204

Programming bibliographies
Jean-Michel Hufflen

Abstract

We are interested in situations such that using the
full expressive power of a programming language is
needed when ‘References‘ sections are generated for
a source text suitable for KTEX. The data model
used by BIBTEX is inadequate from this point of
view; the biblatex package is based on a more effi-
cient data model, but workarounds may be needed
in some circumstances.

1 Introduction

Early computer programs were very different from
those running nowadays. Sometimes they were writ-
ten using programming languages with syntactical
features now viewed as strange; they were running
on computers whose performance was not compara-
ble with today’s. Besides, these early programs, in
the 1950s, were only handled by people specialised
in computer science: on the one hand, some rigid
syntax was required for inputs, on the other hand,
outputs were provided using raw forms, and graph-
ical interfaces were nonexistent.

Things have evolved rapidly for years now, and
nowadays many people are able to use programs
and operating systems even if they do not have any
knowledge about programming. A good example is
given by interactive word processors (WYSIWYG1),
such as Microsoft Word. Secretaries are able to use
them, as end users simply typing input texts. Any
end user of Word is able to customise it, mainly
by means of graphical menus. So nowadays a rich
collection of programs—including Word —can be
used as any object of everyday life, like a washing
machine or a dishwasher.

What is the point of non-interactive typeset-
ting systems (WYSIWYM?), such as IXTEX, accord-
ing to this point of view? In fact, if an end user
only deals with default constructs or predefined doc-
ument classes, IATEX can be viewed as a kind of black
box simply accepting input source texts and produc-
ing output texts. Some customisation and extension
can be reached by means of packages, introduced by
ETEX 2¢ [10]. Stronger customisation is allowed by
means of commands, written using TEX’s program-
ming language. Theoretically, this language has the
same expressive power as a Turing machine’s lan-

1 What You See Is What You Get.
2 What You See Is What You Mean.

Jean-Michel Hufflen

doi.org/10.47397/tb/42-2/tb131hufflen-bibprog

TUGboat, Volume 42 (2021), No. 2

guage, so any function can be programmed using
it.3

In practice, TEX’s language — which is based
on macros—has been mainly designed to handle
text fragments. As a kind of counter-example, even
though we can implement a sort procedure using
this language [9], that is a worthwhile exercise for
its own sake, rather than an actual advantage for
using (IM)TEX. In fact, some ‘pre-computations’ —
before typesetting a fragment — such as capitalising
some words, or putting them using lower or upper-
case characters, can be easily expressed using TEX’s
language, but more advanced features related to pro-
gramming features are difficult to handle.

This point is one of the reasons why LuaTgX
has been developed [2], allowing tasks more related
to programming to be delegated to a more modern
programming language. Since the initial versions of
LuaTEX, (IM)TEX is fully able to typeset the result of
a computation performed by a program, for exam-
ple, sorting an array before displaying its successive
elements. Typesetting the results built by a spread-
sheet program is another example.

In this article, we propose to apply such a view
to bibliography processors, that is, generating ‘Refer-
ences’ sections for INTEX documents. In other words,
many end users should be able to use such a pro-
gram without any knowledge about programming,
but some specific applications may need such knowl-
edge —provided that the format used by this pro-
cessor is open— and it is important for such a bibli-
ography processor to allow the direct programming
of some specific functions.

In Section 2, we recall the tasks a bibliogra-
phy processor should perform and we make precise
our terminology. Section 3 briefly reports the main
bibliography processors’ current state. Then Sec-
tion 4 goes thoroughly into some specific points. Af-
ter some discussion, Section 5 concludes about our
approach.

2 Tasks of a bibliography processor

Let us consider a source text (.tex file) including
some bibliographical citations by means of KTEX’s
\cite command, whose argument is a so-called ci-
tation key.

(i) A bibliography processor can use citation keys
to search bibliography databases (.bib files) for
corresponding entries.

3 There are many online documents about this subject,
more or less easy to read. A didactic written document is [6],
showing how to implement a kind of A-calculus in TEX.

TUGboat, Volume 42 (2021), No. 2

(ii) These entries should be sorted, unless the doc-
ument’s bibliography is unsorted, that is, the
order of the bibliography’s items is the order of
first citations throughout the document’s body.

(iii) Finally, each bibliographical entry should be ar-
ranged into a bibliographical reference that fu-
ture readers can consult, most often at the doc-
ument’s end, in which case they are stored in
a .bbl file. Citation keys used throughout the
document are replaced during this step: a ref-
erence may be identified by a number in plain
bibliography styles, by an alphanumeric label
in alpha styles. More advanced bibliography
styles, such as author-date or short-title, have
been successfully implemented within KTEX, as
reported in [11, Ch. 12].

3 Bibliography processors

For a long time, BIBTEX [13] was the only bibliog-
raphy processor usually associated with BTEX. It
uses information stored in auxiliary (.aux) files and
is able to perform the steps (i), (ii) and (iii). BIBTEX
is still used, at least by some conference submission
tools, although it is an old program, which does not
address modern requirements such as multilingual
encodings. BIBTEX’s bibliography styles have been
implemented using the .bst language [12], some-
times complemented by a KTEX 2 package within
some advanced styles such as natbib or jurabib
[11, Ch. 12]|. This language for bibliography styles —
based on handling a stack —is old-fashioned, more
suitable for small changes than programming a new
bibliography style. However, this language expresses
general algorithms. That is, an end user developing
a new style using this language has available the pos-
sible sequence of operations a computer can perform.
Nevertheless, the same observation can be made as
for using TEX’s language: this bst language is diffi-
cult to handle practically.

During the last decade, a new modus operandi
has been put into action by the biblatex package [8]:
formatting bibliographical references — that is, most
of step (iii) —is wholly controlled by TEX macros
and deferred to BTEX’s next pass. Steps (i) and (ii)
can be delegated to BIBTEX, but biber [7] is pre-
ferred, because more features are available. The
biber program does not use .aux files, but control
files (.bcf files), built when the biblatex package is
loaded with the option backend=biber. In addi-
tion, this biblatex/biber duo has introduced many
new fields, many new bibliography types and styles;
it seems widespread in the humanities.

The bib module of ConTEXt — another format
built on top of TEX [1]—works analogously, in the

205

sense that many tasks are deferred to ConTEXt’s
next pass; modern versions of this module are mostly
implemented using the Lua programming language.

As another possible bibliography processor, we
have personally put into action the implementation
of a successor to BIBTEX: MIBIBTEX [3], written in
the Scheme programming language. We think that
a functional programming language is very suitable
for this kind of task, because such languages allow
the use of functions as parameters, e.g. in:

(lambda (£f2) (f2 1 2))

To add (resp. multiply) 1 and 2, just apply this ex-
pression to + (resp. *). A bibliography style can be
compared to this expression, because the resources
are known — they are the successive bibliographical
entries— whereas the way to arrange these data to-
gether is to be determined w.r.t. the bibliography
style chosen. MIBIBTEX has been developed accord-
ing to such an approach. It has been used rather
occasionally, but as far as we know, using it has al-
ways proven successful. In particular, it has been
used to populate the French official site for open
archives from a collection of .bib files, as reported
in [4]. A new version has been announced in [5]; its
new features include a better interface with Scheme
definitions. This point seems to us to be important
and we are going to explain why.

4 Some operations
4.1 Sorting

Let us consider again the tasks enumerated in §2.
Step (ii) — sorting the extracted bibliographical en-
tries— would be very difficult to program in TEX’s
macro language, as mentioned in the introduction.
Although the biblatex package tends to use KTEX
to perform as many operations as possible, this sort
step is still performed by the bibliography processor
associated, BIBTEX or biber. The former provides
a ‘basic’ lexicographical sort procedure, in practice
only suitable for the English language (without man-
ual adjustments). The biblatex package allows some
customisation of the sort procedure performed by
biber, by means of the sorting option and mne-
monics denoting sort keys—e.g., nyt is a sorting
scheme for name, year, and title [8, §3.1.2.1].
Neither of these two processors can perform a
numeric sort:* with these two bibliography proces-
sors, the year information is correctly processed be-
cause years are supposed to use the same number
of digits. Let us go thoroughly into chronological

4 ... although biblatex’s documentation is very precise

about the types used within fields.

Programming bibliographies

206

order: BIBTEX does not sort w.r.t. the month in-
formation; biber could do that, since the month in-
formation handled by biblatex consists of numbers,’
but in practice no predefined sorting scheme does
So.

The biblatex/biber duo does offer more ways to
sort bibliographical entries in comparison with ‘old’
BIBTEX. Moreover, its sorting schemes allow people
unfamiliar with computer science to specify precise
sort keys, but:

e a descending sort can be applied only to years
within predefined schemes;°

e the number of person names—for authors or
editors — considered for sorting— given by the
maxnames constant [8, §3.1.2.1]—is limited;’
the sort procedure does not deal with unbounded
number of person names, even if the maximum
number considered can be changed by end users;

e some bibliographical fields mainly used as sort
keys—e.g., AUTHOR, TITLE, YEAR— may be sub-
stituted by sort-suitable fields during this pro-
cedure — SORTNAME, SORTTITLE, SORTYEAR: ex-
cess markup for corresponding information is
avoided, but there is some risk of information
redundancy;

e some exotic sorts can be handled by redefining
the beginning and end of the sort procedure, by
means of the bibliographic fields PRESORT and
SORTKEY [8, §3.6]; more difficult cases can be
processed by defining new sorting schemes by
means of the \DeclareSortingTemplate com-
mand [8, §4.5.6]—to be put in a source .tex
file—but this last command defines interme-
diate sort keys by means of additional fields
rather than new sort procedures.

In our personal opinion, the biblatex package’s
conventions allow people unfamiliar with program-
ming to deal with a rich collection of possible sorts,
but if you need to add a new sort procedure, you do
not have the full expressive power of a programming
language.® As an ambitious example, we personally
were in charge of the publication list of our labora-
tory some years ago: we had to sort this list first

5 Two-digit numbers, of course.

6 To do this for new sorting schemes, use the \sort
construct with the option direction=descending inside a
\DefineSortingTemplate command [8, §4.5.6]|.

7 That is the same within ‘old’ BIBTEX, because a unique
string is built as a sort key for each entry. So the number of
co-authors or co-editors used during BiBTEX’s sort procedure
is limited by this string’s length.

. even if you can program using Perl, the language
used for biber’s implementation.

Jean-Michel Hufflen

TUGboat, Volume 42 (2021), No. 2

by research teams, second by categories,” third by
decreasing years, fourth by authors’ names (increas-
ing), fifth by decreasing months. That would have
been possible with biblatex/biber but quite difficult
and/or requiring some information redundancy.

4.2 Labelling references

The automatic generation of non-ambiguous biblio-
graphical keys for references — the keys that will ap-
pear within the resulting document —is now satis-
factory. Let us remark that if end users would like
to use their own keys, they should use a short-title
system.'9 If we consider alpha styles, we would like
to point out that such a style does not belong to the
author-date system. BIBTEX and biblatex add a let-
ter if several references share the same author and
year, that is:

[Rob 1964a] Kenneth Robeson. The Man of Bronze.
No. 1 in Doc Savage Series. Bantam Books, Oc-
tober 1964.

[Rob 1964b| Kenneth Robeson. The Thousand-
Headed Man. No. 2 in Doc Savage Series. Ban-
tam Books, October 1964.

According to another approach, we can label a first
or unique reference with a name’s abbreviation and
a year. If need be, a possible second reference with
the same information is given an additional letter,
that is:

[Rob 1965] Kenneth Robeson. The Polar Treasure.
No. 4 in Doc Savage Series. Bantam Books,
April 1965.

[Rob 1965a] Kenneth Robeson. Brand of the Were-

wolf. No. 5 in Doc Savage Series. Bantam
Books, April 1965.

The first way is often used in modern documents,
but the second can be observed. Our opinion is that
this problem can be solved with access to the func-
tion generating successive labels within the bibliog-
raphy processor.

5 Conclusion

We think that MIBIBTEX’s new version will be fin-
ished at this year’s end. We expect to provide an
open system, comparable with the Emacs'! editor.
That is, usable as it is, but also customisable and
extensible. As mentioned in the introduction, KTEX

9 That is, articles in well-known international journals and
in other international journals, articles in journals having ‘na-
tional’ scope, papers in conferences, etc.

10 With ‘old’ BisTEX, end users can use the predefined KEY
field with a suitable bibliography style. But it seems that
such a modus operandi has very rarely been put into action
in practice.

11 Editing MACTros.

TUGboat, Volume 42 (2021), No. 2

has these qualities, and the success of LuaTEX shows
that the addition of a modern programming lan-
guage’s power has opened new windows.

Even if not all of a bibliography processor’s
customers are computer scientists, tasks performed
by such a tool belong to programming. When the
UNIX operating system emerged, the idea was that
each person using it would be close to someone who
precisely knew how UNIX worked. That is, a kind
of synergy. We think that a comparable synergy
should be reached for an open bibliography proces-
sor, which implies that the structures it uses are
open. This was already the case for MIBIBTEX's
last version. Likewise, most of the new fields and
types introduced by biblatex will be recognised and
handled by MIBIBTEXs last version, so we can claim
that we are not in opposition to biblatex. We aim to
bring another view of what a bibliography processor
should be.

Acknowledgements

It is a great pleasure to thank the first version’s
proofreaders, Barbara Beeton and Karl Berry.

References

[1] CONTEXTGARDEN: Bibliographies in MKIV.
July 2012. https://wiki.contextgarden.
net/Bibliography_mkiv.

[2] Hans HAGEN: “LuaTEX: Howling to the
Moon”. Biuletyn Polskiej Grupy Uzytkownikow
Systemu TEX, vol. 23, pp. 63—68. April 2006.

[3] Jean-Michel HUFFLEN: “MIBIBTEX’s
Version 1.3”. TUGboat, vol. 24, no. 2,
pp. 249-262. July 2003. https://tug.org/
TUGboat/tb24-2/tb77hufflen. pdf

[4] Jean-Michel HUFFLEN: “Using MIBIBTEX
to Populate Open Archives”. In:
Tomasz PRZECHLEWSKI, Karl BERRY,
Gaby GIic-GRruszA, Ewa KOLSAR and
Jerzy B. LUDWICHOWSK]I, eds., Typographers
and Programmers: Mutual Inspirations.
Proc. BachoTEX 2010 Conference, pp. 45—48.
April 2010.

[5] Jean-Michel HUFFLEN: “From MIBIBTEX 1.3
to 1.4”7. In: Tomasz PRZECHLEWSKI,
Karl BERRY, Bogustaw JACKOWSKI and
Jerzy B. LUDWICHOWSKI, eds., Various
Faces of Typography. Proc. BachoTgX 2015
conference, pp. 13-17. Bachotek, Poland.
April 2015.

207

[6] Alan JEFFREY: “Lists in TEX’s Mouth”.
TUGboat, vol. 11, no. 2, pp. 237-245.
June 1990. https://tug.org/TUGboat/
tb11-2/tb28jeffrey.pdf

[7] Philip KIME and Frangois CHARETTE:
biber. A Backend Bibliography Processor for
biblatex. Version biber 2.16 (biblatex 3.16).
19 December 2020.
https://ctan.org/pkg/biber.

[8] Philip KiME, Moritz WEMHEUER and Philipp
LEHMAN: The biblatex Package. Programmable
Bibliographies and Citations. Version 3.16.

31 December 2020.
https://ctan.org/pkg/biblatex.

[9] Kees VAN DER LAAN: “Sorting within
TEX”. TUGboat, vol. 14, no. 3, pp. 319-328.
October 1993. https:///TUGboat/tb14-3/
tb40laan-sort.pdf

[10] Leslie LAMPORT: IATEX: A Document
Preparation System. User’s Guide and
Reference Manual. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1994.

[11] Frank MITTELBACH and Michel GOOSSENS,
with Johannes BRAAMS, David CARLISLE,
Chris A. ROWLEY, Christine DETIG and
Joachim SCHROD: The IATEX Companion.
2nd edition. Addison-Wesley Publishing
Company, Reading, Massachusetts.

August 2004.

[12] Oren PATASHNIK: Designing BIBTEX
Styles. February 1988. Part of the BIBTEX
distribution. https://ctan.org/pkg/bibtex

[13] Oren PATASHNIK: BIBTEXing. February
1988. Part of the BIBTEX distribution.
https://ctan.org/pkg/bibtex

o Jean-Michel Hufflen
FEMTO-ST (UMR CNRS 6174) &
University of Bourgogne Franche-Comté
16, route de Gray
25030 BESANCON CEDEX
FRANCE
jmhuffle (at) femto-st dot fr
members.femto-st.fr/Hufflen-Jean-Michel/en

Programming bibliographies

