, A.C. [SIL
International in Mexico]. mexico.sil.org/
publications/i-wpindex/work_papers_-_
mephaa_grammar_files.

[33] Marlett, Stephen A. 2019. Phonology From the
Ground Up: The Basics. Dallas, Texas: SIL
International.
sil.org/resources/archives/79207.

[34] Marlett, Stephen A. 2019. Presentation
of three short texts in Isthmus Zapotec.
SIL-Mexico Electronic Working Papers #25.
Ciudad de México: Instituto Lingüístico
de Verano, A.C. [SIL International in Mexico].
sil.org/resources/archives/80964.

[35] Neri Méndez, Emilia and Stephen A. Marlett.
2011 (Nov). Presentación Analítica del Texto
“Flor de Calabaza”. In Stephen A. Marlett
(ed.) Los Archivos Lingüísticos Me’phaa
(versión preliminar). Instituto Lingüístico
de Verano, A.C. [SIL International in Mexico].
mexico.sil.org/publications/i-wpindex/
work_papers_-_mephaa_grammar_files.

[36] Nordho昀昀, Sebastian, and Stefan Müller.
2020. Language Science Press Guidelines.
Berlin, Germany: Language Science
Press. langsci.github.io/guidelines/
latexguidelines/LangSci-guidelines.pdf.

[37] Paterson III, Hugh J. 2021. Language
Archive Records: Interoperability of
Referencing Practices and Metadata Models.
University of North Dakota M.A. thesis.
commons.und.edu/theses/3937.

[38] Paterson III, Hugh J. 2021. On Rights
Management in Anthropological and Linguistic
Sound Collections. ARSC Journal 52 (3):
547–563. arsc-audio.org/journal.html.

[39] Pellard, Thomas. 2019. Automatic formatting
of interlinear glosses with LaTeX. Cipanglossia
cipanglo.hypotheses.org/1221.

[40] Peter, Steve. 2004. TEX and Linguistics.
TUGboat 25 (1): 58–62.
tug.org/TUGboat/tb25-1/peter.pdf.

[41] Machicao y Priemer, Antonio, and Constantin
Freitag. 2019. LATEX-Einführung für
Linguisten. Presentation at the MGK
Workshop — SFB 1412, Berlin. linguistik.
hu-berlin.de/de/staff/amyp/latex20sfb/
07-l4l-math2-trees-handout.pdf.

XLingPaper’s use of TEX technologies

https://doi.org/10.13140/RG.2.2.29299.27682
https://gmholton.github.io/files/DissertationWriting.pdf
https://gmholton.github.io/files/DissertationWriting.pdf
https://tug.org/TUGboat/tb29-1/tb91kew.pdf
https://commons.und.edu/theses/3277
https://doi.org/10.1515/9783110172782.2.20.1834
https://doi.org/10.1515/9783110172782.2.20.1834
https://adamliter.org/content/LaTeX/latex-workshop-for-linguists.pdf
https://adamliter.org/content/LaTeX/latex-workshop-for-linguists.pdf
https://tug.org/TUGboat/tb20-3/tb64love.pdf
https://mexico.sil.org/publications/i-wpindex/work_papers_-_mephaa_grammar_files
https://mexico.sil.org/publications/i-wpindex/work_papers_-_mephaa_grammar_files
https://mexico.sil.org/publications/i-wpindex/work_papers_-_mephaa_grammar_files
https://sil.org/resources/archives/79207
https://sil.org/resources/archives/80964
https://mexico.sil.org/publications/i-wpindex/work_papers_-_mephaa_grammar_files
https://mexico.sil.org/publications/i-wpindex/work_papers_-_mephaa_grammar_files
https://langsci.github.io/guidelines/latexguidelines/LangSci-guidelines.pdf
https://langsci.github.io/guidelines/latexguidelines/LangSci-guidelines.pdf
https://commons.und.edu/theses/3937
https://arsc-audio.org/journal.html
https://cipanglo.hypotheses.org/1221
https://tug.org/TUGboat/tb25-1/peter.pdf
https://linguistik.hu-berlin.de/de/staff/amyp/latex20sfb/07-l4l-math2-trees-handout.pdf
https://linguistik.hu-berlin.de/de/staff/amyp/latex20sfb/07-l4l-math2-trees-handout.pdf
https://linguistik.hu-berlin.de/de/staff/amyp/latex20sfb/07-l4l-math2-trees-handout.pdf

196 TUGboat, Volume 43 (2022), No. 2

[42] Rasmussen, Kent. 2018. A Comparative Tone
Analysis of Several Bantu D30 Languages (DR
Congo). University of Texas Arlington Ph.D.
dissertation. hdl.handle.net/10106/27483.

[43] Rastorgueva, V. S., A. A. Kerimova, A. K.
Mamedzade, L. A. Pireiko, and D. I. Edel’man.
2012. The Gilaki Language. Edited by Ronald
M. Lockwood. Acta Universitatis Upsaliensis;
Studia Iranica Upsaliensia 19. Uppsala,
Sweden: Acta Universitatis Upsaliensis.
urn.kb.se/resolve?urn=urn:nbn:se:uu:
diva-182789.

[44] Rei, Fukui. 1996. TIPA: A System for
Processing Phonetic Symbols in LATEX.
TUGboat 17 (2): 102–14. tug.org/TUGboat/
tb17-2/tb51rei.pdf.

[45] Sal昀昀ner, Sophie, and Tim Gaved. 2014.
Working with ELAN and FLEx Together: An
ELAN-FLEx-ELAN Teaching Set. Electronic
Manuscript. SOAS, London, England.
web.archive.org/web/20210613121544/
https://www.soas.ac.uk/elar/helpsheets/
file122785.pdf.

[46] Schenner, Mathias, and Sebastian Nordho昀昀.
2016. Extracting Interlinear Glossed Text
from LATEX Documents. In Proceedings
of the Tenth International Conference on
Language Resources and Evaluation (LREC
2016), edited by Nicoletta Calzolari, Khalid
Choukri, Thierry Declerck, Sara Goggi, Marko
Grobelnik, Bente Maegaard, Joseph Mariani,
et al., 4044–48. Portorož, Slovenia: European
Language Resources Association (ELRA).
aclweb.org/anthology/L16-1638.pdf.

[47] SIL International. 2012. Comparison of
OpenType and Graphite shaping speeds in
a Nastaliq context. (accessed: 27 May 2022)
scripts.sil.org/cms/scripts/page.php?
site_id=projects&item_id=graphite_
otcompare.

[48] Smith, Zac, Todd Snider, and Mia Wiegand.
2016. LATEX and Linguistics — How to Make
Your Research Pretty. Presentation at the
Cornell Linguistics Circle, Cornell, New York.
conf.ling.cornell.edu/miawiegand/Latex_
Slides.pdf.

[49] So Miyagawa, and Vincent W.J. van
Gerven Oei. 2021. Building Web Corpus
of Old Nubian with Interlinear Glossing as
Digital Cultural Heritage for Modern-Day
Nubians. In The Proceedings of the 11th
Conference of Japanese Association for
Digital Humanities, vol. 2021. 144–147. Tokyo:
Historiographical Institute, The University of
Tokyo. www.hi.u-tokyo.ac.jp/JADH/2021/
Proceedings_JADH2021_rev0905.pdf.

[50] Thiele, Christina. 1995. TEX and Linguistics.
TUGboat 16 (1): 42–44.
tug.org/TUGboat/tb16-1/tb46ling.pdf.

[51] Thiele, Christina. 2007. Christina Thiele
Interview by Dave Walden for the TEX Users
Group. Transcript.
tug.org/interviews/thiele.html.

[52] Unicode Consortium, ed. 1991. The Unicode
Standard: Worldwide Character Encoding.
Version 1.0. Reading, Massachusetts:
Addison-Wesley.
unicode.org/versions/Unicode1.0.0.

[53] Ward, Monica. 2002. Reusable XML
Technologies and the Development of Language
Learning Materials. ReCALL 14 (2): 285–94.
doi.org/10.1017/S0958344002000629.

[54] Wilson, Peter. 2007. The Memoir Class.
TUGboat 28 (2): 243–46.
tug.org/TUGboat/tb28-2/tb89wilson.pdf.

[55] Wilson, Peter. 2021. The Memoir Class for
Con昀椀gurable Typesetting: User Guide. version
3.70. Normandy Park, WA: The Herries Press.
CTAN. ctan.org/tex-archive/macros/
latex/contrib/memoir/memman.pdf.

[56] Wood, Joyce Kathleen. 2012. Valence-
Increasing Strategies in Urim Syntax.
Graduate Institute of Applied Linguistics M.A.
thesis. diu.edu/documents/theses/Wood_
Joyce-thesis.pdf.

[57] Woods, Frances. In preparation. Halbi
Interlinear Texts: Everyday Village Life.
Electronic Manuscript.

⋄ H. Andrew Black
blackhandrew (at) gmail dot com

⋄ Hugh J. Paterson III
i (at) hp3 dot me
http://hp3.me

H. Andrew Black, Hugh J. Paterson III

http://hdl.handle.net/10106/27483
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-182789
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-182789
https://tug.org/TUGboat/tb17-2/tb51rei.pdf
https://tug.org/TUGboat/tb17-2/tb51rei.pdf
https://web.archive.org/web/20210613121544/https://www.soas.ac.uk/elar/helpsheets/file122785.pdf
https://web.archive.org/web/20210613121544/https://www.soas.ac.uk/elar/helpsheets/file122785.pdf
https://web.archive.org/web/20210613121544/https://www.soas.ac.uk/elar/helpsheets/file122785.pdf
https://aclweb.org/anthology/L16-1638.pdf
https://scripts.sil.org/cms/scripts/page.php?site_id=projects&item_id=graphite_otcompare
https://scripts.sil.org/cms/scripts/page.php?site_id=projects&item_id=graphite_otcompare
https://scripts.sil.org/cms/scripts/page.php?site_id=projects&item_id=graphite_otcompare
https://conf.ling.cornell.edu/miawiegand/Latex_Slides.pdf
https://conf.ling.cornell.edu/miawiegand/Latex_Slides.pdf
https://www.hi.u-tokyo.ac.jp/JADH/2021/Proceedings_JADH2021_rev0905.pdf
https://www.hi.u-tokyo.ac.jp/JADH/2021/Proceedings_JADH2021_rev0905.pdf
https://tug.org/TUGboat/tb16-1/tb46ling.pdf
https://tug.org/interviews/thiele.html
https://unicode.org/versions/Unicode1.0.0
https://doi.org/10.1017/S0958344002000629
https://tug.org/TUGboat/tb28-2/tb89wilson.pdf
https://ctan.org/tex-archive/macros/latex/contrib/memoir/memman.pdf
https://ctan.org/tex-archive/macros/latex/contrib/memoir/memman.pdf
https://diu.edu/documents/theses/Wood_Joyce-thesis.pdf
https://diu.edu/documents/theses/Wood_Joyce-thesis.pdf

TUGboat, Volume 43 (2022), No. 2 197

STEX3—A LATEX-based ecosystem for
semantic/active mathematical documents

Dennis Müller, Michael Kohlhase

This paper uses STEX3. The semantically annotated
XHTML version of this paper is available at:
tinyurl.com/tug22stex

Abstract

We report on STEX3—a complete redesign and reim-
plementation (using LATEX3) from the ground up of
the STEX ecosystem for semantic markup of mathe-
matical documents. Specifically, we present:

1. The STEX package that allows declaring seman-
tic macros and provides a module system for
organizing and importing semantic macros us-
ing logical identifiers. Semantic macros allow for
annotating arbitrary LATEX fragments, particu-
larly symbolic notations and formulae, with their
functional structure and formal semantics while
keeping their presentation/layout intact. The
module system induces a theory graph-structure
on mathematical concepts, reflecting their de-
pendencies and other semantic relations.

2. The RUSTEX system, an implementation of the
core TEX engine in Rust. It supports convert-
ing arbitrary LATEX documents to XHTML. For

STEX3 documents, these are enriched with se-
mantic annotations based on the OMDoc ontol-
ogy.

3. An MMT integration: The RUSTEX-generated
XHTML can be imported and served by theMMT

system (meta-meta-theory or meta-meta-tool,
depending on desired emphasis) for semantically
informed knowledge management services, e.g.
linking symbols in formulae to their definitions,
or “guided tour” mini-courses for any (semanti-
cally annotated) mathematical concept/object.

Generally, STEX3 documents can be made not
only interactive (by adding semantic services), but
also “active” in that they actively adapt to reader
preferences and pre-knowledge (if known).

1 Introduction

In mathematics (and adjacent disciplines), LATEX is
the de facto standard for typesetting static docu-
ments of all kinds. While LATEX has thus established
itself as the perfect tool for that job, since the ad-
vent of the internet a lot of functionalities have been
developed and are commonly used (primarily via
HTML) that allow for a more active interaction with
documents than static formats allow for.

At the same time, computer scientists and ma-
thematicians have developed techniques for repre-
senting the formal semantics of mathematical def-
initions, theorems, proofs and other statements in
a computer-actionable manner. While the strongest
of these techniques require significant expertise and
effort to represent even relatively simple mathemati-
cal settings in their full formality, these are largely
only required for the strongest forms of computer
services (such as automated theorem proving); in
contrast, relatively simple semantic annotations al-
ready allow for a plurality of useful services that can
be integrated (primarily) in active documents.

To that end, we developed the STEX [5, 11]
package and related systems, and its recent redesign
and reimplementation in the form of STEX3.

STEX is a standard LATEX package that provides
a mechanism for declaring semantic macros (repre-
senting distinct mathematical concepts), which can
be used to annotate arbitrary document fragments
with their semantics to an arbitrary degree of formal-
ity (we speak of flexiformality [4]). These semantic
macros are collected in modules which can be im-
ported anywhere (analogously to LATEX packages),
and are in turn collected in math archives [2] which
can be developed communally. The main difference
between modules and LATEX packages is that the
objects of modules are (mathematical) concepts, ob-
jects, and structures, not abbreviations and layout
primitives. As a consequence, modules usually con-
tain the corresponding definientia that specify the
concepts, objects, structures, and possibly theorems
that state their properties and relations to others,
and proofs that justify these all in a neat self-con-
tained package of reusable components. The overall
effect of this is that documents and archives can be
developed modularly in an “object-oriented” fashion.

Many such archives are available on gl.mathhub.
info, in particular SMGloM, a multilingual mathe-
matical glossary [10], currently containing g 2250
concepts in English (93%), German (71%) and Chi-
nese (11%).

In addition to being standard LATEX documents,
when converted to HTML the semantic information
obtained from semantic macros (and other annota-
tions) can be preserved in the form of HTML at-
tributes. For those purposes, we implemented the
RUSTEX system, a plain TEX engine converting arbi-
trary LATEX documents to XHTML.

The resulting XHTML documents can be im-
ported and served by the MMT system [8, 9], which
can interpret the semantic annotations and offer
corresponding semantics-aware services, effectively
transforming the (originally) statically typeset LATEX

doi.org/10.47397/tb/43-2/tb134mueller-stex3

STEX3—A LATEX-based ecosystem for semantic/active mathematical documents

https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX3
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX3
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?XHTML
https://tinyurl.com/tug22stex
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX3
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX3
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/General/mod?Mathematics?mathematics
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/General/mod?Mathematics?mathematics
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod?DocumentFormat?electronic-document
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?notation
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/Logic/General/mod/syntax?Formula?wff
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?theory-graph
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Programming/mod/languages?Rust?rust
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?XHTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX3
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?OMDoc
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?XHTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/Logic/General/mod/syntax?Formula?wff
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX3
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/General/mod?Mathematics?mathematics
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX3
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?math-archive
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?definiens
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?math-archive
https://gl.mathhub.info
https://gl.mathhub.info
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?SMGloM
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/General/mod?Mathematics?mathematics
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/General/mod?Mathematics?mathematics
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?XML?attribute
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?XML?attribute
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?XHTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?XHTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://doi.org/10.47397/tb/43-2/tb134mueller-stex3
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX3
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX

198 TUGboat, Volume 43 (2022), No. 2

document into an active HTML document. Our col-
lection of such active documents generated from STEX
can be browsed on mmt.beta.vollki.kwarc.info/:

sTeX, including 3000+ pages of semantically anno-
tated course notes and slides for various university
lectures.

Notably, this paper itself uses STEX. The seman-
tically enriched version of it is linked above. Addi-
tionally, the source files are available on Overleaf at
www.overleaf.com/read/rvjbsnfshvhg for demon-
stration purposes.

2 The STEX package

For a detailed description of STEX we refer to the
documentation [6].

2.1 Modules and symbols

A module is opened via
\begin{smodule}{ïnameð}.

Within a module, we can declare a new symbol
with a corresponding semantic macro using \symdecl;
for example, a symbol named natural-number with
semantic macro \Nat would be declared with:1

\symdecl{Nat}[name=natural-number]

We can now reference our new symbol using e.g.
\symname, where \symname{Nat} now yields the (an-
notated!) text “natural number”. Additionally, we
can provide a new notation for the symbol using
\notation, as in \notation{Nat}{\mathbb N}, al-
lowing us to now use the semantic macro in math
mode to print N, or in text mode to annotate arbi-
trary text via \Nat{ïtextð}.

Semantic macros can also take arguments and be
provided with additional semantic information, e.g.
“types”. While the latter are ignored by LATEX, the
MMT system can use these for additional services,
e.g. type checking (see below). Furthermore, the
\symdef macro combines the (usually used in con-
junction) functionalities of \symdecl and \notation.
For example,

\symdef{plus}[

name=addition,

args=2, op=+,

type=\funspace{\Nat,\Nat}{\Nat}

]{#1 + #2}

declares \plus to be a binary function of type N×
N → N, and immediately provides it with an ap-
propriate notation, after which $\plus ab$ yields
“a+ b”. The op=+ in the above declaration allows us
to refer to addition itself (rather than its application
to arguments) via \plus!, yielding just +.

1 See the source files of this paper for direct demonstrations
of the examples here.

Analogously, we can introduce variables using
\vardef (unlike symbols that have object-oriented
scope, variables are local to the current TEX group).

2.2 Statements

Complex statements can be semantically marked-
up using appropriate environments. For example,
the following slightly simplified syntax allows us to
declare commutativity as a predicate on binary opera-
tions and semantically annotate its definiens directly:

\symdecl{commutative}[args=1]

\begin{sdefinition}[for=commutative]

\vardef{setA}{\comp{A}}

\vardef{varop}[op=\circ,args=2]

{#1 \circ #2}

A binary operation

$\fun{\varop!}{\setA,\setA}\setA$ is

called \definame{commutative}, iff

\definiens{

\foral{

\arg[2]{

$\eq{\varop{a}{b},\varop{b}{a}}$}

\comp{for all}

\arg[1]{

$\inset{a,b}\setA$

}.

}

}

\end{sdefinition}

yielding:

Definition 2.1. A binary operation ◦ : A×A → A is
called commutative, iff a◦b = b◦a for all a, b ∈ A.

(See the source files and/or documentation for details
on the syntax.)

Similarly, we can mark up e.g. theorems, like

\begin{sassertion}[type=theorem,

name=commutativity-of-addition]

\conclusion{

\commutative{

\arg{\plus{\comp{Addition}}} is

\comp{commutative}

}

}.

\end{sassertion}

yielding

Theorem 2.1. Addition is commutative.

. . . and allowing us to now refer to commutativity of
addition like any other symbol (e.g. via \symname).

The naming convention of prefixing environment
names with s- (as in e.g. sdefinition) is to allow
for functionality with respect to semantic optional

Dennis Müller, Michael Kohlhase

https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?Overleaf?Overleaf
https://www.overleaf.com/read/rvjbsnfshvhg
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://kwarc.info/Papers/tug/paper?Section-TheSTeXPackage?natural-number
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?notation
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://kwarc.info/Papers/tug/paper?Section-TheSTeXPackage?natural-number
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://kwarc.info/Papers/tug/paper?Section-TheSTeXPackage?natural-number
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/Functions/mod?Function?function-space
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/Functions/mod?Function?function-space
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://kwarc.info/Papers/tug/paper?Section-TheSTeXPackage?natural-number
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/Functions/mod?Function?function-space
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://kwarc.info/Papers/tug/paper?Section-TheSTeXPackage?natural-number
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?notation
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://kwarc.info/Papers/tug/paper?Section-TheSTeXPackage?plus
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?declaration
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://kwarc.info/Papers/tug/paper?Section-TheSTeXPackage?plus
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/General/mod?Variable?variable
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/General/mod?Variable?variable
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?statement
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?environment
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?definiens
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/Functions/mod?Function?function
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/Functions/mod?Function?function
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/Functions/mod?Function?function
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://kwarc.info/Papers/tug/paper?Section-TheSTeXPackage?commutative
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/Relations/mod?Equal?equal
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/Logic/General/mod/syntax?UniversalQuantifier?universal-quantifier
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/Sets/mod?Set?inset
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/Sets/mod?Set?inset
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://kwarc.info/Papers/tug/paper?Section-TheSTeXPackage?plus
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://kwarc.info/Papers/tug/paper?Section-TheSTeXPackage?plus
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://kwarc.info/Papers/tug/paper?Section-TheSTeXPackage?commutative
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://kwarc.info/Papers/tug/paper?Section-TheSTeXPackage?commutativity-of-addition
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://kwarc.info/Papers/tug/paper?Section-TheSTeXPackage?commutativity-of-addition
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?environment

TUGboat, Volume 43 (2022), No. 2 199

Figure 1: An example of a theory graph in the area of formal logic

arguments (e.g. type=, for=), while staying compat-
ible with already existing environments. In fact, all
the typesetting and semantic highlighting done by

STEX can be fully customized— in the case of the
sdefinition environment, for example by deferring
typesetting to a standard definition environment
defined via the amsthm package (as in this paper).

2.3 Importing modules

The semantic macros \eq and \foral used in our def-
inition above represent equality and universal quan-
tification (i.e. “for all”). These are imported from
existing STEX modules, namely mod?Equal in the
math archive sTeX/MathBase/Relations and
mod/syntax?UniversalQuantifier in the archive
sTeX/Logic/General. If we only want to use the
semantic macros in these modules, we can use the syn-
tax \usemodule[ïarchiveð]{ïmoduleð}. If, however,
we are currently in a module, the contents of which
depend on the symbols we want to import, we can
use \importmodule[ïarchiveð]{ïmoduleð} instead,
which additionally exports the contents of the thus-
imported module whenever we import the current
one. For example, this paper might never explicitly
import the Equal module, but could still use its con-
tents if it imports others that in turn (transitively)
import Equal.

This import mechanism naturally induces a the-
ory graph, with modules as nodes and the import-
relation as edges (see Figure 1). STEX and MMT

support more complicated edges as well, that rep-
resent less trivial and thus more interesting theory

morphisms between modules that knowledge can be
translated along (see e.g. [9] for details).2

To let STEX know where the required archives
can be found, users can (among other ways) set a cor-
responding macro \mathhub, or set an environment
variable MATHHUB once and for all. As a result, refer-
ences to archives (and thus modules) are independent
of the local filesystem. Notably, the number of mod-
ules imported in a given document can grow large
very quickly—to allow for submission procedures
(e.g. with TUGboat or arxiv.org) without needing
to submit possibly hundreds of files, package options
allow for storing and retrieving all semantic macros
imported from external modules in/from a dedicated
\jobname.sms file during compilation, which can be
distributed alongside the document.

3 The RUSTEX system

There are multiple existing applications to convert
LATEX documents to HTML, including but not lim-
ited to TEX4ht [1] and LATEXML [7]. Unfortunately,
all of these have turned out to be deficient for our
purposes, primarily due to their lacking support for
either commonly used packages and macros or for
introducing the required XML attributes for seman-
tic annotations. We therefore decided to add to the
existing set of such conversion tools.

2 The full theory graph for (exemplary) the SMGloM can be
navigated actively on mmt.beta.vollki.kwarc.info/graphs/

tgview.html?type=stexgraph&graphdata=smglom.

STEX3—A LATEX-based ecosystem for semantic/active mathematical documents

https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?theory-graph
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?environment
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?environment
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?environment
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/MathBase/Relations/mod?Equal?equal
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/Logic/General/mod/syntax?UniversalQuantifier?universal-quantifier
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/Logic/General/mod/syntax?UniversalQuantifier?universal-quantifier
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?math-archive
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?math-archive
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?theory-graph
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?theory-graph
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?include
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?theory-morphism
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?theory-morphism
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?math-archive
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?math-archive
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://arxiv.org
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?semantic-macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX4ht
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?LaTeXML?LaTeXML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?XML?attribute
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?theory-graph
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?SMGloM
https://mmt.beta.vollki.kwarc.info/graphs/tgview.html?type=stexgraph&graphdata=smglom
https://mmt.beta.vollki.kwarc.info/graphs/tgview.html?type=stexgraph&graphdata=smglom
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX3
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX

200 TUGboat, Volume 43 (2022), No. 2

RUSTEX
3 is an implementation of a plain TEX

engine using the programming language Rust, out-
putting XHTML. It implements merely the (vast
majority of) primitives of TEX, eTEX and pdfTEX,
and uses a locally installed LATEX distribution (by
processing the available latex.ltx file) to handle
LATEX documents. While this means that RUSTEX
behaves virtually identically to pdflatex (except for
the output format), this comes at the cost of a priori
no special treatment of standard LATEX-macros (al-
though RUSTEX allows for adding special treatment
of arbitrary macros on top). Instead, everything
is expanded to primitive TEX whatsits, which are
exported to (primarily) <div>-nodes, styled via CSS-
classes depending on the whatsit.

Notably, however, with STEX3 we opted for a
mechanism analogous to the pgf-package: The rel-
evant functionality is reduced to a mere handful of
primitive macros for (HTML) annotations that a con-
figuration file for a backend of choice (e.g. pdflatex
or RUSTEX) can provide. This means that STEX can
be easily made compatible with alternative conver-
sion tools, provided they support the basic function-
ality required.

4 MMT integration and applications

MMT [8, 9] is a software system and API for a wide
range of generic knowledge management services,
providing algorithms for e.g. library management,
parsing, (parametric) bi-directional type checking
and reconstruction, term simplification, and vari-
ous other computations on formal knowledge. The
system uses a variant of the OMDoc [3] ontology,
a representation format for semantically enriched
mathematical documents.

The XHTML generated by RUSTEX can be im-
ported by the MMT system directly, extracting the
semantic annotations and converting them to the
corresponding OMDoc elements. As a result, the
full suite of MMT services are available for STEX
documents.

Services thus enabled in active documents cur-
rently include:

1. Disambiguation: Every symbol is assigned a
globally unique MMT URI (i.e. identifier) that
unambiguously determines the semantics of the
symbol, regardless of e.g. notations used. In this
paper (in the PDF), this MMT URI is shown
when hovering over a symbol reference.

In the HTML version, hovering over a symbol
reference shows (if available) the corresponding
definition or theorem statement of the symbol,

3 github.com/slatex/RusTeX

allowing for quick reminders of the meaning of
terms and notations.

2. Type checking : For fully formally annotated doc-
ument fragments, we can make use of MMT’s
type checking and inference mechanism: For
example, in the definition and theorem in sub-
section 2.2, the MMT system can infer from
our usage of \definiens that commutative is
a unary predicate on binary operations, and
uses that information to type check the theo-
rem; that is, the system checks that the content
of the \conclusion-macro is an actual proposi-
tion (which it determines by inferring the type of
commutative), which recursively entails check-
ing that \plus is indeed a binary operation (in
this case on \Nat), and would warn us of a likely
mistake otherwise.

3. Guided tours: Theory graphs provide us with
the full semantic dependencies of a module. This
allows us to generate small mini-courses that
contain all prerequisite knowledge leading up to
some intended concept in inverse dependency
order: starting with the basics and ending with
the concept to be explained. Clicking on a sym-
bol reference in the XHTML opens a window
linking to these guided tours.

Other features we are actively working on include:

1. Notation selection: Since STEX allows for provid-
ing arbitrarily many notations for symbols, be-
sides authors choosing the notation they prefer,
in the HTML the document can in principle re-
place the notations used based on readers’ pref-
erences, making the resulting document more
accessible for readers from different backgrounds
with differing conventions.

2. User-adapted guided tours: In the context of
classes at our university, we are working on
modelling students’ knowledge as probabilistic
“user models” that allow us to generate guided
tours specifically adapted to a user’s prior knowl-
edge. For example, by omitting already known
concepts, selecting the most adequate examples,
choosing their most familiar programming lan-
guage for code snippets, etc.

3. Flexible knowledge exploration/recommendation:
If we have a theory graph and a user model as
above (possibly of a whole cohort of readers), we
can use this information to recommend “useful
knowledge items nearby” that might be inter-
esting to the reader. These could be additional
examples that help deepen understanding, theo-
rems that give additional properties or relations,
or even self-test problems. MMT can use the

Dennis Müller, Michael Kohlhase

https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Programming/mod?ProgrammingLanguage?programming-language
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Programming/mod/languages?Rust?rust
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?XHTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?TeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX3
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?OMDoc
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?XHTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?OMDoc
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT-URI
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?notation
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?PDF?PDF
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT-URI
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://github.com/slatex/RusTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?notation
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?macro
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?theory-graph
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?module
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?XHTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?notation
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?symbol
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?notation
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?HTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?notation
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Programming/mod?ProgrammingLanguage?programming-language
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Programming/mod?ProgrammingLanguage?programming-language
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT

TUGboat, Volume 43 (2022), No. 2 201

theory graph topology and user model informa-
tion to determine what items are “nearby” the
part of the theory graph that is (estimated to
be) known to the reader.

To make these services as accessible to users as
possible, we are actively developing a dedicated IDE
in the form of a plugin for the VS Code editor using
the Language Server Protocol .4 The IDE integrates
the MMT system (which in turn integrates RUSTEX)
and can preview the active XHTML document gener-
ated from LATEX. Additionally, it allows for searching
both local and remote (on gl.mathhub.info) STEX
content and downloading remotely available math
archives directly.

5 Conclusion

The STEX package now allows us to cover the com-
plete spectrum from purely informal to fully formally
annotated knowledge, directly in standard LATEX doc-
uments. Via RUSTEX and MMT, this makes formal
knowledge management services available for LATEX
documents, allowing us to generate active documents
that integrate semantically informed services for read-
ers. The IDE bundles the whole toolchain required
and makes it conveniently accessible to authors.

It is clear that semantic annotations constitute
a considerable additional effort— in our experience
up to 25–30% of the overall document development
effort. Whether this investment can be amortized
by the services that become available by it depends
on the document or archive and on the context. We
envision STEX as an alternative to LATEX primarily
for documents with a high

• impact, i.e. which have many more readers than
authors, or

• inherent complexity, which need semantic ser-
vices to help readers understand them.

Some of the effort can surely be mitigated by ad-
vanced IDEs such as the one we are developing.

The main problem is that semantic annotations
need semantic targets— i.e. annotated STEX docu-
ments they can point to. This makes the first STEX
documents in a new domain very tedious to anno-
tate, since we have to create archives for the “de-
pendency cone”. We aim to alleviate this by provid-
ing a community portal for flexiformal mathematics:
MathHub.info, where math archives can be hosted,
discussed, and maintained so that—over time—we
can ensure that the “cost” of annotating a document
is proportional to the size of the document and not
to the size of the domain.

4 github.com/slatex/sTeX-IDE

References

[1] E. Gurari, M. Hoftich, et al. TEX4ht.
tug.org/tex4ht/.

[2] F. Horozal et al. Combining Source, Content,
Presentation, Narration, and Relational
Representation. Intelligent Computer Mathematics.
Ed. by J. Davenport et al. LNAI 6824. Springer
Verlag, 2011, pp. 212–227. kwarc.info/frabe/

Research/HIJKR_dimensions_11.pdf.

[3] M. Kohlhase. OMDoc—An Open Markup
Format for Mathematical Documents [Version 1.2].
LNAI 4180. Springer Verlag, Aug. 2006.
http://omdoc.org/pubs/omdoc1.2.pdf.

[4] M. Kohlhase. The Flexiformalist Manifesto.
14th International Workshop on Symbolic and
Numeric Algorithms for Scientific Computing
(SYNASC 2012). Ed. by A. Voronkov et al.
Timisoara, Romania: IEEE Press, 2013, pp. 30–36.
kwarc.info/kohlhase/papers/synasc13.pdf.

[5] M. Kohlhase. Using LATEX as a Semantic Markup
Format. Mathematics in Computer Science 2:2,
2008, pp. 279–304. kwarc.info/kohlhase/papers/
mcs08-stex.pdf.

[6] M. Kohlhase and D. Müller. The sTeX3 Package
Collection. github.com/slatex/sTeX/blob/main/
doc/stex-doc.pdf.

[7] B. Miller. LaTeXML: A LATEX to XML Converter.
mast.nist.gov/LaTeXML/.

[8] MMT—Language and System for the
Uniform Representation of Knowledge.
uniformal.github.io/.

[9] F. Rabe and M. Kohlhase. A Scalable Module
System. Information & Computation 0:230, 2013,
pp. 1–54. kwarc.info/frabe/Research/mmt.pdf.

[10] SMGloM: A Semantic, Multilingual Glossary for
Mathematics. gl.mathhub.info/smglom/.

[11] sTeX: A Semantic Extension of TeX/LaTeX.
github.com/sLaTeX/sTeX.

⋄ Dennis Müller
Friedrich-Alexander University,

Erlangen-Nürnberg, DE
dennis.mueller (at) fau.de

ORCID 0000-0002-4482-4912

⋄ Michael Kohlhase
Friedrich-Alexander University,

Erlangen-Nürnberg, DE
michael.kohlhase (at) fau.de

ORCID 0000-0002-9859-6337

STEX3—A LATEX-based ecosystem for semantic/active mathematical documents

https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?theory-graph
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?OMDoc?theory-graph
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Programming/mod?IDE?IDE
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?VSCode?VSCode
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Programming/mod?LSP?LSP
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Programming/mod?IDE?IDE
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/formats?HTML?XHTML
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://gl.mathhub.info
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?math-archive
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?math-archive
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?package
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?RusTeX?rustex
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?MMT
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Programming/mod?IDE?IDE
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Programming/mod?IDE?IDE
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?MMT?math-archive
https://MathHub.info
https://github.com/slatex/sTeX-IDE
https://tug.org/tex4ht/
https://kwarc.info/frabe/Research/HIJKR_dimensions_11.pdf
https://kwarc.info/frabe/Research/HIJKR_dimensions_11.pdf
https://http://omdoc.org/pubs/omdoc1.2.pdf
https://kwarc.info/kohlhase/papers/synasc13.pdf
https://kwarc.info/kohlhase/papers/mcs08-stex.pdf
https://kwarc.info/kohlhase/papers/mcs08-stex.pdf
https://github.com/slatex/sTeX/blob/main/doc/stex-doc.pdf
https://github.com/slatex/sTeX/blob/main/doc/stex-doc.pdf
https://mast.nist.gov/LaTeXML/
https://uniformal.github.io/
https://kwarc.info/frabe/Research/mmt.pdf
https://gl.mathhub.info/smglom/
https://github.com/sLaTeX/sTeX
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems/tex?sTeX?sTeX3
https://mmt.beta.vollki.kwarc.info/:sTeX/symbol?http://mathhub.info/sTeX/ComputerScience/Software/mod/systems?TeX?LaTeX

202 TUGboat, Volume 43 (2022), No. 2

Pushing math forward with ConTEXt lmtx

Hans Hagen, Mikael P. Sundqvist

Editor’s note: For enlarged views of many of the small

details presented here, please also see the slide presenta-

tion, available from tug.org/tug2022.

Abstract

We report on some recent work on mathematical
typesetting. Our main purpose has been to make
both the input and output of math cleaner and more
structured. Among the many enhancements, we
mention here the introduction of new atom classes
that has given better control over many details. We
also cover the unboxing of fenced material which, to-
gether with improved line-breaking and more flexible
multiline display math, has created a coherent way
to produce displayed formulas that split over lines.

1 Introduction

When creating ConTEXt MkIV, the ConTEXt ver-
sion that is based on LuaTEX, we only had Cambria
available as an OpenType math font with a com-
plete math table, so for the others we started out
with runtime virtual math fonts assembled from tra-
ditional TEX fonts. Stepwise, more fonts became
available. Not all fonts conform to the way Cambria
does things. In order to deal with the inconsisten-
cies in these fonts and because the specification was
vague— it is better now—and had to be derived
from e.g. how Microsoft Word does things, we ended
up with a mix of generic runtime fixes to fonts and
font-specific corrections done in what we call goodie
files. However, given the amount of work involved,
it never became complete.

That all changed when we became aware of
Lansburgh’s 1964 book [1]. This book predates
TEX, and it is, with its more than 400 pages of
well-motivated typesetting rules—the majority of
them about mathematics— the most comprehensive
guide we are aware of. The book, written in Swedish,
was originally used as a typesetting guide for the
publisher Almqvist & Wiksell, in particular for the
highly respected mathematics journal Acta Mathe-

matica. For this reason Lansburgh discusses the rules
for typesetting mathematics in great detail.

The question became: why can’t we do now
what was recommended 50 years ago? The Lua-
MetaTEX math engine was already at this point
partially redone and more configurable, but why not
go further? We knew it would take much time to get
all done, and it did (basically years of full time), but
here we are. In the process we looked over the goodie
files (they are now organized tweaks) and all fonts,

by now stable but flawed, were studied in detail. A
direct consequence was rewriting the LuaTEX math
engine to permit more control. So, in some ways,
one has to thank Lansburgh for our work.

In this article we discuss only some of what the
end user sees. At a lower level it all boils down to
configuring the many (also new) font parameters,
selectively fixing properties of glyphs, adding addi-
tional properties such as staircase-like kerns for some,
setting up lots of pairwise spacing and penalties (we
inherit where we can, so that saves some effort), defin-
ing rules that influence the inter-atom handling, etc.
The LuaMetaTEX engine is completely configurable,
meaning that we have more variables that can be
set, and one can even change the styling rules, of
which many were hard-coded. This is why a project
like this takes much time and dedication but is also
much fun.

One note has to be made: Don Knuth did a
tremendous job on TEX and the math engine, and
only by working with the code can one realize how
quickly it was all achieved: we’re baffled. It does
what was possible within the constraints of hardware
and fonts, and it does it well. For instance, when we
mention the \nulldelimiterspace parameter that
we try to avoid, it doesn’t mean that it was not there
for a reason: there is a subtle interplay between fonts,
where characters have italic corrections as the means
for spacing and attachments of sub/superscripts, and
a zero-ordered spacing that then cooperates nicely
with the few relatively unknown spacing parameters.
As with everything TEX: it all makes sense when you
see it in perspective and there are excellent tricks
to be found in there. That said: we took advantage
of today’s faster processors, plenty of memory, fonts
that collect all shapes into one with more properties
per font and shape, and in the end “time”, as we
were under no pressure to finish this soon.

To date, enough has been done to fill a whole
issue of TUGboat. Maybe we will wrap up some
more in articles in due time. After all, we also have
an additional wishlist to fulfill.

2 Math microtypography

By math microtypography we mean the fine-tuning
of small details in mathematical formulas. Let us
give an example. When you type a_{0}b in math
mode you get a0b. Have you ever noticed that there
is a small space automatically inserted between the
0 and the b? If the space is not there, as in a0b, it is
no longer clear if the 0 belongs to the a or to the b.

There are occasions when this space is unwanted.
For example, we usually expect a symmetric space
around relations (as in a = b) and binary symbols

doi.org/10.47397/tb/43-2/tb134hagen-math

Hans Hagen, Mikael P. Sundqvist

https://tug.org/tug2022
https://doi.org/10.47397/tb/43-2/tb134hagen-math

TUGboat, Volume 43 (2022), No. 2 203

(as in a+ b). If, however, there is a subscript (or a
superscript) just to the left of such a symbol, the
surrounding space becomes uneven because of the
inserted extra space.�0�0 ordrel

=
relord
�0 ordbin
+

binord
�0

The space is specified by the \scriptspace parame-
ter. Don Knuth set it to 0.5pt in plain TEX (likely
a choice that looked good with his 10pt bodyfont
size). The \scriptspace parameter, and its par-
ticular value, has survived several decades, formats,
body font sizes and engines. In ConTEXt lmtx we
have introduced several options for the different
math atom classes. One of these class options is
\nopostslackclassoptioncode, and if it is set for
a class then any inserted \scriptspace will be re-
moved. Looking at the example above we see that
the unwanted extra space is present before = and +.
And indeed, both the relation class and the binary
class do have this option set. Thus, when we type-
set the formula above in ConTEXt lmtx we get the
following. �0right

�0ordrel
=

relord
�0ordbin
+

binord
�0

The space between the a0 and the b is in fact no
longer a \scriptspace, but we instead rely on the
font parameter SpaceAfterScript.

The situation with \nulldelimiterspace is a
bit similar. It is traditionally used as a kind of side
bearing in fences and fractions. Its value was in plain
TEX set to 1.2pt, and that has also stayed. In the
formula 1

2
a the space is inserted between the 1

2
and

the a and without it the formula would look bad: 1

2
a.

The \nulldelimiterspace is, however, also in-
serted before the fraction 1

2
, making the space before

the formula slightly (1.2pt) larger than the space
after it. This means that the margin will not be
perfectly aligned if the fraction is located at the
beginning or at the end of a line.�� frabin

+
binord
�

ordrel
=

relfra

���
In addition to the extra space at the left margin, the
spaces around the + and the = above have become
asymmetrical due to the inserted 1.2pt space.

In ConTEXt lmtx we use new atom classes to
control the spacing around fractions. One of the new
atom classes is the fraction class. Thus, we set the
\nulldelimiterspace value to 0pt.

�� frabin
+

binord
�

ordrel
=

relfra

�� fraord
�

Observe that no space is inserted to the left of the
first fraction.

In the examples above we have used one of the
many ConTEXt helpers (\showmakeup[mathglue])
to visualize the inserted spaces. For instance, to the
right of the fraction we see frabin, which means that
the classes that meet are fraction and binary; the
space between them is set up to be a \medmuskip.
We also used \showglyphs to draw the bounding
boxes in orange (grayscaled in print). These and
other helpers have been indispensable for our work.

3 A more general spacing model

In traditional TEX the spaces between atoms have
traditionally been set to one of the following muskips.

\thickmuskip 5mu plus 5mu

\medmuskip 4mu plus 2mu minus 4mu

\thinmuskip 3mu

\zeromuskip 0mu

For example, between an ordinary and a binary atom,
TEX inserts a \medmuskip. It has not been possible
to set up the space between a single pair of atoms
without altering the spaces between others.

In ConTEXt lmtx the inter-atom spaces are no
longer hard-coded to \thickmuskip, \medmuskip

and \thinmuskip. Users are free to define new
muskips and to use them between any atom pair.
After a lot of testing, we decided to alter the old
muskips just a little, and added two new ones.

\thickmuskip 5mu plus 3mu minus 1mu

\medmuskip 4mu plus 2mu minus 2mu

\thinmuskip 3mu

\tinymuskip 2mu minus 1mu

\pettymuskip 1mu minus 0.5mu

\zeromuskip 0mu

We use the \tinymuskip for example between the
radical and ordinary atoms, and between ordinary
and fraction atoms. Traditionally, there is no space
inserted in the first case.�√�� + ����
This is how it looks in ConTEXt lmtx:�√�� + � �� �
Note that there is a space between the

√
b and the c.

The \pettymuskip is mostly used in scriptstyle,
in sub- and superscripts, where TEX traditionally
inserts no space. We don’t know why, but it might
be that one simply wants the formulas to take less

Pushing math forward with ConTEXt lmtx

204 TUGboat, Volume 43 (2022), No. 2

space. It might also be that the smallest available
non-zero muskip, the \tinymuskip, was too big.�+�∑�=0 �� = ��+�−�
With the \pettymuskip added, it looks like below,
and you can judge for yourself whether it looks better
or not. �+�∑�=0 �� = ��+�−�
The observant reader has now realized that the spac-
ing between atoms not only can be set to values other
than the traditional four, but also they can also be
different in different math styles. Indeed, when we do
the setups we have access to the following keywords.

\alldisplaystyles

\alltextstyles

\allscriptstyles

\allscriptscriptstyles

\allmathstyles

\allsplitstyles

\alluncrampedstyles

\allcrampedstyles

Let us show examples with one of the new
classes, the exponential class. This is a very small
class, with currently only one member, the exponen-
tial e, accessed via \ee. This class is set up to inherit
the inter-atom spaces from the ordinary atom class.

\setnewconstant \mathexponentialcode

\mathclassvalue exponential

\copymathspacing \mathexponentialcode

\mathordinarycode

Thus, if we type

\dm{rs \ee^{-rs \ee^{st} tu} tu}

in math mode, we get���−���������
Lansburgh suggests that a small space should be
inserted between exponentials and other symbols, in
particular if it carries exponents. We obtain that
with the code below (and similar for the ordinary
exponential combination).

\setmathspacing

\mathexponentialcode \mathordinarycode

\allsplitstyles \tinymuskip

\setmathspacing

\mathexponentialcode \mathordinarycode

\allscriptstyles \pettymuskip

This results in some extra space around the e.���−������� ��

4 New atom classes

The classes defined in the LuaMetaTEX engine are or-
dinary, operator, binary, relation, open, close, punc-
tuation, variable, active, inner, under, over, radical,
fraction, middle, accent, fenced, ghost, vcenter.

The classes defined so far in ConTEXt lmtx are
imaginary, differential, exponential, ellipsis, function,
digit, explicit, division, factorial, wrapped, construct,
mathpunctuation, dimension, unspaced, begin, end,
all and unary.

You probably recognize many of the engine
classes from classical TEX. We felt that it would
be good to convert some standard constructions, like
fractions and radicals, to their own classes. Once
we decided to open up for more classes, we rapidly
found a use for several new ones, some with just a
few members, and some of a more technical nature.
Let us give some comments.

Fractions and radicals are now their own classes,
and since fenced material inherits their class struc-
ture from the content, there is currently no use of
the inner class in ConTEXt lmtx.

The middle class, introduced in ε-TEX, was more
like a technical hack built on top of the open class.
In ConTEXt lmtx it is a true atom class.

The imaginary, differential, exponential, ellip-
sis and factorial classes have only a few members
each. The differential class is perhaps the most
interesting among them. The macro \dd yields
a differential d with an adapted spacing; that is,
the code \int_{a}^{b} f(x) \dd x in math mode
gives

�
b

a
f(x) dx. With

\setupmathematics[differentiald=upright]

the \dd gives an upright d instead,
�
b

a
f(x) dx.

The factorial class consists of only one character,
the exclamation mark. It is merely there to auto-
matically get a small space between the exclamation
mark and an ordinary symbol. Thus, if we type
\binom{n}{k} = \frac{n!}{(n-k)!k!} in display
math mode it comes out as follows.(��) = �!(� − �)! �!
Observe the extra space between the)! and the k.

5 Tweaking fonts

Take a look at the following formula, set with TEX
Gyre Bonum Math:�[�] = ∫�0 [� ′(�)]2 ��
In the so-called “goodie files” we have collected fixes
for the various math fonts. Let us look at the same
formula, with the fixes in the goodie file applied.

Hans Hagen, Mikael P. Sundqvist

TUGboat, Volume 43 (2022), No. 2 205

�[�] = ∫�0 [� ′(�)]2��
We fix most issues in so-called tweaks, but some are
also done with the help of font parameters, some of
which are our own. We used

• the dimension tweak to scale the whole fraktur
lowercase alphabet.

• the same tweak to modify the bounding box and
italic correction of lower case italic f so that it
does not clash with other letters.

• the font parameter DisplayOperatorMinHeight
to increase the size of the integral sign, and
NoLimitSubFactor to move the lower limit closer
to the integral sign.

• the fixprimes tweak to move the prime down
(see further discussion below).

The details of these fixes, as well as others, can be
found in the goodie file bonum-math.lfg.

In order to solve the persistent issues with primes
(fonts differ widely in that) the engine now supports
primes natively. This means that every atom can
have a super- and subscript, a super- and subpre-
script as well as a prime attached. Optionally, scripts
can be shifted to behave like an index. The fact that
we need to deal with all four corners of a nucleus also
means that we need to make sure that the glyphs
behave well at both ends. That gave us some extra
work. There are additional parameters to control the
relative positioning of primes and superscripts.

Some Unicode math fonts, including Bonum,
have several sizes of the integral sign, and we can use
\startintegral and \stopintegral to make them
grow as delimiters. This means we can write

\startintegral[bottom={a},top={b}]

\frac{1 + \frac{f_1(x)}{f_2(x)}}

{1 + \frac{f_3(x)}{f_4(x)}} \dd x

\stopintegral

in math mode, to get∫⎮⎮⎮∫
�
�
1 + �1(�)�2(�)1 + �3(�)�4(�)��

Technically, the integral sign works as the left part
of a paired delimiter. Thus, we see an example of a
paired delimiter where the sub- and superscript are
placed on the left delimiter. It is also possible to set
the size of the integral sign manually. You can play
with \int[size=50pt] if you need specific sizes.

6 Math macrotypography

ConTEXt has in the past had good support for type-
setting displayed equations, and there has been rather

complete support for different types of alignments,
numbering of equations, and so on [2].

Multiline formulas have historically been set in
TEX via the \halign primitive. As a consequence
these formulas have in fact been an array of math
mode cells.

In ConTEXt there has for some time existed
partial support for displayed formulas typeset as
paragraphs, but they were not configured for real us-
age. When we opened up the set of atom classes, and
introduced the unboxing of subformulas, it was also a
good time to set this up and extend the functionality.

We build the formulas as one long formula, and
do the layout mainly with the split and align keys.
The user can also insert manual formatting with
\breakhere, \skiphere and \alignhere.

The default value for the split key is text, and
that means that formulas can split over lines, but
not over pages. If we also want them to split over
pages, we set split to page. The only difference
between these two settings is the setup of penalties,
and it is possible for the user to define their own.
For formulas that fit on a line it does not matter.‖� (�) − �(�0)‖�2(Γ)→�5/2(Ω) ≤ �|� − �0|
Longer formulas automatically split over lines.

\startformula

\iint K(xy) f(x) g(y) \dd x \dd y

\leq \phi(p^{-1})

\left[\int x^{p-2}f(x)^p \dd x\right]^{1/p}

\left[\int g(y)^q \dd y \right]^{1/q}

\stopformula∬�(��)�(�)�(�) �� �� ≤�(�−1) [∫��−2�(�)� ��]1/� [∫�(�)� ��]1/�
The splitting of the formula can be prohibited by
adding split=no as an argument to \startformula.
We get a formula that is set in a box (here we clip
the formula so as not to mess up the formatting of
this article).∬�(��)�(�)�(�) �� �� ≤ �(�−1) [∫��−2�(�)� ��]1/� [∫�(�)� ��]1/�
If we instead add align=slanted, and also insert a
\breakhere just before the \leq, we get∬�(��)�(�)�(�) �� ��≤ �(�−1) [∫��−2�(�)� ��]1/� [∫�(�)� ��]1/�
The align=slanted flushes the first line left, the
last line right, and midaligns the other lines. This

Pushing math forward with ConTEXt lmtx

206 TUGboat, Volume 43 (2022), No. 2

key can be given any of the values middle (default),
flushleft, flushright and slanted.

With the default values of split and align we
can easily add an align point with \alignhere.

\startformula

\tfrac{1}{2}(p^2 \abs{x} + \abs{x} p^2)

\alignhere

= \abs{x} p \abs{x}^{-1} p \abs{x}

- \tfrac{1}{2} \abs{x}

(\laplace \abs{x}^{-1}) \abs{x}

\breakhere

= \abs{x} p \abs{x}^{-1} p \abs{x}

- \tfrac{1}{2} \abs{x} 4 \pi \delta(0)

\abs{x}

\breakhere

= \abs{x} p \abs{x}^{-1} p \abs{x}

\stopformula

Observe the \breakhere where we want new lines.12 (�2|�| + |�|�2) = |�|�|�|−1 �|�| − 12 |�| (∆|�|−1) |�|= |�|�|�|−1 �|�| − 12 |�|4��(0) |�|= |�|�|�|−1 �|�|
The careful reader also notes that there is a space
after the close atoms, something that was suggested
in [1]. Compare the final term on the right-hand side
with |x|p|x|−1p|x|, with no such space inserted.

We end with a slightly more advanced chain
formula.
A� ′(��1, ... , ���, ���)

B= (��)�−1 [� ′�(�1, ... , ��, ���)
B S 3 + 1��� ′�−1(�1, ... , ��, ���) + ...]
B= (��)�−1� ′�(�1, ... , ��, ���) + �(��−2)

Here we have marked the align point with an A. Its
position might at first glance be a bit surprising.
To the formula we have added textdistance=2em.
This is the space that is automatically added at each
\breakhere, the extra horizontal shift you see at the
B, compared to the A. At one row we have in addition
added \skiphere[3], that adds an extra space of
6em (the configurable unit is by default 2em). This
is shown as S 3. This is how we typed the formula:

\startformula[textdistance=2em]

\alignhere

P’(iy_1, \ldots, iy_n, i\eta_k)

\breakhere

= (ir)^{k-1} \left[

P_k’ \left(z_ 1, \ldots, z_n,

\frac{\eta_k}{r} \right)

\breakhere

\skiphere[3]

+ \frac{1}{ir}P_{k-1}’

\left(z_ 1, \ldots, z_n,

\frac{\eta_k}{r} \right)

+ \ldots

\right]

\breakhere

= (ir)^{k-1}

P_k’\left(z_ 1, \ldots, z_n,

\frac{\eta_k}{r} \right)

+ O(r^{k-2})

\stopformula

We emphasize that the formula above is broken inside
the \left[and \right] fences. This is thanks to
the possibility to unpack and repack subformulas.

One of the things we’re currently experimenting
with is carrying over kerns at the corners of nested
subformulas. For instance, when a fenced formula,
fraction, radical or any composed atom is prepared,
it happens in a nested call to the mlist-to-hlist con-
verter. The content is sort of abstract and wrapped
in an atom of some class (say fenced) that determines
spacing. In that case, anchoring a superscript cannot
be related to the shape of, for instance, the right
fence, which can have some extreme inward bending
shape (as in Cambria). Dealing with that is not
entirely trivial, but we managed to get it working.
Of course, we then need to add shape-related kerning
information to the goodie files because it is not part
of the OpenType math concept. It is all about look
and feel here.

References

[1] W.N. Lansburgh. Almqvist & Wiksells

sättningsregler. Almqvist & Wiksell, 1964.

[2] A. Mahajan. My way: Using \startalign and
friends, 2006. dl.contextgarden.net/myway/
mathalign.pdf

⋄ Hans Hagen

https://pragma-ade.nl

⋄ Mikael P. Sundqvist

Department of Mathematics

Lund University

Box 118

221 00 Lund

Sweden

mickep (at) gmail dot com

Hans Hagen, Mikael P. Sundqvist

https://dl.contextgarden.net/myway/mathalign.pdf
https://dl.contextgarden.net/myway/mathalign.pdf

TUGboat, Volume 43 (2022), No. 2 207

TheTreasure Chest

These are the new packages posted to CTAN (ctan.
org) from April–August 2022. Descriptions are based
on the announcements and edited for extreme brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package can
be found at ctan.org/pkg/pkgname.

A few entries which the editors subjectively be-
lieve to be especially notable are starred (*); of
course, this is not intended to slight the other con-
tributions.

We hope this column helps people access the vast
amount of material available through CTAN and the
distributions. See also ctan.org/topic. Comments
are welcome, as always.

⋄ Karl Berry

https://tug.org/TUGboat/Chest

biblio

* biber-ms in biblio

Multi-script Biber.

fonts

simpleicons in fonts

Simple Icons font support.

srbtiks in fonts

Stix2 support for Serbian and Macedonian
italics.

symbats3 in fonts

Support for the Symbats3 OpenType font.

yfonts-otf in fonts

OpenType versions of Yannis Haralambous’s
Old German fonts.

graphics

customdice in graphics/pgf/contrib

Draw customizable dice.

fancyqr in graphics/pgf/contrib

Create fancy QR codes with TikZ.

figput in fonts

Create interactive or static figures in LATEX.

tikz-ext in graphics/pgf/contrib

A collection of libraries for PGF/TikZ.

tikzfill in graphics/pgf/contrib

TikZ libraries for filling with images and
patterns.

tikzpingus in graphics/pgf/contrib

Penguins.

macros/generic

expex-acro in macros/generic

Wrapper for expex with support for glossing
abbreviations.

lt3luabridge in macros/generic

Execute Lua code in any TEX engine that
exposes the shell.

macros/latex/contrib

asternote in macros/latex/contrib

Annotation symbols enclosed in square brackets
and marked with an asterisk.

* biblatex-ms in macros/latex/contrib

Multi-script BibLATEX; requires biber-ms.

chinesechess in macros/latex/contrib

Typeset Chinese chess with l3draw.

circledtext in macros/latex/contrib

Create circled text.

cprotectinside in macros/latex/contrib

Use cprotect, arbitrarily nested.

csassignments in macros/latex/contrib

Support for computer science assignments.

dvisirule in macros/latex/contrib

Superimpose the covered hline and vline in a
LATEX tabular or colortbl environment.

familytree in macros/latex/contrib

Draw family trees.

fixdif in macros/latex/contrib

Typesetting differential operators.

flexipage in macros/latex/contrib

Flexible page geometry with marginalia.

hereapplies in macros/latex/contrib

Cross-linking applications of concepts.

hideanswer in macros/latex/contrib

Toggle printing of answers.

hvextern in macros/latex/contrib

Writing and reading of external source code,
and inserting the output.

inlinelabel in macros/latex/contrib

Assign equation numbers to inline equations.

jpneduenumerate in macros/latex/contrib

Enumerative expressions in Japanese education.

jpnedumathsymbols in macros/latex/contrib

Mathematical equation representation in
Japanese education.

kfupm-math-exam in macros/latex/contrib

Produce homework, quiz and exam papers.

langnames in macros/latex/contrib

Name languages and their genetic affiliations
consistently.

doi.org/10.47397/tb/43-2/tb134chest

macros/latex/contrib/langnames

208 TUGboat, Volume 43 (2022), No. 2

lt3rawobjects in macros/latex/contrib

Declare and allocate LATEX3 objects like C
structures.

magicwatermark in macros/latex/contrib

Watermarks, based on everypage and TikZ.

mathsemantics in macros/latex/contrib

Semantic math commands in LATEX.

multifootnote in macros/latex/contrib

Multiple numbers for the same footnote.

multiple-choice in macros/latex/contrib

Multiple-choice questions.

ndsu-thesis-2022 in macros/latex/contrib

North Dakota State University support, update
for 2022.

postnotes in macros/latex/contrib

Endnotes for LATEX.

precattl in macros/latex/contrib

Write code containing tokens with unusual
catcodes.

prettytok in macros/latex/contrib

Pretty-print token list.

proflabo in macros/latex/contrib

Draw laboratory equipment.

rescansync in macros/latex/contrib

Execute saved code to typeset text while
preserving SyncTEX information.

saveenv in macros/latex/contrib

Save environment content verbatim.

scripture in macros/latex/contrib

Typesetting Bible quotations.

sidenotesplus in macros/latex/contrib

Place material in margins.

simples-matrices in macros/latex/contrib

Define matrices by given list of values.

thermodynamics in macros/latex/contrib

Macros for multicomponent thermodynamics
documents.

tkzexample in macros/latex/contrib

Package for documentation of tkz-* packages.

wrapstuff in macros/latex/contrib

Wrapping text around stuff, using new LATEX
hooks.

m/l/c/beamer-contrib/themes

beamerthemeamurmaple in m/l/c/b-c/themes

A new modern beamer theme.

beamertheme-tcolorbox in m/l/c/b-c/themes

Inner beamer theme that reproduces standard
beamer blocks.

macros/latex/required

latex-lab in macros/latex/required

Development pre-release. See LATEX news
installment in this issue.

macros/luatex/latex

ligtype in macros/luatex/latex

Suppress inappropriate ligatures, for German
by default.

luamathalign in macros/luatex/latex

Flexible alignments in amsmath environments.

luaquotes in macros/luatex/latex

Smart setting of quotation marks.

showhyphenation in macros/luatex/latex

Show hyphenation points.

showkerning in macros/luatex/latex

Show kerns.

spacekern in macros/luatex/latex

Kerning between words and against whitespace.

macros/plain

transparent-io in macros/plain/contrib

Show for approval the filenames used in \input,
\openin, or \openout. See article in TUGboat

43:1.

macros/unicodetex/latex

swungdash in macros/unicodetex/latex

Swung dash (U+2053), made by transforming
the tilde.

unisc in macros/unicodetex/latex

Unicode small caps with Lua/X ELATEX.

macros/xetex/latex

exam-zh in macros/xetex/latex

LATEX template for Chinese exams.

hfutthesis in macros/xetex/latex

LATEX thesis template for Hefei University of
Technology.

xduts in macros/xetex/latex

Xidian University TEX suite.

support

texlive-dummy-fedora in support

Dummy TEX Live RPM for use with Fedora
and similar distributions.

m/l/c/b-c/themes/beamertheme-tcolorbox

https://ctan.org
https://ctan.org
https://ctan.org/pkg/
https://ctan.org/topic
https://ctan.org/pkg/lt3rawobjects
https://ctan.org/pkg/magicwatermark
https://ctan.org/pkg/mathsemantics
https://ctan.org/pkg/multifootnote
https://ctan.org/pkg/multiple-choice
https://ctan.org/pkg/ndsu-thesis-2022
https://ctan.org/pkg/postnotes
https://ctan.org/pkg/precattl
https://ctan.org/pkg/prettytok
https://ctan.org/pkg/proflabo
https://ctan.org/pkg/rescansync
https://ctan.org/pkg/saveenv
https://ctan.org/pkg/scripture
https://ctan.org/pkg/sidenotesplus
https://ctan.org/pkg/simples-matrices
https://ctan.org/pkg/thermodynamics
https://ctan.org/pkg/tkzexample
https://ctan.org/pkg/wrapstuff
https://ctan.org/pkg/beamerthemeamurmaple
https://ctan.org/pkg/beamertheme-tcolorbox
https://ctan.org/pkg/latex-lab
https://ctan.org/pkg/ligtype
https://ctan.org/pkg/luamathalign
https://ctan.org/pkg/luaquotes
https://ctan.org/pkg/showhyphenation
https://ctan.org/pkg/showkerning
https://ctan.org/pkg/spacekern
https://ctan.org/pkg/transparent-io
https://ctan.org/pkg/swungdash
https://ctan.org/pkg/unisc
https://ctan.org/pkg/exam-zh
https://ctan.org/pkg/hfutthesis
https://ctan.org/pkg/xduts
https://ctan.org/pkg/texlive-dummy-fedora

TUGboat, Volume 43 (2022), No. 2 209

TUG 2022 abstracts

Editor’s note: Links to videos and other informa-
tion posted at tug.org/tug2022.

−− ∗ − −

Looking outside the cockpit: An in-depth
look at airport signage
Oliver Austin

If you take a quick glance at an airport and its
signage, you’ll see many different situations where
text is used to enhance and streamline processes
for both pilot and ground crew alike. Thus, this
exploration will take a closer look at such variations
along the taxiway and apron at major airports, also
discussing how the onset of autonomous aircraft can
factor into it.

The residual concepts of production vs.
the emergent cultures of distribution in
publishing
David Blakesley

Who wins? The base or the superstructure? I’m
not a Marxist per se, but I’ve lived this struggle for
some time as a writer and publisher. In this keynote
presentation, I describe my efforts to change or adapt
the democratized tools of production to produce new
forms of writing, which ultimately led to an ongoing
battle with the dominant cultures of production in
the world of publishing. I’ll narrate two case studies.
One focuses on the writing and production of an
innovative, if not disruptive, textbook in the ultra-
conservative textbook industry. The second tells the
ongoing story of an interloping publishing company
(Parlor Press) that reveals the central challenge of
distribution for both writers and publishers, from
typesetting (print) to transformation (digital). LATEX
developers and users, take note! The return of the
nonbreaking space and soft return is nigh!

Fonts and formats of constitutions
Sarai Castañeda

Through the different constitutions from different
countries we’ll look at, France, Canada, the United
States, Mexico, and Argentina it is clear that the
fonts range from cursive to typewriter-like. The
fonts and format of each country’s constitution are
based on the time period it was written and other
countries’ influence. The countries have developed
different iterations in order for the constitution to
best represent their country’s values.

Comparing TEX engines and formats
Max Chernoff

Initially, TEX was a single engine and a single format.
However, over the past 40 years, the number of en-

gines and formats has significantly grown, meaning
that there are multiple ways of implementing similar
solutions depending on the TEX variant used. In
this talk, I’ll introduce and compare each engine and
format, focusing on both history and practical tips.

Revamping a youth chess workbook using
LATEX packages
Jennifer Claudio

Playing chess can range from a casual pastime to
a highly competitive event. Several local organiza-
tions offer chess as enrichment programs in K–12
schools, often having their own workbooks to supple-
ment their instruction. One drawback is that these
workbooks are often created using screen captures of
online sources, resulting in low-quality outputs when
used for print. This exploration tours a few packages
used for typesetting diagrams for chess problems and
puzzles and presents comparisons of one enrichment
program’s original workbook to equivalent pages pro-
duced using LATEX.

Access and accessibility
Jonathan Fine

The Chafee Amendment (www.loc.gov/nls/about/
organization/laws-regulations/copyright-

law-amendment-1996-pl-104-197) to US copyright
law “allows authorized entities to reproduce or dis-
tribute copies or phonorecords of previously pub-
lished literary or musical works in accessible formats
exclusively for use by print-disabled persons.”

This wonderful legal exemption to copyright
nicely illustrates the relation between access (here
to print works) and accessibility (here production
of phonorecords, i.e., audiobooks). Here’s another
illustration.

Jonathan Godfrey, a blind Senior Lecturer in
Statistics in New Zealand wrote to the Blind Math
list “I used to use TEX4ht as my main tool for getting
HTML from LATEX source. This was and probably
still is, an excellent tool. How much traction does
it get though? Not much. Why? I don’t know,
but my current theory is that tools that aren’t right
under people’s noses or automatically applied in
the background just don’t get as much traction.”
(nfbnet.org/pipermail/blindmath_nfbnet.org/
2021-January/009641.html)

Jonathan Godfrey also wrote to the BlindMath
list “Something has to change in the very way people
use LATEX if we are ever to get truly accessible pdf
documents. I’ve laboured the point that we need
access to information much more than we need access
to a specific file format, and I’ll keep doing so. [. . .]
I do think a fundamental shift in thinking about how
we get access to information is required across most

doi.org/10.47397/tb/43-2/tb134abstracts

TUG 2022 abstracts

https://tug.org/tug2022
https://www.loc.gov/nls/about/organization/laws-regulations/copyright-law-amendment-1996-pl-104-197/
https://www.loc.gov/nls/about/organization/laws-regulations/copyright-law-amendment-1996-pl-104-197/
https://www.loc.gov/nls/about/organization/laws-regulations/copyright-law-amendment-1996-pl-104-197/
https://nfbnet.org/pipermail/blindmath_nfbnet.org/2021-January/009641.html
https://nfbnet.org/pipermail/blindmath_nfbnet.org/2021-January/009641.html
https://doi.org/10.47397/tb/43-2/tb134abstracts

210 TUGboat, Volume 43 (2022), No. 2

STEM disciplines. (nfbnet.org/pipermail/
blindmath_nfbnet.org/2021-March/009778.html)

This talk looks at the experience of visually im-
paired STEM students and professionals, from both
the point of view of easy access to suitable inputs and
tools and also the generation of accessible outputs,
as pioneered and enabled by the Chafee Amendment.

The UK TEX Users Group—a personal
history
Jonathan Fine

UK TUG was established in the early 1990s. I’ve
been a member of UK TUG almost from its start
through to its dissolution earlier this year. Much
has changed both in the TEX community and in the
wider world over that time.

UK TUG was a significant part of the TEX com-
munity. Besides myself (Jonathan Fine), former
members of UK TUG include Peter Abbott, Kaveh
Bazargan, David Carlisle, Paulo Cereda, Malcolm
Clark, David Crossland, Robin Fairbairns, Alan Jef-
frey, Sebastian Rahtz, Arthur Rosendahl, Chris Row-
ley, Philip Taylor and Joseph Wright.

This list includes two past Presidents of TUG,
the current Vice President and a past Secretary. Ten
people on the list served on the TUG Board, for a
total of over 30 years.

Five are or were members of the LATEX3 project.
One was the founder and for 8 years editor of TEX
Live, and another the Technical coordinator of the
NTS project. One is a Lead Program Manager for
Google Fonts.

This talk provides a personal history from
\begin{uktug} to \end{uktug}, with a short
‘\aftergroup‘ appendix.

New in stock—a walk though recent LATEX
improvements (that you may have missed)
Ulrike Fischer

In this talk I present a selection of improvements
we made in the recent LATEX releases. The changes
are not discussed in depth; the goal is to give some
interesting examples and make you curious enough to
explore the documentation and learn more. (See the
LATEX news installment in this issue, and previously,
for details: latex-project.org/news.)

Boxes and glue: TEX algorithms
reimplemented
Patrick Gundlach

TEX (and therefore LATEX) have enjoyed great popu-
larity over the years as an extremely flexible, versatile,
and robust text typesetting system. The flexibility
comes not least from the ability to modify the behav-
ior of TEX through programming and from Knuth’s

foresight in recognizing the individual elements on
the page as small, rectangular building blocks that
can be combined into larger units and also manipu-
lated (box).

The development of LuaTEX made modern appli-
cations possible for the first time in the long history
of TEX via some extensions:

• The number of characters in fonts is no longer
limited to 256. This eliminates crutches like
output encoding.

• Through the integration of HarfBuzz a solid
“shaper” is available. This allows OpenType
features and complicated writing systems (e.g.,
Arabic) to be output without any problems.

• The system can be programmed with Lua in-
stead of the built-in macro language.

• Due to the clever PDF support, almost all PDF

properties and standards can be supported.

I use these extensions for the program ‘speedata
Publisher”, which is mainly made for the fully auto-
matic creation of product catalogs and data sheets
from XML.

Despite all the achievements of TEX and Lua-
TEX, there are still serious disadvantages:

• TEX and LuaTEX are anything but modular.
Changing single areas is especially difficult, be-
cause TEX is not designed for that.

• Some things cannot be achieved with LuaTEX’s
on-board tools. For example, HTTPS requests
require an external library. Documents in our
catalog area often get their images from image
databases that are accessed via HTTPS.

• For other tasks, too, it is better to use an ex-
ternal library than to reinvent the wheel. For
example, an XML parser or a library for bidirec-
tional text typesetting.

• Parallelization of tasks: modern processors usu-
ally have several processor cores, which lie idle
with TEX. Several tasks in TEX could be exe-
cuted in parallel. Paragraphs could be wrapped
with different parameters and then the best one
selected. Loading font files and preparing them
for subsetting in PDF does not have to be done
sequentially. TEX does not provide such facili-
ties.

• Distributing LuaTEX binaries across platforms
is difficult due to external dependencies. For
single applications you don’t want to ship or
require a whole TEX Live installation.

The restrictions mentioned have troubled me
considerably. Regarding the output quality of TEX,
there are hardly comparable alternatives — especially

TUG 2022 abstracts

https://nfbnet.org/pipermail/blindmath_nfbnet.org/2021-March/009778.html
https://nfbnet.org/pipermail/blindmath_nfbnet.org/2021-March/009778.html
https://latex-project.org/news

TUGboat, Volume 43 (2022), No. 2 211

not in the open source realm. Therefore, there
seemed no alternative left but to re-implement TEX
in a “modern” programming language. Some years
ago there was already such an attempt (NTS), but
it failed. After long pondering, respectively to meet
my requirements for a text typesetting system for
catalogs and datasheets, I came to the conclusion
that I “only” take over the algorithms and the logic
of TEX, but not the input language.

Boxes and glue

“Boxes and glue” is a library written in the Go pro-
gramming language. The name is based on the model
of TEX with the stretchable spaces between the rect-
angular units. The development of boxes and glue is
quite advanced and includes among other things:

• TEX’s smallest units (node) with ways to nest
them inside each other (vbox, hbox).

• TEX’s paragraph breaking algorithm.

• The pattern-based hyphenation.

• The inclusion of TrueType and OpenType fonts
and PNG, JPEG, and PDF images.

• Text shaping with HarfBuzz.

Besides these basic parts, there is yet another
library that builds on boxesandglue. It offers:

• Reading XML files

• Interpretation of HTML and CSS

• grouping of font files into families with easy font
selection

• Handling of colors of all kinds (RGB, CMYK,
spot colors)

• Tagged PDF

The application programming interface (API) is
not yet fixed. The development of boxes and glue
is being carried out in parallel with the further de-
velopment of the speedata Publisher (github.com/
speedata/xts) and the requirements here largely de-
termine the programming interface of boxesandglue.
Since it is a library, there is no fixed input language
as with TEX. In this respect also, boxesandglue is
also yet suitable for and (end) user.

References

• NTS: en.wikipedia.org/wiki/New_

Typesetting_System

• Boxes and glue: github.com/speedata/

boxesandglue

• speedata Publisher: github.com/speedata/

publisher

• XTS XML: github.com/speedata/xts

Using LATEX deployed in AWS as a PDF

report generation tool for a cancer clinical
trial search engine
Hubert Hickman, Matthew Mariano, Haibin Wu,

Hong Dat Cheung

Matching cancer patients with clinical trials is a com-
plex process. One of the outputs of that process is
the production of a PDF report containing relevant
information about a set of trials. In this paper we
present strategies, challenges, and conclusions regard-
ing our use of LATEX deployed in AWS to generate
PDF reports.

Bridging the gap between LATEX/PDFs and
the modern web
Nicolas Jimenez

In this talk we explore the history of LATEX and
PDFs in scientific communication, the roles these
tools play, and how those roles may evolve over time.
We discuss the rise of Markdown for web publishing,
its limitations, and opportunities. We also touch
on some recent developments by Mathpix to facili-
tate document interoperability and accessibility for
researchers and the broader STEM community.

Right to left beamer documents in X ETEX
Vafa Khalighi

I will discuss the recent changes to the bidi package
allowing users to produce right to left beamer docu-
ments describing the challenges and what needs to
be done. I will also discuss other recent changes of
the bidi package.

Bidirectional multi-columns and paragraph
footnotes in TEX
Vafa Khalighi

Appendix D (Dirty Tricks) of The TEXbook describes
algorithms for multi-column typesetting and para-
graph footnotes, among much more. The described
algorithms are used in various TEX packages such as
footmisc, fnpara, manyfoot, and many others.

When the package multicol is used, things get
more complicated. Another level of complication
arises when you want to mix these with both right-
to-left and left-to-right typesetting.

The bidi package provides both right-to-left
and left-to-right multi-columns and paragraph foot-
notes. This talk will describe my own experience
learning about how other packages implement multi-
columns and paragraph footnotes, and also the ap-
proach I took in the bidi package for these features.

Typesetting mathematics in Persian
Vafa Khalighi

I will discuss how mathematics is typeset in Persian
and what is required. I will also talk about how

TUG 2022 abstracts

https://github.com/speedata/xts
https://github.com/speedata/xts
https://en.wikipedia.org/wiki/New_Typesetting_System
https://en.wikipedia.org/wiki/New_Typesetting_System
https://github.com/speedata/boxesandglue
https://github.com/speedata/boxesandglue
https://github.com/speedata/publisher
https://github.com/speedata/publisher
https://github.com/speedata/xts

212 TUGboat, Volume 43 (2022), No. 2

the X EPersian package implements these features
and show some examples. I will then discuss recent
changes to the xepersian package allowing users to
change between English and Persian digits mid-math
mode.

Observations and analysis of Vietnamese text
Tia Luc

Having Vietnamese as my first language and English
as my dominant language has inspired exploration
of the history and applications of the former. Con-
sidering how Vietnamese and English both use the
Latin alphabet, this presentation will explore the
similarities and differences between the two using a
collection of instances in which Vietnamese text is
displayed in our world.

Accessible tables using ‘Tagged PDF’
Ross Moore

Some basic requirements for accessibility of tabular
material are:

• each cell, whether header or content, must have
an attribute providing a unique ID for that cell;

• each data cell must specify the corresponding
row and column headers that most directly pro-
vide the meaning of the information contained
within the cell. This is done via a Headers at-
tribute using the unique IDs for the header cells.

Header cells themselves may have other row or col-
umn headers; e.g., as a common header for a block
of rows or columns.

Tagged PDF has the tagging and mechanisms to
provide such attributes. When the PDF is translated
into HTML (using the ngPDF online converter, say)
this information is recorded in the web pages, to
be available to Assistive Technologies. In this talk
we show several examples of tables specified using
various packages, as in The LATEX Companion, both
in PDF and HTML web pages.

A novel coding idea that allows this to be achieved
was presented. This involves two aspects:

• turning the ‘&’ character into an active token
while the tabular material is being processed;

• use of ‘look-ahead’ to see what kind of material
is coming at or before the start of each tabular
cell.

The example documents shown can be found
on the author’s website, at science.mq.edu.au/

~ross/TaggedPDF/TUG2022/. This HTML page was
itself created using the same methods, from a PDF file
which is available at science.mq.edu.au/~ross/

TaggedPDF/TUG2022/TableSite.pdf.
Some rationale concerning how header cells are

determined in real-world documents is explained in

one of the examples: science.mq.edu.au/~ross/
TaggedPDF/TUG2022/FishTables-only.pdf

Machine translation of mathematical text
Aditya Ohri, Tanya Schmah

We present a machine translation system, the Poly-
Math Translator, for LATEX documents containing
mathematical text. The system combines a LATEX
parser, tokenization of math and labels, a deep learn-
ing Transformer model trained on mathematical and
other text, and the Google Translate API with a
custom glossary. Ablation testing shows that math
tokenization and the Transformer model each sig-
nificantly improve translation quality, while Google
Translate is used as a backup when the Transformer
does not have confidence in its translation. For LATEX
parsing, we have used the pandoc document con-
verter, while our latest development version instead
uses the TexSoup package. We will describe the sys-
tem, show examples, and discuss future directions.

Musical composition typesetting
Christopher Park, Emily Park

We will explain the typesetting of a musical compo-
sition using the LATEX markup.

TEX Live 2022 status update
Norbert Preining

This talk reports on changes within the TEX Live
project and distribution over the last year, as well
as looking at further development directions and
challenges we are facing.

Bricks and pieces
samcarter

Real world bricks and jigsaw puzzles are a fun pas-
time for many people. The tikzbricks and jigsaw

packages bring them to the LATEX world. This short
talk will give an overview of both packages and show
examples how they can be used.

Detailed descriptions of usage and options can
be found in the respective package documentations,
linked from the CTAN package pages: ctan.org/

pkg/jigsaw and ctan.org/pkg/tikzbricks.

A gentle introduction to Markdown
for writers
Tereza Vrabcová

TEX is great for producing beautiful documents, but
not the easiest to read and write. At this workshop,
you will learn about Markdown and how you can use
it to produce different types of beautiful documents
from beautiful source texts that don’t distract you
from your writing.

TUG 2022 abstracts

http://science.mq.edu.au/~ross/TaggedPDF/TUG2022/
http://science.mq.edu.au/~ross/TaggedPDF/TUG2022/
http://science.mq.edu.au/~ross/TaggedPDF/TUG2022/TableSite.pdf
http://science.mq.edu.au/~ross/TaggedPDF/TUG2022/TableSite.pdf
http://science.mq.edu.au/~ross/TaggedPDF/TUG2022/FishTables-only.pdf
http://science.mq.edu.au/~ross/TaggedPDF/TUG2022/FishTables-only.pdf
https://ctan.org/pkg/jigsaw
https://ctan.org/pkg/jigsaw
https://ctan.org/pkg/tikzbricks

TUGboat, Volume 43 (2022), No. 2 213

maps 52 (2022.1)

maps is the publication of ntg, the Dutch language
TEX user group (https://www.ntg.nl).

maps redactie, Welcome; pp. 1–2
By means of the maps we want to keep you informed

of developments, and reward our members for their loyal
support to the TEX developers. We also offer space to
readers who let others share their experiences with TEX,
MetaPost, fonts and such. So don’t hesitate to send
us articles. Half a page is already very nice, more is
appreciated. It does not have to be a ‘heavy cost’, as
readers are very interested in reading how others use TEX.
So an article like “This is what I do with TEX, here is
how I do it and now you can do it too” is very welcome!

Although the Internet is an important source of
information today, paper continues to fulfill a function
within the association. After all, that fits with TEX!

Hans Hagen, Dutch government math rendering;
pp. 3–8

Mikael Sundqvist and I have spent quite some time
on an upgrade of the math engine in LuaMetaTEX, with
an example of an educational document published by the
Dutch government.

Hans Hagen, Mikael Sundqvist, A different
approach to math spacing; pp. 9–36

Extending and generalizing math spacing, atoms,
classes, and more.

Frans Goddijn, Danlan type by Adriaan Goddijn—
(and a salacious gnome); pp. 37–40

The author (Frans Goddijn) purchased a drawing by
Adriaan Goddijn (no relation), not for the image but to
have a close look at the way the artist signed it, namely
with his initials in a font he had created himself over the
course of twenty years, in which every character of the
alphabet is depicted using just seven glyphs, inspired by
the Roman Capitalis Quadrata. He named it DANELAN

(also called DANLAN) because he worked on it in the
country of Denmark and the Dutch province of Friesland.

Taco Hoekwater, Danlan type by Adriaan
Goddijn — (quick font hack); pp. 41–46

When Frans Goddijn first showed me the Danlan
font article in September 2019, I immediately thought
that it would be fun to play with those letters a bit in
TEX and MetaPost.

But then the almost inevitable thing happened that
so often happens to me: I got distracted by other things,
and forgot about Danlan completely. Until this spring,
when Frans reminded me that I had promised an article
for the maps. This is that promised article: it will show
what a few days playing around with a specification and
MetaPost, FontForge, and ConTEXt got me. I have not
created a complete font by any means, but it is just
enough of one to show off a little bit and document how
the creation process worked out for me.

Mikael Sundqvist, Finding all intersections of paths
in MetaPost; pp. 47–70

In this article we will discuss different ways to imple-
ment macros to find all intersections of paths in MetaPost.
We will first work out some rather simple ideas, providing
partial solutions on the macro level. We then show by
an example how the intersectiontimes macro works,
and describe how it was extended in the engine by Hans
Hagen.

Hans Hagen, Cyrillisch in publieke fonts [Cyrillic in
public fonts]; pp. 71–72

A review of Cyrillic support in several publicly-
available fonts.

Yuri Robbers, Tante Lenie weet raad—Uw trouwe
steun en toeverlaat voor al uw problemen [Aunt Lenie
knows what to do—Your loyal support and rock for
all your problems]; pp. 73–75

This time Aunt Lenie helps some ntg members and
other deep souls with their TEX problems. This is how
she helps Tamara J., designer of board games, to depict
beautiful dice in the manual for her new game, using
LATEX, and she helps classical language teacher Jaap T. to
mark words in a text for a test he is making in X ELATEX.
Finally, she helps Herman R., a mathematician who got
stuck with boldfaced math formulas in section titles in
plain TEX.

Taco Hoekwater, Dice3D OpenType—(quick font
hack two); p. 76

The previous article by Yuri Robbers shows sim-
ulated 3D dice. That font existed only as a Metafont
source file, so for the ConTEXt-format maps article, I
had to quickly create an OpenType version.

Hans Hagen, The art of maps proofreading;
pp. 77–81

ConTEXt support for the 3D dice font described in
the previous article, with enhancements.

Fabrice Larribe, MetaFun for generative art;
pp. 82–90

This article shows how MetaFun can be used to
create generative art, by showing the construction of three
projects, step by step, in remarkably colorful images.

Jos Winnink, Afscheid [Goodbye]; pp. 91–92
I have been a member of the ntg since 1990. Now

that I’m retired, my use of TEX has decreased to such
an extent that I no longer see myself as an active user.
In this article I look back on more than 30 years of TEX
and especially LATEX-related activities.

[Received from Wybo Dekker.]

doi.org/10.47397/tb/43-2/tb134maps

214 TUGboat, Volume 43 (2022), No. 2

La Lettre GUTenberg 45, 2022

La Lettre GUTenberg (gutenberg-asso.fr/
-Lettre-GUTenberg-) is a free online publication
of GUTenberg, the French-language TEX user
group. Its new document class is now available
as the letgut package on CTAN and the TEX
distributions.

Issue #45 was published May 20, 2022.

Patrick Bideault, Éditorial [Editorial]; pp. 1–3

Maxime Chupin and Patrick Bideault,
Compte-rendus de conseils d’administration
[Minutes of the board’s meetings]; pp. 3–12

Maxime Chupin, Retour sur le choix du nouveau
nom de domaine [Report about the new domaine
name]; pp. 12–14

The new domain name was chosen by a poll
among GUTenberg’s members.

Patrick Bideault, Les différents travaux de
l’association [The various works of the group];
pp. 15–16

Céline Chevalier, Patrick Bideault, Denis

Bitouzé, Maxime Chupin, Et maintenant, une
bonne vieille veille technologique ! [Technology
watch]; pp. 17–32

130 new CTAN packages, August 2021–May
2022.

Thierry Laronde, KerTEX, un projet d’ampleur
développé par un contributeur francophone
[KerTEX, a major project developed by a
French-speaking contributor]; p. 33

A brief report about KerTEX, a project hosted
at kertex.kergis.com/en.

Maxime Chupin, Promouvoir LATEX dans
l’enseignement au collège et au lycée ? [Promoting
LATEX in teaching at middle and high school];
pp. 34–41

Jacques André & Patrick Bideault, La fonte
de ce numéro : Infini [This issue’s font: Infini];
pp. 42–80

The Infini typeface was created by Sandrine
Nugue for the National Center for Plastic Arts. And
it is precisely because of this public commission that
we have decided to use it for this issue of La Lettre

GUTenberg. Using our usual layout tools with this
font seemed an interesting challenge: how were we
going to access the various glyphs without benefiting
from a package which simplifies this work?

Moreover, deciding to use this typeface meant
putting it to the test: for Lettre, we usually call on
a wide range of characters: with or without serifs,
fixed width, dedicated to mathematics, etc.; how was
Infini going to fit into our production process? And
what solutions were we going to find to respond to
any technical problems?

Finally, using this typeface here means letting
it unfold on many pages, appreciating the level of
gray, the different forms and spaces. This allows you
to form an opinion based on a real reading and not
merely on the contemplation of an example.

[Editor’s note: The font, shown in its most playful
form in the titles of the issue’s articles, is reminiscent of
Matthew Carter’s Mantinia font, and of “space-saving”
architectural inscriptions; see tug.org/TUGboat/tb35-1/
tb109beet.pdf for an illustration, and we highly recom-
mend visiting La Lettre to see how it’s applied there.]

Jérémy Just, Compte rendu de lecture [Book
review]; pp. 81–82

About Christophe Aubry’s book LATEX – Con-

ception de documents élaborés et structurés, ENI,
2021.

Patrick Bideault, Compte rendu de lecture
[Book review]; pp. 82–84

About Isabel Meirelles’ book Design de l’infor-

mation (Design for Information, Rockport Publish-
ers, 2013), published in French in 2014 by Parramón.

Patrick Bideault, En bref [At a glance];
pp. 85–87

Short news items about a new French website
about TikZ, the way xindex handles the French
language, Helmut Schmid, the DeMo Festival and
more.

[Received from Patrick Bideault.]

doi.org/10.47397/tb/43-2/tb134lettre

https://gutenberg-asso.fr/-Lettre-GUTenberg-
https://gutenberg-asso.fr/-Lettre-GUTenberg-
http://kertex.kergis.com/en
https://tug.org/TUGboat/tb35-1/tb109beet.pdf
https://tug.org/TUGboat/tb35-1/tb109beet.pdf
xindex
https://doi.org/10.47397/tb/43-2/tb134lettre

TUGboat, Volume 43 (2022), No. 2 215

Die TEXnische Komödie 2/2022

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).
Non-technical items are omitted.

Stefan Kottwitz, Bericht über Projektförderung
von LATEX-Servern [Report on project funding of
LATEX servers]; pp. 6–10

Report on the project funding of Stefan’s LATEX
servers by DANTE.

Adelheid Bonnetsmüller, Having Fun with
LATEX: Klein- und großkariert [Having fun with
LATEX: Small and large grids]; pp. 11–18

Typesetting graph paper with LATEX.

Ralf Mispelhorn, Quintenzirkel mit
Gitarren-Akkorden [Circle of fifths with
guitar chords]; pp. 18–21

Typesetting guitar chords.

Ralf Mispelhorn, Erstellen eines Songbooks
[Create a songbook]; pp. 21–30

Songs collected while learning to play the guitar
are compiled into a songbook using a Python script.

Herbert Voss, Erstellen, Ausführen und
Einbinden der Ausgaben externer Dateien
[Creation, execution and integration of the output
of external files]; pp. 30–60

doi.org/10.47397/tb/43-2/tb134komo

A tutorial on the hvextern package by Herbert
Voß. (A translation will be published in TUGboat

43:3.)

Henning Hraban Ramm, ConTEXt kurz notiert
[ConTEXt briefly noted]; pp. 61–63

News from the ConTEXt world.

Peter Flynn, Druck oder Nichtdruck [To print
or not to print]; pp. 64–68

Translated from Peter Flynn’s TUGboat col-
umn, Typographer’s Inn (TUGboat 41:3 (2020), 265–
268). Translated by Patrick Bideault and Bernd
Raichle.

Jürgen Fenn, Neue Pakete auf CTAN

[New packages on CTAN]; pp. 68–72
List of new packages on CTAN.

Karl-Heinz Ohnemus, Beyond the Archive –
Von der Gießerei zum Klingspor Type Archive
[Beyond the archive — From the foundry to the
Klingspor type archive]; pp. 73–75

Review of the catalogue for the exhibition of the
same name.

Uwe Ziegenhagen, LATEX Beginner’s Guide,
2. Auflage [LATEX Beginner’s Guide, 2nd edition];
pp. 75–76

Book review of Stefan Kottwitz’s new book.

[Received from Uwe Ziegenhagen.]

TUG

Institutional

Members

TUG institutional members

receive a discount on multiple

memberships, site-wide electronic

access, and other benefits:

tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,

Providence, Rhode Island, ams.org

Association for Computing

Machinery, New York, New York,

acm.org

Aware Software,

Newark, Delaware, awaresw.com

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic,

cstug.cz

CTAN, ctan.org

Duke University Press, Durham,

North Carolina, dukeupress.edu

Hindawi Foundation, London, UK,

hindawi.org

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

L3Harris, Melbourne, Florida,

l3harris.com

LATEX Project, latex-project.org

MacTEX, tug.org/mactex

Maluhy & Co., São Paulo, Brazil,

maluhy.com.br

Marquette University,

Milwaukee, Wisconsin,

marquette.edu

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic, fi.muni.cz

Nagwa Limited, Windsor, UK,

nagwa.com

Overleaf, London, UK,

overleaf.com

StackExchange,

New York City, New York,

tex.stackexchange.com

TEXFolio, Trivandrum, India,

texfolio.org

Université Laval, Ste-Foy, Québec,

Canada, bibl.ulaval.ca

University of Ontario, Institute

of Technology, Oshawa, Ontario,

Canada, ontariotechu.ca

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway, uio.no

VTEX UAB, Vilnius, Lithuania,

vtex.lt

216 TUGboat, Volume 43 (2022), No. 2

2023 TEX Users Group election

TUG Elections committee

The terms of TUG President and five TUG Directors will
expire as of the 2023 Annual Meeting, expected to be
held in July or August 2023. Three positions are open;
thus eight are to be filled.

The terms of these directors will expire in 2023:
Barbara Beeton, Paulo Cereda, Ulrike Fischer,
Jim Hefferon, Norbert Preining.

Continuing directors, with terms ending in 2025:
Karl Berry, Johannes Braams, Kaja Christiansen,
Klaus Höppner, Frank Mittelbach, Ross Moore,
Arthur Rosendahl.

The election to choose the new President and Direc-
tors will be held in early Spring of 2023. Nominations
for these openings are now invited. A nomination form
is available on this page or via tug.org/election.

The TUG Bylaws provide that “Any member may
be nominated for election to the office of TUG President/
to the Board by submitting a nomination petition in
accordance with the TUG Election Procedures. Election
. . . shall be by . . . ballot of the entire membership, carried
out in accordance with those same Procedures.”

The name of any member may be placed in nomina-
tion for election to one of the open offices by submission
of a petition, signed by two other members in good stand-
ing, to the TUG office; the petition and all signatures
must be received by the deadline stated below. A can-
didate’s membership dues for 2023 must be paid before
the nomination deadline. The term of TUG President is
two years, and the term of Director is four years.

A list of informal guidelines for all TUG board mem-
bers is available at tug.org/election/guidelines.html.
It describes the basic functioning of the TUG board, in-
cluding roles for the various offices and ethical consider-
ations. The expectation is that all board members will
abide by the spirit of these guidelines.

Requirements for submitting a nomination are listed
at the top of the form. The deadline for receipt of com-
pleted nomination forms and ballot information is

07:00 a.m. PST, 1 March 2023

at the TUG office in Portland, Oregon, USA. No excep-
tions will be made. Forms may be submitted by fax, or
scanned and submitted by email to office@tug.org; re-
ceipt will be confirmed by email. In case of any questions
about a candidacy, the full TUG Board will be consulted.

Information for obtaining ballot forms from the TUG

website will be distributed by email to all members within
21 days after the close of nominations. It will be possible
to vote electronically. Members preferring to receive a
paper ballot may make arrangements by notifying the
TUG office; see address on the form. Marked ballots must
be received by the date noted on the ballots.

Ballots will be counted by a disinterested party not
affiliated with the TUG organization. The results of the
election should be available by mid-April, and will be
announced in a future issue of TUGboat and through
various TEX-related electronic media.

2023 TUG Election—Nomination Form

Eligibility requirements:

• TUG members whose dues for 2023 have been paid.

• Signatures of two (2) members in good standing at
the time they sign the nomination form.

• Supplementary material to be included with the
form: passport-size photograph, a short biography,
and a statement of intent. The biography and state-
ment together may not exceed 400 words.

• Names that cannot be identified from the TUG mem-
bership records will not be accepted as valid.

The undersigned TUG members propose the nomination of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

□ TUG President

□ Member of the TUG Board of Directors

for a term beginning with the 2023 Annual Meeting.

1.
(please print)

(signature) (date)

2.
(please print)

(signature) (date)

Return this nomination form to the TUG office via postal
mail, fax, or scanned and sent by email. Nomination
forms and all required supplementary material (photo-
graph, biography and personal statement for inclusion
on the ballot, dues payment) must be received at the
TUG office in Portland, Oregon, USA, no later than

07:00 a.m. PST, 1 March 2023.

It is the responsibility of the candidate to ensure
that this deadline is met. Under no circumstances will
late or incomplete applications be accepted.

Supplementary material may be sent separately from
the form, and supporting signatures need not all appear
on the same physical form.

□ 2023 membership dues paid
□ nomination form
□ photograph
□ biography/personal statement

TEX Users Group
Nominations for 2023 Election

P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

(email: office@tug.org; fax: +1 815 301-3568)

doi.org/10.47397/tb/43-2/tb134elec

2022

Sep 11 – 16 XML Summer School, St Edmund Hall,
Oxford University, Oxford, UK.
xmlsummerschool.com

Sep 12 – 18 16th International ConTEXt Meeting,
Dreifelden, Germany.
meeting.contextgarden.net/2022

Sep 20 – 23 22nd ACM Symposium on Document
Engineering, San Jose, California.
doceng.org/doceng2022

Sep 23 – 25 Ladies of Letterpress EconoCon[ference],
“More letterpress learning for less”,
St. Louis, Missouri
(in person and online).
ladiesofletterpress.com/conference

Oct 15 TUGboat 43:3, submission deadline.

Oct 28 – 29 TypoDay2022,
“Typography for Children”,
Hosted online by IDC School of Design
(IDC), Indian Institute of Technology
Bombay. www.typoday.in

Nov 19 TeXConf 2022
(Japan; online)
texconf2022.tumblr.com

2023

Mar 1 TUG election: nominations due,
07:00 a.m.PST tug.org/election

Mar 24 TUGboat 44:1, submission deadline.

TUGboat, Volume 43 (2022), No. 2 217

Calendar

May BachoTEX2023, “A model kit. Modeling
and implementing text typesetting in
TEX and other systems”,

28th BachoTEX Conference,
Bachotek, Poland.
www.gust.org.pl/bachotex

May Association Typographique Internationale
(ATypI) annual conference,
ATypI Paris, France. www.atypi.org

Jun 26 – 29 SHARP 2023, “Affordances and Interfaces:
Textual Interaction
Past, Present and Future”,
Society for the History of Authorship,
Reading & Publishing.
Hosted online by the
University of Otago, New Zealand.
www.sharpweb.org/main/conferences

Jun 28 – 30 Twenty-first International Conference
on New Directions in the Humanities,
“Literary Landscapes: Forms of
Knowledge in the Humanities”,
Sorbonne University, Paris, France.
thehumanities.com/2023-conference

Jul 10 – 14 Digital Humanities 2023, Alliance of
Digital Humanities Organizations,
“Collaboration as Opportunity”,
Graz, Austria. dh2023.adho.org

Sep 5 The Updike Prize for Student Type Design,
application deadline, 5:00 p.m. EST.
Providence Public Library,
Providence, Rhode Island.
prov.pub/updikeprize

Owing to the COVID-19 pandemic, schedules may change. Check the websites for details.

Status as of 1 September 2022

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

218 TUGboat, Volume 43 (2022), No. 2

Science is what we understand well enough to explain to a
computer. Art is everything else we do.

— Donald E. Knuth

stmdocs
the confluence of art and science of text

processing in the cloud!

◦ empowering authors to self-publish

◦ assisted authoring

◦ TEXFolio — the complete journal
production in the cloud

◦ NEPTUNE — proofing framework for
TEX authors

S T M D O C U M E N T E N G I N E E R I N G P V T LT D
Trivandrum • India 695571 • www.stmdocs.in • info@stmdocs.in

1

Find out more at www.overleaf.com

A free online LaTeX and Rich Text

collabora琀椀ve wri琀椀ng and publishing tool

Features include:

• Cloud-based platform: all you need is a web browser. No

software to install. Prefer to work o昀툀ine? No problem - stay in
sync with Github or Dropbox

• Complementary Rich Text and LaTeX modes: prefer to see
less code when writing? Or love writing in LaTeX? Easy to
switch between modes

• Sharing and collaboration: easily share and invite colleagues
& co-authors to collaborate

• 1000’s of templates: journal articles, theses, grants, posters,
CVs, books and more – simply open and start to write

• Simpli昀椀ed submission: directly from Overleaf into many
repositories and journals

• Automated real-time preview: project compiles in the
background, so you can see the PDF output right away

• Reference Management Linking: multiple reference tool linking
options – fast, simple and correct in-document referencing

• Real-time Track Changes & Commenting: with real-time
commenting and integrated chat - there is no need to switch to
other tools like email, just work within Overleaf

• Institutional accounts available: with custom institutional

web portals

Overleaf makes the whole process of writing, editing and
publishing scienti昀椀c documents much quicker and easier.

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
tug.org/consultants.html. If you’d like to be listed,
please see there.

Dangerous Curve

Email: typesetting (at) dangerouscurve.org

Typesetting for over 40 years, we have experience in
production typography, graphic design, font design,
and computer science, to name a few things. One DC
co-owner co-authored, designed, and illustrated a TEX
book (TEX for the Impatient).

We can convert your documents to LATEX from
just about anything type up your handwritten pages
proofread, copyedit, and structure documents

in English apply publishers’ specs write custom
packages and documentation resize and edit your
images for a better aesthetic effect make your
mathematics beautiful produce commercial-quality
tables with optimal column widths for headers and
wrapped paragraphs modify bibliography styles
make images using TEX-related graphic programs
design programmable fonts using METAFONT and

more! (Just ask.)
Our clients include high-end branding and

advertising agencies, academics at top universities,
leading publishers. We are a member of TUG, and
have supported the GNU Project for decades (including
working for them). All quote work is complimentary.

Hendrickson, Amy

57 Longwood Avenue Apt. 8
Brookline, MA 02446
+1 617-738-8029
Email: amyh (at) texnology.com

Web: www.texnology.com

Full time LATEX consultant for more than 30 years;
have worked for major publishing companies, leading
universities, and scientific journals. Our macro
packages are distributed on-line and used by thousands
of authors. See our site for many examples:
texnology.com.

LATEX Macro Writing: Packages for books,
journals, slides, posters, e-publishing and more;
Sophisticated documentation for users.

TUGboat, Volume 43 (2022), No. 2 219

TEXConsultants

Design as well as LATEX implementation for
e-publishing, print books and journals, or specialized
projects.

Data Visualization, database publishing.
Innovative uses for LATEX, creative solutions our

speciality.
LATEX Training, customized to your needs, on-site

or via Zoom. See https://texnology.com/train.htm

for sample of course notes.
Call or send email: I’ll be glad to discuss your

project with you.

Dominici, Massimiliano

Email: info (at) typotexnica.it

Web: www.typotexnica.it

Our skills: layout of books, journals, articles; creation
of LATEX classes and packages; graphic design;
conversion between different formats of documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for documents
in Italian, English, or French. Let us know the work
plan and details; we will find a customized solution.
Please check our website and/or send us email for
further details.

Latchman, David

2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman

(at) texnical-designs.com

Web: www.texnical-designs.com

LATEX consultant specializing in the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized LATEX
packages and classes to meet your needs. Contact us
to discuss your project or visit the website for further
details.

LATEX Typesetting

Email: enquiries (at) latextypesetting.com

Web: latextypesetting.com

LATEX Typesetting has been in business since
2013 and is run by Vel, the developer behind
LaTeXTemplates.com. The primary focus of the service
is on creating high quality LATEX templates and
typesetting for business purposes, but individual
clients are welcome too.

I pride myself on a strong attention to detail,
friendly communication, high code quality with
extensive commenting and an understanding of your
business needs. I can also help you with automated
document production using LATEX. I’m a scientist,

designer and software developer, so no matter your
field, I’ve got you covered.

I invite you to review the extensive
collection of past work at the Showcase
latextypesetting.com/showcase. Submit an enquiry
for a free quote!

Monsurate, Rajiv

Web: www.rajivmonsurate.com

latexwithstyle.com

I offer: design of books and journals for print and
online layouts with LATEX and CSS; production of
books and journals for any layout with publish-ready
PDF, HTML and XML from LATEX (bypassing any
publishers’ processes); custom development of LATEX
packages with documentation; copyediting and
proofreading for English; training in LATEX for authors,
publishers and typesetters.

I have over two decades of experience in academic
publishing, helping authors, publishers and typesetters
use LATEX. I’ve built typesetting and conversion
systems with LATEX and provided TEX support for a
major publisher.

Sofka, Michael

Email: michael.sofka (at) gmail.com

Professional TEX and LATEX consulting and
programming services. I offer 30 years of experience in
programming, macro writing, and typesetting books,
articles, newsletters, and theses in TEX and LATEX:
Automated document conversion; Programming in
Perl, Python, C, R and other languages; Writing and
customizing macro packages in TEX or LATEX, knitr.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

Veytsman, Boris

132 Warbler Ln.
Brisbane, CA 94005
+1 703-915-2406
Email: borisv (at) lk.net

Web: www.borisv.lk.net

220 TUGboat, Volume 43 (2022), No. 2

TEX and LATEX consulting, training, typesetting and
seminars. Integration with databases, automated
document preparation, custom LATEX packages,
conversions (Word, OpenOffice etc.) and much more.

I have about two decades of experience in TEX and
three decades of experience in teaching & training. I
have authored more than forty packages on CTAN as
well as Perl packages on CPAN and R packages on
CRAN, published papers in TEX-related journals, and
conducted several workshops on TEX and related
subjects. Among my customers have been Google,
US Treasury, FAO UN, Israel Journal of Mathematics,
Annals of Mathematics, Res Philosophica,
Philosophers’ Imprint, No Starch Press, US Army
Corps of Engineers, ACM, and many others.

We recently expanded our staff and operations to
provide copy-editing, cleaning and troubleshooting of
TEX manuscripts as well as typesetting of books,
papers & journals, including multilingual copy with
non-Latin scripts, and more.

Warde, Jake

90 Resaca Ave.
Box 452
Forest Knolls, CA 94933
+1 650-468-1393
Email: jwarde (at) wardepub.com

Web: myprojectnotebook.com

I have been in academic publishing for 30+ years. I
was a Linguistics major at Stanford in the mid-1970s,
then started a publishing career. I knew about TEX
from editors at Addison-Wesley who were using it to
publish beautifully set math and computer science
books.

Long story short, I started using LATEX for
exploratory projects (see website above). I have
completed typesetting projects for several journal
articles. I have also explored the use of multiple
languages in documents extensively. I have a strong
developmental editing background in STEM subjects.
If you need assistance getting your manuscript set in
TEX I can help. And if I cannot help I’ll let you know
right away.

Reports and notices

86 TUG 2022 conference information and program

89 Jim Hefferon / TUG 2022 conference report

90 Robin Laakso / TUG 2022 Annual General Meeting notes

93 Karl Berry / David C. Walden, 1942–2022
• for more on Dave’s many lifetime projects, see walden-family.com

96 Paulo Ney de Souza / interview with John Lees-Miller, CTO of Overleaf

100 Paulo Ney de Souza / interview with Boris Veytsman, scientist, TEX programmer and current TUG President

209 TUG 2022 abstracts (Austin, Blakesley, Castañeda, Chernoff, Cheung, Claudio, Fine, Gundlach, Hickman,
Jimenez, Khalighi, Luc, Mariano, Moore, Ohri, Park C., Park E., Preining, samcarter, Schmah,
Vrabcová, Wu)

214 From other TEX journals: La Lettre GUTenberg 45 (2022); MAPS 52 (2022); Die TEXnische Komödie 2/2022

215 Institutional members

216 TUG Elections committee / 2023 TEX Users Group election

217 Calendar

218 TUG 2022 advertisements: STM Document Engineering Pvt Ltd; Overleaf

219 TEX consulting and production services

TUGBOAT Volume 43 (2022), No. 2

Introductory

159 Paulo Cereda, Phelype Oleinik / The story of a silly package
• development of the sillypage package, based on the Monty Python silly walks

155 Éric Guichard, Jean-Michel Hufflen / Introductory LATEX workshop, en français
• overview of this TUG’22 workshop, conducted in French

156 Lloyd Prentice / Self-publishing, LATEX, and Markdown
• roadmap for making LATEX more usable for the vast self-publishing author population

108 Dag Spicer / A stroll through computer history at the CHM
• overview of exhibits and resources at the Computer History Museum, computerhistory.org

Intermediate

142 Apu V, Rishi T, Aravind Rajendran / LATEX profiling of author submissions — completeness & usability checking
• description of a pre-submission validation tool, using scripts and LATEX3 hooks

207 Karl Berry / The treasure chest
• new CTAN packages, April–August 2022

104 Carlos Evia / The future of technical documentation starts with its recent past
• overview of DITA and family and relationship to LATEX

127 Island of TEX / IoT theatre presents: The Tempest
• TEX Live docker images, TEXdoc online, Albatross, checkcites, arara past and future

148 LATEX Project Team / LATEX news, issue 35, June 2022
• document metadata interface, latex-lab, marks, floating point

109 Steven Matteson / Type design: Catching up to the past
• illustrated examples of adapting historical fonts for technological demands

172 Chetan Shirore, Ajit Kumar / The luatruthtable LATEX package
• using Lua to generate truth tables for general logical expressions

134 Marnanel Thurman / yex: a TEX-alike typesetter in Python
• implementing TEX in the Python environment, focusing on HTML output

130 Boris Veytsman / Using knitr and LATEX for literate laboratory notes
• background, desiderata, and solutions for lab notes

162 Joseph Wright / Key–value setting handling in the LATEX kernel
• generic key–value and option support with both LATEX2ε and expl3 syntax

164 Joseph Wright / siunitx: Launching version 3
• development support from standard LATEX tools for a major revision

165 Joseph Wright / Case changing: LATEX reaches Unicode-land
• progress toward uppercasing, lowercasing, titlecasing, case folding, in full generality

Intermediate Plus

176 Oleksandr Baranovskyi / LATEX classes for doctoral theses in Ukraine: Interesting tips and painful problems
• status, issues, and directions for vakthesis and mon2017dev

182 H. Andrew Black, Hugh J. Paterson III / XLingPaper’s use of TEX technologies
• use of X ELATEX in an authoring tool for linguistic publishing

167 Ulrike Fischer / Using spot colors in LATEX
• new support in the kernel, and via the colorspace package

120 Peter K. G. Williams / The Tectonic Project: Envisioning a 21st-century TEX experience
• overview of a Rust reimplementation of X ETEX, targetting modern documents

Advanced

202 Hans Hagen, Mikael Sundqvist / Pushing math forward with ConTEXt lmtx
• generalizing atom classes and spacing; breaking multiline formulas

136 Jean-Michel Hufflen / Extracting information from (LA)TEX source files
• a generalized Scheme tool for external processing of LATEX documents

197 Dennis Müller, Michael Kohlhase / A LATEX-based ecosystem for semantic/active mathematical documents
• structured math knowledge; RusTEX, a TEX reimplementation in Rust to support MMT

Reports and notices
86 TUG 2022 conference information and program

89 Jim Hefferon / TUG 2022 conference report

90 Robin Laakso / TUG 2022 Annual General Meeting notes

93 Karl Berry / David C. Walden, 1942–2022
• for more on Dave’s many lifetime projects, see walden-family.com

96 Paulo Ney de Souza / interview with John Lees-Miller, CTO of Overleaf

100 Paulo Ney de Souza / interview with Boris Veytsman, scientist, TEX programmer and current TUG President

209 TUG 2022 abstracts (Austin, Blakesley, Castañeda, Chernoff, Cheung, Claudio, Fine, Gundlach, Hickman,
Jimenez, Khalighi, Luc, Mariano, Moore, Ohri, Park C., Park E., Preining, samcarter, Schmah,
Vrabcová, Wu)

214 From other TEX journals: La Lettre GUTenberg 45 (2022); MAPS 52 (2022); Die TEXnische Komödie 2/2022

215 Institutional members

216 TUG Elections committee / 2023 TEX Users Group election

217 Calendar

218 TUG 2022 advertisements: STM Document Engineering Pvt Ltd; Overleaf

219 TEX consulting and production services

