
284 TUGboat, Volume 42 (2021), No. 3

Preventing tofu with pdfTEX and Unicode engines

Frank Mittelbach

Abstract

Discussion of input encodings vs. font encodings, miss-

ing characters, Unicode, and TEX history.

1 With tofu through the years

Tofu is not just an essential ingredient for many Asian

dishes, it is also the nickname for the little squares pro-

duced by many browsers when they are asked to render

a character for which they do not have a glyph available.

Especially in the early days of the World Wide Web,

websites in foreign languages (from the perspective of

your computer) got often littered with such squares,

making text comprehension quite difficult if not impos-

sible in some cases. So instead of getting

¿But aren’t Kafka’s Schloß &Æsop’s Œuvres of-

ten naïve vis-à-vis the dæmonic phœnix’s official

rôle in fluffy soufflés?

you might have seen something like

�But aren’t Kafka’s Schlo� � �sop’s �uvres

often na�ve vis-�-vis the d�monic ph�nix’s

official r�le in fluffy souffl�s?

Over the years the situation with browsers improved

(partly because using inferior fonts was deemed accept-

able as long as they could render the needed glyphs),

but even nowadays you may find tofu-littered sites, or

perhaps worse, those where your browser thinks it can

show you the glyphs but renders the wrong ones.

While with browsers you may accept a certain im-

perfection in the rendering, tofu in printed material is

quite unacceptable. Typesetting systems should always

use the correct glyphs or at least tell you very explicitly

if they are unable to do so for some reason, to allow

you to apply some corrective actions. In the remainder

of this article we will discuss how TEX and in particular

LATEX is doing in this respect and what a user can or must

do to avoid such a capital blunder.

Early vegetarian dishes with TEX

In the early days of TEX the use of fonts was easy because

you could use any font youwanted as long as itwas called

Computer Modern.

In other words there was essentially only one set

of fonts available for use with TEX and the glyphs it

contained and how to address them was described in

The TEXbook [3]. Furthermore, all fonts only contained

128 glyphs, i.e., essentially the base Latin characters, a

few accents to construct diacritical characters using the

\accent primitive and a few other symbols such as †, $

and so forth to be accessed through command names.

Thus, once you learned the construction methods

and memorized the control sequences for accessing the

existing symbols you could be sure that the characters

youusedwould faithfully appear in the printed result. Of

course, part of the reason for this was the limited glyph

set; already any Latin-based language other than En-

glish posed serious issues, namely that necessary glyphs

were missing entirely, or only available as constructed

characters (whenever accents where involved)—which

prevented TEX from applying hyphenation.

So as TEX got more popular outside the English-

speaking world there was considerable pressure on Don

Knuth (largely by European users, the author among

them) to extend TEX so that it could better handle lan-

guages with larger character sets. At the 1989 TEX con-

ference in Stanford we finally managed to convince Don

to reopen (in a limited way) TEX development and pro-

duce TEX 3. This version of TEX was then able to deal

with more than one language within a document (e.g.,

use multiple hyphenation patterns) and support 8-bit

input and output (that is, 256 characters in a font).

While this enabled the use of different input code

pages for different character sets, as was standard in

those days, and also solved the problem of hyphenating

words containing accented characters (by using fonts

with precomposed glyphs), it also posed new challenges.

Depending on the active code page when writing a

document, a given keyboard character might be associ-

ated with a different number (between 0 and 255) and

that number had to be mapped to the right slot in a font

to produce the glyph thatwas originally intended. So the

days of input number equals font glyph position were

definitely over, and the TEX world had to come up with

a more elaborate scheme to translate one into the other

to avoid missing or wrong characters in the output.

The LATEX2ε solution

For LATEX the solution came in the form of the New Font

Selection Scheme [4], and in particular with the pack-

ages inputenc (for managing input in different code

pages and mapping it to a standard internal represen-

tation) and fontenc (for translating this internal rep-

resentation to the correct glyph positions in different

fonts).

Introducing font encodings

LATEX classified the font encodings and gave them names

such as OT1, T1, TS1, T2A, T2B, etc. Each such font

encoding defined which glyphs are in a font using that

encoding and to which character code (again, 0–255)

each glyph was assigned in the font. Thus, if you had

two different fonts with the same encoding you could

exchange one for the other and still be one hundred

doi.org/10.47397/tb/42-3/tb132mitt-tofu

Frank Mittelbach

TUGboat, Volume 42 (2021), No. 3 285

percent sure1 that your document typeset correctly,with

no missing or incorrect glyphs in the output.

In practice only a small number of font encodings

ever got used and new fonts usually were made available

in these “popular” encodings by providing the necessary

font re-encodings through the virtual font mechanism,

or through re-encodings done by device drivers (such as

dvips) or directly in the engine (in the case of pdftex).

As an overall result, life for LATEX users was again

fairly easy after 1994 and remained this way well into

this century, because by simply specifying which font

encoding to use, documents would normally be typeset

without defects, regardless of the font family that got

used. Further, due to the fact that for users writing

in Latin-based languages essentially every interesting

font available was provided in the T1 encoding, it was

also clear which glyphs were available and those were

available almost universally.

Pitfalls with missing input encodings

There was still the need to specify the input encoding—

at least if one wanted to input accented characters di-

rectly from the keyboard instead of using TEX constructs

like \"a. One problem in this respect was that, depend-

ing on the language you were writing in, it sometimes

worked evenwithout specifying the input encoding. This

was possible because the T1 font encoding was nearly

identical to the quite common latin1 input encod-

ing.2 Years later, omitting the input encoding declara-

tion even when it worked initially finally backfired: once

LATEXmoved on tomake UTF-8 the default encoding, doc-

uments stored in legacy encodings failed if they didn’t

contain an input declaration.3

Pitfalls with the TS1 encoding

When 8-bit fonts became more common, the TEX com-

munity defined two font encodings during a conference

at Cork in 1990. The first is T1, which holds common

Latin text glyphs that play a role in hyphenation and

therefore have to be present in the same font when seen

by TEX. The second is TS1, which contains other sym-

bols, such as oldstyle numerals or currency symbols;

these can be fetched from a secondary font without

harm to the hyphenation algorithm, because they do

not appear as part of words to be hyphenated.

1 Well, more like 99% since sometimes fonts claimed to be in one

encoding but didn’t faithfully follow its specification, e.g., didn’t pro-

vide all glyphs or sometimes even placed wrong glyphs at some slots.
2 For example, with French texts it worked throughout. However,

with German only the “umlauts”worked, but the sharp s “ß” generated

a different character.
3 The remedy for such old documents is to either add the missing

declaration or re-encode the old source and store it in UTF-8.

On the whole, the glyphs in the T1 encoding were

well-chosen and it is usually possible to arrange any

commercial or free font to be presented in this encod-

ing to TEX.
4 As a result, substituting T1-encoded fonts

means that you can be fairly sure that there will be no

tofu in your output afterwards.

Unfortunately, this is not at all true for the TS1

encoding. Here the community made a big mistake by

going overboard in adding several “supposedly” useful

glyphs to the encoding that could be produced in theory

(and for Computer Modern and similar TEX fonts were

in fact produced), but that simply did not exist in any

font that had its origin outside the TEX world.

As a result, to use such glyphs from the TS1 en-

coding meant that you had to stay with a very limited

number of font families. Alternatively, you had to be

very careful not to use any of the problematic symbols

to avoid tofu.

To ease this situation, the TS1 encoding was sub-

divided into five sub-encodings and a LATEX interface

was established to identify that a font family with a cer-

tain NFSS name belonged to one of the sub-encodings.

This way LATEX was enabled to make “reasonable” ad-

justments when a requested symbol was not available

in the current font, either by substituting it from a dif-

ferent font or by giving you an error message that the

symbol is not there—not perfect but better than tofu in

the end. This was implemented in the textcomp pack-

age which provided the LATEX commands to access the

symbols from TS1.

In one of the recent LATEX releases the code from

textcomp was moved to the LATEX format, so that these

extra symbols are now available out of the box without

the need to load an additional package. At the same

time, the classification of fonts into TS1 sub-encodings

was reworked. We now support nine sub-encodings and

the LATEX format contains close to 200 declarations that

sort the commonly available font families into the right

sub-encodings. Thus these days the situation is fairly

well under control again—at least with pdfTEX.

2 Unicode

One of the goals of Unicode is to uniquely identify each

and every character used in different languages and

scripts around the world, thereby avoiding some of the

possible translation problems that occurred because a

text was written under the assumption of one (8-bit) en-

coding, but interpreted later under a different encoding.

While this was a huge step forward for correctly

interpreting any source document (because it elimi-

nated all of the the different input encodings—all is now

4 There are a few exceptions where some seldom used glyphs are

missing, e.g., \textpertenthousand or \textcompwordmark.

Preventing tofu with pdfTEX and Unicode engines

286 TUGboat, Volume 42 (2021), No. 3

Unicode), it unfortunately reintroduced a new helping

of tofu through the back door.

The reason is simple: with Unicode as the means

to reliably address a glyph to be typeset in a font, such a

font has to contain glyphs for all characters available in

Unicode, because TEX just takes the Unicode number and

tells the current font “typeset this glyph”. While this

is in theory possible in the TrueType or OpenType font

formats (using font collections), there is no single font

(or collection) that offers anything close to this.5 LATEX

has no way to identify if glyphs are missing, because the

typesetting of paragraph text is a very low-level process

in TEX and in contrast to the pdfTEX engine where LATEX

can reliably assume that a font in T1 encoding imple-

ments the whole encoding, in Unicode engines all fonts

are in the TU encoding (the whole of Unicode), which no

font provides.

In theory it would have been possible to devise sub-

encodings of TU and assign each and every font to the

appropriate sub-encoding, as was done with TS1, but in

practice this would be a hopeless undertaking, because

each and every font implements its own set of glyphs,

so no useful classification is possible.

Thus when you typeset in X ETEX or LuaTEX and you

request using a certain font family with something like

\setmainfont{Alegreya}

you just have to hope your chosen family contains glyphs

for all characters that you intend to use in your docu-

ment; if not, you will end up with tofu.

To give you some figures: Latin Modern Roman (the

default font in LATEX on Unicode engines) implements

794 characters, the ParaType font used for this article 717,

the Optima font on the Mac just 264, the free Alegreya

font 1251 and Noto Serif 2840. Regardless, there can

be no guarantee that the characters contained in your

document are covered.

Letting TEX tell you about your tofu

The TEX program offers one tracing parameter, called

\tracinglostchars, that, if set to a positive value,

reports missing glyphs (a.k.a. tofu) in the log file, e.g.,

Missing character: There is no

È (U+00C8) in font cmr10!

5 The font I know that comes closest is Code2000 [2], which pro-

vides around 90K characters in its latest incarnation—but even that

is only a fraction of the Unicode universe (over 140K characters).

Google’s Noto project [1], which stands for “no tofu”, was established

to develop fonts for typesetting text in any of the world’s languages

and scripts. It currently has almost 64K characters, which are split

across nearly two hundred font families, e.g., if you want to typeset

in Latin you can use Noto Sans, but for Japanese you need Noto Sans

Japanese and so forth.

Interestingly enough, this information is not even given

by default, but only when you explicitly ask for it—ob-

viously, Don Knuth did not foresee that TEX is used with

fonts other than those carefully crafted for TEX and con-

taining all the characters you may want.

Recently all TEX engines were enhanced to make

tofu reporting a little better: you can now set this pa-

rameter to 2, after which it reports its finding also on

the terminal (the new default value in LATEX), or you can

set it to 3, after which it will throw an error rather than

the easy-to-miss warning. With Unicode engines we

strongly recommend to always set

\tracinglostchars=3

in the preamble of your document—it is much better

to get errors when writing your documents instead of

getting reports by others about tofu in your published

work. As explained before,when typesettingwith pdfTEX

there is little danger of ending up with tofu, so there

it is less important to change the parameter, though it

obviously doesn’t hurt.

3 Typesetting Unicode font tables

When I worked on the font chapter for the new edi-

tion of The LATEX Companion, third edition [5], I wanted

to produce glyph tables for various fonts to examine

which characters they encode and how they looked. To

my surprise I could not find any TEX tool to do this for

me. There is, of course, the old nfssfont which I had

adapted from work by Don Knuth, but that is of no help

with Unicode fonts as it can only display tables of the

first 256 characters, i.e., 8-bit fonts. So during my last

stay at Bachotek (before the pandemic) I sketched out

some code, the result of which is now available as the

unicodefonttable package (see companion article).

References

[1] Google Fonts. Noto: A typeface for the world.

fonts.google.com/noto

[2] J. Kass. Code2000. Font resource implementing much

of Unicode. en.wikipedia.org/wiki/Code2000

[3] D.E. Knuth. The TEXbook, vol. A of Computers and

Typesetting. Addison-Wesley, Reading, MA, USA, 1986.

[4] F. Mittelbach, R. Schöpf. The new font

family selection—User interface to standard

LATEX. TUGboat 11(1):91–97, Apr. 1990.

tug.org/TUGboat/tb11-1/tb27mitt.pdf

[5] F. Mittelbach with U. Fischer. The LATEX Companion.

Pearson Education, Boston, MA, USA, third ed.,

to appear in 2022.

� Frank Mittelbach

Mainz, Germany

https://www.latex-project.org

https://ctan.org/pkg/unicodefonttable

Frank Mittelbach

