
TUGBOAT

Volume 40, Number 3 / 2019

General Delivery 211 From the president / Boris Veytsman

212 Editorial comments / Barbara Beeton

TEX Users Group 2019 sponsors;

Kerning between lowercase+uppercase;

Differential “d”;

Bibliographic archives in BibTEX form

213 Ukraine at BachoTEX 2019: Thoughts and impressions / Yevhen Strakhov

Publishing 215 An experience of trying to submit a paper in LATEX in an XML-first world /

David Walden

217 Studying the histories of computerizing publishing and desktop publishing,

2017–19 / David Walden

Resources 229 TEX services at texlive.info / Norbert Preining

231 Providing Docker images for TEX Live and ConTEXt / Island of TEX

232 TEX on the Raspberry Pi / Hans Hagen

Software & Tools 234 MuPDF tools / Taco Hoekwater

236 LATEX on the road / Piet van Oostrum

Graphics 247 A Brazilian Portuguese work on MetaPost, and how mathematics is

embedded in it / Estevão Vińıcius Candia

LATEX 251 LATEX news, issue 30, October 2019 / LATEX Project Team

Methods 255 Understanding scientific documents with synthetic analysis on mathematical

expressions and natural language / Takuto Asakura

Fonts 257 Modern Type 3 fonts / Hans Hagen

Multilingual

Document Processing

263 Typesetting the Bangla script in Unicode TEX engines—experiences and insights
/ Md Qutub Uddin Sajib

Typography 270 Typographers’ Inn / Peter Flynn

Book Reviews 272 Book review: Hermann Zapf and the World He Designed: A Biography

by Jerry Kelly / Barbara Beeton

274 Book review: Carol Twombly: Her brief but brilliant career in type design

by Nancy Stock-Allen / Karl Berry

Abstracts 275 Die TEXnische Komödie: Contents of issues 2–3/2019

276 Eutypon: Contents of issue 40–41 (October 2018)

Hints & Tricks 277 The treasure chest / Karl Berry

Cartoon 278 Comic: The history of Unicode / Randall Munroe

TUG Business 210 TUGboat editorial information

210 TUG institutional members

279 TEX Development Fund 2014–2019 report

Advertisements 280 TUG 2019 sponsors: Google; Adobe;

281 Overleaf; Pearson;

282 STM Document Engineering Pvt Ltd

283 TEX consulting and production services

News 284 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2019 dues for individual members are as follows:

Trial rate for new members: $20.
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options are described
at tug.org/join.html.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
organizations and others wishing to receive TUG-

boat in a name other than that of an individual.
The subscription rate for 2019 is $110.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted membership
rate, site-wide electronic access, and other benefits.
For further information, see tug.org/instmem.html
or contact the TUG office.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: October 2019]

Printed in U.S.A.

Board of Directors

Donald Knuth, Ur Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Reutenauer∗, Vice President
Karl Berry∗, Treasurer
Klaus Höppner∗, Secretary
Barbara Beeton
Johannes Braams
Kaja Christiansen
Jim Hefferon
Taco Hoekwater
Frank Mittelbach
Ross Moore
Cheryl Ponchin
Norbert Preining
Will Robertson
Herbert Voß
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board.html for a roster of all past and
present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
tug.org

tug.org/TUGboat

Electronic Mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2019 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another

language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such
approval, the original English permission notice must

be included.

In 1986 Knuth published [The] Metafontbook,
his text on typeface design. The dedication reads:
“To Hermann Zapf: Whose strokes are the best.”

Jerry Kelly
Hermann Zapf and the World

He Designed (2019)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 40, NUMBER 3, 2019

PORTLAND, OREGON, U.S.A.

TUGboat editorial information

This regular issue (Vol. 40, No. 3) is the last issue of
the 2019 volume year. The deadline for the first issue in
Vol. 41 is March 31, 2020.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(tug.org/store), and online at the TUGboat web site
(tug.org/TUGboat). Online publication to non-members
is delayed for one issue, to give members the benefit of
early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are assumed to be the experts. Ques-
tions regarding content or accuracy should therefore be
directed to the authors, with an information copy to the
Editor.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Robin Laakso, Office Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team

William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns, Steve Peter,
Michael Sofka, Christina Thiele

210 TUGboat, Volume 40 (2019), No. 3

TUGboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html

tug.org/consultants.html

Submitting items for publication

Proposals and requests for TUGboat articles are grate-
fully received. Please submit contributions by electronic
mail to TUGboat@tug.org.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site, and are included in common TEX distributions.
We also accept submissions using ConTEXt. Deadlines,
templates, tips for authors, and more, is available at
tug.org/TUGboat.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make suitable arrangements.

Other TUG publications

TUG is interested in considering additional manuscripts
for publication, such as manuals, instructional materials,
documentation, or works on any other topic that might
be useful to the TEX community in general.

If you have such items or know of any that you
would like considered for publication, please contact the
Publications Committee at tug-pub@tug.org.

TUG

Institutional

Members

TUG institutional members

receive a discount on multiple

memberships, site-wide electronic

access, and other benefits:

tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,

Providence, Rhode Island

Association for Computing

Machinery, New York, New York

Aware Software, Newark, Delaware

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic

Duke University Press,

Durham, North Carolina

Harris Space and Intelligence

Systems, Melbourne, Floida

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

Nagwa Limited, Windsor, UK

New York University,

Academic Computing Facility,

New York, New York

Overleaf, London, UK

StackExchange,

New York City, New York

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

TEXFolio, Trivandrum, India

TNQ, Chennai, India

Université Laval,

Ste-Foy, Québec, Canada

University of Ontario,

Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

VTEX UAB, Vilnius, Lithuania

TUGboat, Volume 40 (2019), No. 3 211

From the president

Boris Veytsman

As a member of The Book Club of California (https:
//www.bccbooks.org), I was invited to organize an
exhibition for the club members. I decided to devote
it to the history of TEX.

It feels strange to talk about a history of a
computer program: the art of programming still
seems new and shiny. Karel Čapek, a great Czech
writer, noted in 1925,

Car drivers are always young. Some day in the
future we could read in a story, “The devoted old
driver grabbed the steering wheel with trembling
hands”, or “Old Petr, still strong despite his age,
put on his best scarf to drive the bride and groom
to the church”. Some day they will write about
“spacious heirloom cars” as they used to write
about ancient carriages, and about wise old car
drivers as they now sometimes write about wise
old cabbies.

We are now living in the age when there are not
only old (spacious!) cars, but also old computer pro-
grams (and, sadly, old programmers). It is even more
strange that we are working with one of these heir-
loom programs, which is still working for us, daily
churning out thousands of beautiful books and arti-
cles. However, after four decades, TEX is still strong
(despite its age, as Karel Čapek would slyly note).

In the preparation of the exhibition I have been
helped by the recent two-part series by Barbara Bee-
ton, Karl Berry, and David Walden in the IEEE
Annals of the History of Computing (the preprints
are available at http://walden-family.com/ieee/
texhistory.html).

I am also being helped by the generous TUG

members who donated many items and helped me
with valuable suggestions. I am especially grateful to
Martin Ruckert for the source code for his program,
William Adams who sent me (physically!) a large
box of books, and to Dave Walden, who shared with
me many rarities, including the beautiful monograph
by David R. Siegel on Euler project at Stanford.

Most of all, I was absolutely stunned by the
generosity of DEK, who gave me the TEX incunabula:
the first ever book typeset in TEX in 1978. The
book is described in Don’s paper (TEX Incunabula,
TUGboat 5:1, 1984, pp. 4–11, https://tug.org/
TUGboat/tb05-1/tb09knut.pdf):

I like to think that the first real book to be printed
with TEX was a 28-page keepsake that was made
for my wife’s relatives at Christmastime, 1978.
This book included eighteen original linoleum

block illustrations, into which we pasted XGP-
produced text set in a special 14-point extended
variant of the prototype Computer Modern font.
In order to compensate for the XGP’s limited
resolution, we prepared magnified copy and the
printer reduced it to 70%; the effective resolution
was therefore about 286 pixels/inch. [. . .] About
100 copies were printed, of which roughly 25 were
sold and the remaining 75 were given as gifts.
A complete library citation for this book would
read as follows: “Lena Bernice: Her Christmas

in Wood County, 1895. By Elizabeth Ann James,
with illustrations by Jill Carter Knuth. Columbus,
Ohio: Rainshine Press, 1978.”

It is astonishing to think of the number of TUG

members born after Lena Bernice was printed.

♣ ♣ ♣

Typography is a conservative art. As has been
noted a number of times, we call typefaces that ap-
peared in the eighteenth century “Modern”. TEX,
which was first used for a “real” book in 1978, is still
considered sometimes an upstart by bibliophiles—a
mirror image of TEX as an old geezer among some
computer people. My opinion is that it is neither:
TEX is a great tool created within the long tradi-
tion of typography. The latter was always influenced
by technology changes, even since movable type (a
technological innovation!) was born. What makes
TEX different—and very useful— is the idea that the
beauty of a printed page can be understood as a func-
tion of the layout, and the function can be calculated
and optimized by a computer algorithm. Since this
idea transcends the details of technology available in
the 1970s, TEX has turned out to be quite resilient.
It has survived the introduction of PostScript, the
advent of PDF, several changes of font technology
and many other innovations. I am sure it will survive
the current challenges and technological changes.

The thought I would like to convey in the Book
Club of California exhibition is that TEX is a natural
tool for a typographer, which, unlike many other
technological tools, is aimed at increasing beauty
rather than sacrificing it to other goals like economy
or speed. The TEXbook starts with the description
of TEX as a new typesetting system intended for the
creation of beautiful books [. . .], and its main part
ends with the famous exhortation “Go forth now
and create masterpieces of the publishing art!”. I
hope to be able to communicate this thought during
the exhibition.

⋄ Boris Veytsman
https://tug.org/TUGboat/Pres

From the president

212 TUGboat, Volume 40 (2019), No. 3

Editorial comments

Barbara Beeton

TUG 2019 sponsors

In an effort to rush the proceedings issue to the
printer, the recognition of sponsors was overlooked.
The omitted information appears in this issue on
pages 280–282. We are most appreciative of their
support, and apologize for the omission.

Kerning between lowercase+uppercase

In the Computer Modern fonts, no kerning is defined
between any lowercase letter and an adjacent capital.
This combination is rare (probably nonexistent) in
ordinary English words, but may occur in proper
names and its frequency is growing in trademarked
names and CamelCase programming notation.

A question on tex.stackexchange noted that
the combination “fF” (the “femto-farads” unit of ca-
pacitance) seems to be typeset strangely or incor-
rectly.1 Indeed, this almost appears to be a ligature,
which is certainly incorrect.

The unfortunate crunching together of the two
members of such a combination can be remedied
manually in several ways in math mode (e.g., inside
\mathrm in LATEX):

• inserting an italic correction: f\/F → fF ;

• inserting a zero kern: f\kern0pt F → fF ;

• inserting an empty group: f{}F → fF .

In math mode, they all result in TEX inserting the
italic correction value for ‘f’ (which is nonzero in the
cmr fonts). In text mode, it is necessary to explicitly
insert the italic correction with \/.

The last of these, empty braces, can disappear
if the combination is in a string that is a moving
argument (e.g., an index term) when saved and set
later in a secondary location.

Differential “d”

The question “What’s the proper way to typeset a
differential operator?” persists. Is it an upright “d”
(as specified by ISO 80000-2:2009 and its predecessor
ISO 31-11 (1992)), or italic, as it appears in a couple
centuries worth of math journals and books?

The question was already raised in TUGboat, in
the 1997 article “Typesetting mathematics for science
and technology according to ISO 31/XI”2 by Claudio
Beccari. That ISO standard mandates the upright
form. But that standard was devised by engineers
and physicists; no mathematicians were involved.

1 https://tex.stackexchange.com/q/505607
2 TUGboat 18(1), pp. 39–48,

https://tug.org/TUGboat/tb18-1/tb54becc.pdf

A question in the History of Science and Math-
ematics thread of StackExchange3 has brought the
matter up again. The supporting detail is rather
extensive, and has caused me to search further. So,
since I’m still investigating, this note is not the final
word; look for a dedicated article in the next issue.

Bibliographic archives in BibTEX form

Although in some ways BibTEX has been overshad-
owed by BibLATEX, a monumental body of biblio-
graphic information in BibTEX form exists in curated
and normalized databases and archives.

The BibNet Project archive at the University of
Utah4 is managed by Nelson Beebe. This archive con-
tinues to grow, and the sibling TEX Users Group bib-
liography archive now holds BibTEX data for nearly
900 journals and about 90 subject-specific bibliogra-
phies. (This includes a complete .bib file for all
issues of TUGboat.) The BibNet Project archive
holds additional subject-specific material and exten-
sive bibliographies of important scientists in many
fields of computing and numerical analysis.

In addition to the bibliographic data, many tools
for managing such data are available as well, with
extensive documentation5 describing the BibTEX pro-
gram, tools, and best practices for writing BibTEX
entries.

The entire content of this archive—both data
and tools — is freely available.

Nelson has presented talks at TUG meetings and
written articles on the tools (and many other TEX
topics) for TUGboat; see the cumulative TUGboat

contents online.6

Other freely available bibliographies for com-
puter science are located at the University of Karls-
ruhe7 and the University of Trier.8

The MathSciNet9 service of the American Math-
ematical Society holds bibliographic information and
reviews for about 4 million books and articles dating
from the 1800s, and is available to users at institu-
tional subscribers to the service.

⋄ Barbara Beeton

https://tug.org/TUGboat

tugboat (at) tug dot org

3 dy/dx versus dy/dx,
https://hsm.stackexchange.com/q/6727

4 http://www.math.utah.edu/pub/bibnet

http://www.math.utah.edu/pub/tex/bib
5 http://www.math.utah.edu/pub/bibnet/

bibtex-info.html
6 https://tug.org/TUGboat/Contents/

listauthor.html#Beebe,Nelson
7 https://liinwww.ira.uka.de/bibliography/
8 https://dblp.uni-trier.de/
9 https://mathscinet.ams.org/mathscinet/index.html

TUGboat, Volume 40 (2019), No. 3 213

Ukraine at BachoTEX 2019: Thoughts and

impressions

Yevhen Strakhov

In May 2019, four students of Odessa I.I. Mechnikov
National University and myself, Deputy Dean of the
Faculty of mathematics, physics and information
technology, attended BachoTEX, the 27th annual
GUST conference of TEX users and friends.

Our team at BachoTEX. Photo by Harald Koenig

First, I would like to thank the TEX Users Group,
GUST and all the people who made this trip possible.
We are happy to be the first Ukrainian participants at
BachoTEX and look forward to further cooperation.
Now I want to look back and note some important
points and impressions.

Education. I have been teaching LATEX courses to
students since 2014. So, first of all, we considered
this trip as a good opportunity to widen our knowl-
edge about TEX, its history and ‘cutting edge’. The
world is getting smaller now, and we have access to
many teaching materials from the best universities
and other institutions. However, despite the rapid
development of online education, I think nothing
can replace a real lecture and live communication.
BachoTEX was a great place for communication be-
cause all lecturers were open-minded and friendly.
So attending the talks brought us even more than
we expected.

“This was the first time I attended the

BachoTEX conference. I use TEX software for

writing term papers and diplomas. At the conference,

I learned that TEX’s capabilities are not limited by

these actions. Presentations, magazines, typing

musical notes, writing the code. . . For me, this

conference was very informative,” said one of the
students, Yuliia.

Popularization of TEX. In Ukraine, particularly
at my alma mater, Odessa National University, we
have a few TEX enthusiasts rather than an organized
community. I am a big fan of TEX and try to popu-
larize it among the students of our faculty. I use it for
typesetting my books, lecture notes and other teach-
ing materials, examination sheets and even posters,
flyers and certificates. It’s nice to see that more and
more students have recently started using LATEX to
prepare bachelor, master or PhD thesis, draw pic-
tures with TikZ and don’t fear using non-WYSIWYG

systems anymore.
Events such as the

BachoTEX conference
clearly help the TEX
community to grow
and, on the other hand,
also contribute to pro-
moting TEX products
among educators and
students. We received
many printed materials (many thanks for that) and
the latest version of TEX software on DVD, which I
will be able to distribute at the faculty to popularize
their use. Furthermore, we met with many users and
professionals of ConTEXt—I think only a few people
in Ukraine have heard about this software (I will try
and tell my colleagues).

International experience. Three out of four of
our participants were abroad for the first time of
their life. And this is no wonder. Unfortunately,
due to economic and social reasons, many young
Ukrainians don’t have enough opportunities to visit
other countries in Europe and in the world. That
is why higher education institutions in Ukraine now
are trying to make more international contacts to
allow students to participate in exchange programs,
scientific schools, workshops, etc., funded by foreign
organizations. Many of today’s school graduates
are searching for educational programs with more
international opportunities. This is the reason why
participation in BachoTEX can also make a positive
impact at our faculty and university.

Time for a coffee break. Photo by Ye. Strakhov

Ukraine at BachoTEX 2019: Thoughts and impressions

214 TUGboat, Volume 40 (2019), No. 3

Networking. The basic idea of any conference is
communication, making new friends and meeting
like-minded people in your area of interest. Again,
BachoTEX can bring even more, because TEX users
are not only mathematicians or computer scientists—
they are very versatile and creative people (with
a good sense of humor)! And— for me the most
important—all of them love what they do. This
makes the atmosphere warm and unforgettable.

Yuliia adds, “There were a lot of different

people at the conference, so I thought it would be

difficult for me to see eye to eye with everyone.

They were of different ages and nationalities, they

had different interests. But absolutely everyone was

positive and was inspired by the conference. It was

their openness and friendliness that allowed me

immediately join the team.”

“We did not limit ourselves to discussing only

TEX. There were many interesting contests and

games, master classes, beer tasting. Enthralling

tradition—Bonfire and spending the last night in

house number 13.”

Workshop on logo design. Photo by Ye. Strakhov

People. I cannot forget the famous quote: “Edu-
cation is what survives when what has been learned

has been forgotten.” No matter who said that, there
is a rationale to it. Education is not only about
theoretical or practical knowledge, but also about
design of thinking, emotions and impressions. It is
not only about classroom activities, but also about
informal events like those at BachoTEX. Education
is for people and it is powered by people. And maybe
the best feedback to you as an organizer and lecturer
is when your students are happy.

Another member of our team, Inna, recently
wrote (the following is my translation):

“To say that I am de-

lighted with this country is

not to say anything. Poland

won me over with its ar-

chitecture, style, cleanliness

and comfort. Poles? These

are people for the soul,

people next to whom you

just feel indescribable peace.

BachoTEX? I am incred-

ibly grateful to the people

who motivated, sponsored

and just participated in this

event. I received a lot of positive and only positive

emotions that are just unforgettable.

#BachoTeX 2020 #you my small dream”

It motivates the most. We, all the Ukrainian
guests, would like to express our deep gratitude for
the organizers’ work. We highly appreciate your
concern for us. Thanks to you, our stay at the
conference was comfortable and we were happy. The
high level of organization has greatly impressed us.

Other members seem to agree with me, “The
information content of the conference and the cor-

dial attitude of its participants left me with the most

positive opinion.”

“I think that attending BachoTEX will be a good

experience for students and they will definitely get a

lot of impressions.”

Thanks for an opportunity to be a part of the
worldwide TEX community. We hope to be here
again next year.

⋄ Yevhen Strakhov

Dvoryanskaya str., 2

Odessa, 65082

Ukraine

strakhov.e.m (at) onu dot edu

dot ua

Yevhen Strakhov

TUGboat, Volume 40 (2019), No. 3 215

An experience of trying to submit a paper

in LATEX in an XML-first world

David Walden

The publishing world is increasingly using an XML-
first work flow wherein the source manuscript is first
converted to XML, editing is likely done in XML,
and output formats are created from what comes out
of XML.1 This note describes some recent author
experience with a publisher that was moving in that
direction.

The IEEE Computer Society is one of almost 40
IEEE societies. For decades, it had a strong in-house
editing/publishing organization in southern Califor-
nia producing 13 peer-reviewed magazines and more
than 30 transactions for various research areas. The
Computer Society has been under financial pressure
for a number of years as, like other professional soci-
eties, the Society (and the IEEE more generally) lost
members. As one way of dealing with financial issues,
since 2015 the Computer Society has been squeez-
ing its editing/publishing organization through staff
layoffs, out-sourcing, and so on. Simultaneously, the
Society has felt the need to publish HTML, Epub, etc.,
versions of its magazines in addition to PDF versions
and has been pushing toward non-print publication.
In our current digital era, societies also have the
expense of maintaining digital archives of the jour-
nal issues (e.g., computer.org/csdl/magazine/an).
For 2018 the Society moved to largely highly hands-
off editing and prepress operation. Authors were
expected to use a Word template2 to lay out their
own papers for print publication which would have
minimal staff copy editing.

1 Our article, part 1

In the second half of 2017 Barbara Beeton, Karl
Berry, and I researched and wrote a paper on the
history of TEX and its community for submission
to the IEEE Annals of the History of Computing, a
magazine of the IEEE Computer Society. The paper
was to be part of a pair of special issues on desktop
publishing. At the request of the special issue guest
editors, we split our 17,000 word draft into two parts
so one part could go in each of the pair of special
issues.

Early in 2018 we began the process of submission
for peer review, revision, and publication. The 2018
rules for submission for peer review required that
papers be submitted in the Word template format.
There was also a hint that the Society was working
on a path to be able to handle LATEX submissions.

We had drafted our paper’s parts in LATEX, and
we begged to be able to submit a pair of PDFs out

of LATEX for peer review and not to have to use the
Word template unless the paper was accepted for
publication. We were given permission to submit
the PDFs. But before submission, deciding I had
to learn the new Word template anyway for other
Annals work, I converted the paper’s two parts to
Word using the Society’s .dotx Word template.3

The template style, as shown in the example,3 was
single column ragged right that I assume was to
simplify layout.

The paper was tentatively accepted, pending
something between a minor and major revision. One
of the reviewers strongly made the point that a paper
on (LA)TEX should be published looking like TEX
rather than word processor output. We revised our
LATEX source that I had converted to Word for peer
review, and we then volunteered to be a test case
for the Society’s effort to develop a LATEX class that
matched the format of the Word template.

We were told to go ahead with being a LATEX
test case, but there was no promise the class would
be done in time for publication. We iterated several
times with the class developer, first converting to his
draft class, and then changing things in our LATEX
file as he refined the class; we also helped by testing
our paper against his backend use of Pandoc to go to
HTML, Epub, etc. We were then allowed to submit
our paper’s parts in LATEX for copy editing. We
polished parts 1 and 2 of the paper using the new
class, sent them to the copy editor, and part 1 was
published in Annals issue 2018-3.4 Part 2 was to be
published in 2019.

2 Our article, part 2

However, by the fourth quarter of 2018, more of the
Computer Society editing and publications staff had
been let go, and the IEEE publications staff in New
Jersey took over the editing and prepress work of
the Society’s magazines. (The Computer Society’s
transactions journals had been transferred to the
IEEE a few years earlier.)

We understood (incorrectly, it turned out) that
a new IEEE Word template was being created for the
Annals going forward in 2019 and work was beginning
modifying an existing IEEE LATEX class to match the
style of the Word template being developed. We
understood correctly that the IEEE editors accepted
LATEX input.

We converted our part 2 file from the 2018
LATEX class to the IEEEtran class5 (ctan.org/pkg/

ieeetran) which we thought we were told would
be close to the final 2019 Annals LATEX class. We
passed this to the IEEE editors, and we volunteered
once again to be a test case as the developing Annals

An experience of trying to submit a paper in LATEX in an XML-first world

216 TUGboat, Volume 40 (2019), No. 3

LATEX class was refined, but we received no response
to our offer.

Then we received a proof for part 2 of our paper
which was, unfortunately, unpublishable, especially
for a paper on the history of TEX and LATEX.6 It
didn’t look like LATEX output, and we couldn’t elicit
an explanation of how the proof had been created
from our LATEX submission. Their response was
“mark up the proof and we will work with that”. A
next proof came, which was better but still unsat-
isfactory from our point of view. By this time, we
had been told that they accepted LATEX but con-
verted it to XML and all editing after that was of the
XML. We gave up on a couple of things their system
seemed unable to handle, such as the TEX family of
logos, and we lowered our expectations for good line
breaking and inter-word spacing. A third proof was
acceptable enough. The paper was published in the
second 2019 issue of the Annals.7,8

3 Summary

We were unlucky that the two special Annals issues
on desktop publishing, a year apart, spanned the time
when there was a big discontinuity in the journal’s
staffing and style. On the other hand, this is the sort
of thing that can happen with publishers trying to
deal with the pressures of today’s world.

If you use LATEX because you like its beautiful
output: be aware that that is not what many publish-
ers are working on; they are working on a common
path to all the desired output formats, some of which
are inherently not pretty. Try to ascertain if the
journal to which you submit will process your LATEX
source with LATEX. If the journal has an XML-first
publication workflow, moderate your expectations
for the result.9

Personally, I will continue to compose papers
in LATEX because I enjoy using it (and my WinEdt
editor) more than I enjoy using Word. It will be
convenient if a journal to which I submit accepts the
LATEX input even if it will not be processed by LATEX.
If necessary I can convert from LATEX to Word for
submission.

4 Notes on the workflow IEEE uses

for Annals

As I understand things, the IEEE Computer Society
editors used Word — the submission format of most
authors — to lay out papers for print. I believe they
output to PDFs for print publication and somehow
also moved from Word to HTML and Epub.

As noted above, we learned that the IEEE editors
have everything converted to XML and from there
papers go to print, HTML, and Epub. I was told
the conversion is done by outside vendors, and the
conversion methods are proprietary to the vendors.
The editors also do not give out the vendors’ names.10

References and notes

1 Jonathan McGlone, Preserving and Publishing
Digital Content Using XML Workflows, tinyurl.com/

xml-mcglone
2 walden-family.com/texland/tex-xml/e1.pdf
3 walden-family.com/texland/tex-xml/e7.pdf
4 walden-family.com/texland/tex-xml/e6.pdf
5 walden-family.com/texland/tex-xml/e3.pdf
6 walden-family.com/texland/tex-xml/e4.pdf
7 walden-family.com/texland/tex-xml/e5.pdf
8 The two parts of our peer-reviewed accepted

TEX-history paper before publication are at
walden-family.com/ieee/texhistory.html. If you
would like a copy of the two parts as published, please
ask me: dave.walden.family@gmail.com

9 Stefan Moser, in the context of writing for
the IEEE Transactions on Information Theory,
has some guidance on submitting LATEX which
will be converted to XML: Stefan M. Moser,
Author Information: How to Avoid Common
Conversion Problems LATEX — XML, August 10, 2016,
ece.umd.edu/trans-it/TIT-FinalSubmissions.pdf

10 Also, in the publishing process we saw, it appears
that the outside vendors are not using methods with
state-of-the-art line breaking and hyphenation. Also
the process makes a paper’s author feel distant from
the copy editor(s) as they don’t communicate directly.

⋄ David Walden
walden-family.com/texland

David Walden

TUGboat, Volume 40 (2019), No. 3 217

Studying the histories of computerizing
publishing and desktop publishing, 2017–2019

David Walden

The 2019 TUG conference was to be my third pre-
sentation about the history of publishing, printing,
and typesetting. For TUG 2012 in Boston (where I
live), I thought an appropriate topic was Printing &
Publishing in Boston: An Historical Sketch.1 This
kindled an interest in digital typography history;
thus, my topic in 2016 in Toronto was An Informal
Look into the History of Digital Typography.2 I then
hoped to spend some time expanding my 2016 paper
into a small monograph, but first an opportunity
came for me to learn much more about the history
of digital typography, which I decided would be my
subject for TUG 2019.

In the end, I was unable to attend TUG 2019
to present this material. The slides that I did not
present at TUG 2019, that go along with the content
of this paper, are viewable at
tug.org/l/walden-tug19-slides.

1 Desktop publishing meeting

I was invited to be an observer at a two-day May
2017 meeting at the Computer History Museum of
pioneers of desktop publishing (DTP).3 Pioneers in
attendance at the meeting were:

Chuck Bigelow (Bigelow & Holmes type design studio)
Paul Brainerd (Aldus)
Liz Bond Crews (Xerox PARC, Adobe)
Charles Geschke (PARC, Adobe)
Steve Kirsch (Frame Technology)
Don Knuth (Stanford, TEX)
Butler Lampson (PARC)
Lee Lorenzen (Ventura Software)
John Scull (Apple)
Jonathan Seybold (Rocappi, Seybold Publications)
John Shoch (PARC)
Charles Simonyi (PARC, Microsoft)4

Bob Sproull (PARC)
Larry Tesler (PARC and Apple)
John Warnock (PARC, Adobe)

Richard Ying (Atex)

The meeting was organized by Burt Grad, co-
founder of the museum’s Software History Special
Interest Group, and David Brock, director of the
museum’s Center for Software History. They sought
advice from Jonathan Seybold about which pioneers
to invite to the meeting. This was the fourteenth
pioneer meeting Burt has organized or co-organized
since 2003, and these meetings have resulted in eight
special issues of the IEEE Annals of the History

of Computing, additional stand-alone IEEE Annals

articles, and 130 oral histories for the museum’s
collection. (Burt invited me to the meeting because
he knew of my work for many years as a member of
the editorial board of the Annals.)

This desktop publishing pioneer meeting is re-
sulting in two (closer to three) desktop publishing
special issues of the Annals:

Issue 1 (Annals vol. 40, no. 3, July–September 2018)
Desktop Publishing: Laying the Foundation

by Burton Grad and David Hemmendinger
Rocappi: Computerizing the Publishing Industry

by Jonathan W. Seybold
How Atex Helped an Industry Change the World

by Douglas Drane
More about Atex by Jonathan Seybold
The Xerox Alto Publishing Platform by Robert F. Sproull
How Modeless Editing Came To Be by Lawrence G. Tesler
The Origins of PostScript by John E. Warnock
TEX: A Branch of Desktop Publishing, Part 1

by Barbara Beeton, Karl Berry, and David Walden
Interview with Charles Bigelow by David Walden

Issue 2 (Annals vol. 41, no. 3, July–September 2019)
Desktop Publishing: Building the Industry

by Burton Grad and David Hemmendinger
Seybold Publications and Seminars by Jonathan Seybold
Founding and Growing Adobe Systems Inc.

by John Warnock and Charles Geschke
Paul Brainerd, Aldus Corporation and the Desktop Publishing

Revolution by Suzanne Crocker
Desktop Publishing: The Killer App That Saved the Macintosh

by John Scull and Hansen Hsu
Interview with Tim Gill (Quark) by Jay Nelson
Frame Technology and FrameMaker by David J. Murray
The Ventura Story by Lee Lorenzen

TEX: A Branch of Desktop Publishing, Part 2
by Barbara Beeton, Karl Berry, and David Walden
(published in Annals vol. 41, no. 2, April–June 2019)

Oral History of Liz Bond Crews by Paul McJones
(to be published in Annals in early 2020)

Font Wars parts 1 and 2 by Charles Bigelow
(to be published in Annals in early 2020)

Burt Grad and David Hemmendinger are the
special issue guest editors. The Computer History
Museum has posted on its website the transcripts
of the nine sessions of the two-day meeting. The
Museum also has or soon will have interviews or
oral histories of the following: Charles Bigelow, Paul

Brainerd, Charles Geschke and John Warnock, Steve

Kirsch, Donald Knuth, Butler Lampson, Lee Lorenzen,

John Scull, Jonathan Seybold, Robert Sproull, Gary

Starkweather, Larry Tesler, and Charles Thacker.

From the meeting and from reading the above ma-
terials and helping prepare them for publication, I
learned about the following topics that were missing
from my 2016 paper.
• Computerizing newspaper, periodical, and book
publishing

– John Seybold and Rocappi
– Michael Barnett’s PAGE-1

Studying the histories of computerizing publishing and desktop publishing, 2017–2019

218 TUGboat, Volume 40 (2019), No. 3

– Bringing “all digital” to newspapers, e.g.,
Atex

• Jonathan Seybold and the Seybold Reports and
Seminars

• Development of the desktop publishing technol-
ogy and market: Xerox PARC, Adobe, Aldus,
Apple, Frame, Interleaf, Quark, Ventura

• The “Font wars” of 1989 to 1995 and prior tech-
nology

I will sketch a bit about all but the last of these in
this paper. My monograph will cover more.

As I see things, use of digital computers in typeset-
ting and publishing followed two more or less parallel
paths in the 1960s and 1970s. (1) Various commercial
vendors were working to computerize the publishing
industry, initially via computer control of phototype-
setting machines; I discuss this in the next section.
(2) Various individuals in universities and research
laboratories were bringing out a succession of com-
puter programs to format text for their typewriter
printers and line printers; I discussed this in my 2016
presentation. Then in the 1980s with laser printers,
page description languages such as PostScript, and
“desktop publishing”, the two worlds came together;
I discuss this in section 3.

2 Making publishing digital

Digital technology started coming to the typesetting
world in the 1930s, when Linotype machines began
to be able to input paper tapes, either coming from
wire services (TeleTypeSetting) or punched on lo-
cal TTS keyboards. Fax-like systems were also in
use to transmit images. In the 1950s, phototypeset-
ting systems began to be available and by the 1960s
their use was spreading widely, replacing Linotype
machines. The early phototypesetters were driven
by paper tapes punched from a keyboard; next the
typesetters were connected directly to keyboard us-
ing dedicated electronics, and then general purpose
computers drove the typesetters; whole pages could
then be specified—text plus layout.5,6 Eventually
the computer systems capabilities expanded to en-
compass all the functions involved in producing a
newspaper or periodical. Throughout this process
there was lots of backward compatibility. For in-
stance, a computer system capable of complex type-
setting and page layout would still need to be able to
handle the electronic equivalent of paper tape input
from wire services.

2.1 Going from phototypesetting to digital

There were a number of key people, newspapers, and
vendors that pioneered and spread the increasingly
digital technology, originally with phototypesetters

Table 1: Phototypesetting-to-digital for industry *

1961–64 Michael Barnett’s experiments at MIT ***
1962 • John Duncan began research on

computer typesetting at the University of
Newcastle-upon-Tyne

•RCA 301 and IBM 1620 based hyphenation and
justification at newspapers

1963–1970 John Seybold’s Rocappi company ***
1964–65 IBM 1401 and 1130 and DEC PDP-8 based

typesetting systems
1964 Saltzer’s RUNOFF at MIT—interactive text

formatting ***
1966–67 PAGE-1 computer composition system,

produced in RCA’s Graphics Systems Division ***
1967 ff. other similar systems
1971 Seybold Reports started by John and Jonathan

Seybold ***
1973–1981 Atex offers full office newspaper/

periodical/etc. system***

* This table is derived from a September 2018 note
by Jonathan Seybold titled “Early steps in computer
typesetting in the 1960s” and posted at history.
computer.org/annals/dtp/rocappi-typesetting.pdf.
Items marked *** are discussed further in the text.

but heading toward all digital. Marcus and Trimble7

noted some of these companies, such as the Min-

neapolis Star Tribune, the New York Daily News,
and the Mergenthaler Linotype Company.

Another useful summary of the early activi-
ties in computer typesetting comes from a note by
Jonathan Seybold.8 Table 1, derived from Seybold’s
note, shows some of the steps in computerizing the
printing and publishing industry (newspapers, pe-
riodicals, books) in the phototypesetter era. An
exception in the table is Saltzer’s 1964–65 develop-
ment of RUNOFF. RUNOFF’s purpose was to nicely
print people’s documents on their personal termi-
nals or office line printers; it was not aimed at the
challenges of the publishing industry. In the rest of
this section, I will say something about the efforts
marked with *** in the table.

2.2 Michael Barnett

Jonathan Seybold believes8 that Michael Barnett’s
document shown in Figure 1 was one of the first two
documents phototypeset from output generated by
a computer; the other was a press release also pro-
duced by Barnett. Wikipedia reports that Barnett
also typeset a number of books with his computer
composition system.9

Barnett was at MIT and was working with a
Photon 560 “film setting” machine. Text and in-

David Walden

TUGboat, Volume 40 (2019), No. 3 219

Figure 1: Barnett’s reproduction of a page from
chapter 3 of Alice in Wonderland with phototypesetter
commands

structions (as shown in Figure 1) were typed on a
Friden Flexowriter that output the typed characters
on paper tape. This paper tape was converted by
Barnett’s TYPRINT program running on MIT’s IBM

709 computer into another paper tape in a format un-
derstandable by the Photon 560. Another program
in the 709, TABPRINT, could input paper tapes from
non-Flexowriter sources.

Barnett wrote a book on his computer composi-
tion work at MIT which is widely cited.10 His work
during this 1961–64 period also apparently was use-
ful in terms of helping other people see what they
could do themselves. Barnett’s book is also a useful
reference for what happened before his work and
suggests the state-of-the-art when he was working.

Having slipped into the domain of computer
composition from physics because of a need to for-
mat some physics formulas, Barnett became further
involved with the worlds of computer composition
(see section 2.5), publishing, and libraries.9

2.3 Rocappi

John Seybold and his son Jonathan had impact on
the printing and publishing industry from 1963 to
1990. They were involved with the Rocappi com-
pany from 1963 to 1970, as I discuss below. After
Rocappi they (first both and then Jonathan alone)
produced the Seybold reports and seminars (sec-
tion 3.2). What I sketch below is primarily based on
Jonathan’s paper in the first Annals special issue on
desktop publishing.11

John Seybold joined the fledgling world of com-
puterized phototypesetting in 1963 with the forma-
tion of his company Rocappi (sometimes written
ROCAPPI)—Research on Computer Applications
in the Printing and Publishing Industries. In 1962
John knew the publishing industry well, but not com-
puters, when he saw an early computer typesetting
system at a newspaper. He immediately envisioned
many ways a computer could speed the move away
from hot metal type that was already underway with
phototypesetting. He started his company to partici-
pate in and help advance what he saw as a coming
revolution. Rocappi had inordinate impact for its
size.

Rocappi didn’t do research itself. Rather, it
took on a variety of typesetting jobs, primarily from
publishers, and used a computer to carry out the jobs
under the principle that new programming for any
job should be done in a general enough way that it
could lead to a general class of jobs. Their software
ran on an RCA 301 computer, and their software
could generate instructions for various different pho-
totypesetters (their own and their customers’). In
Jonathan Seybold’s paper on Rocappi,11 he describes
several aspects of the software created at Rocappi.12

Device independent markup. Since the differ-
ent phototypesetters required different commands
to drive them, a person keyboarding the text to be
typeset could give a command to specify which pho-
totypesetter the output was for (e.g., βa for the first
kind of typesetter, βb for the second kind of type-
setter) and then ignore phototypesetter differences
in specifying text formatting commands. Also, the
formatting commands were generally abstract rather
than actual device codes (e.g., $hb for second level
heading, $hc for third level heading), with implemen-
tations in code differing according to the document
style and which typesetter was specified with the
prior β command. The $-codes could also indicate
an actual device code.

Pattern based hyphenation. Jonathan Seybold
has sketched11,13 the hyphenation method used by
Rocappi.

Studying the histories of computerizing publishing and desktop publishing, 2017–2019

220 TUGboat, Volume 40 (2019), No. 3

The Rocappi routine. . . looked at successive
blocks of five consecutive letters. Each five-
letter combination pointed to a position in a
table of bits. If it was permissible to place a
hyphen between the second and third letters,
the bit would be one. If it was not permissible,
the bit would be zero.

The bit table was generated by running a
heuristic program against a large dictionary.
The program was left running overnight, night
after night, until it stopped improving itself.

According to Seybold, this approach to hyphenation
was used by Rocappi from its earliest days (ca. 1963)
and was developed by Colin Barber (“an exceptional
programmer”).14 I could not learn enough about
Rocappi’s method of hyphenation to compare it with
Frank Liang’s approach which is used in TEX.

Hyphenation correction. The Rocappi computer
did not have the capacity to hold the entire dictio-
nary. Thus they used the pattern based hyphenation
method described in the prior paragraph. However,
they felt that the market required perfect hyphen-
ation. After running their H&J program, the hyphen-
ated words in a document were sorted into alphabet-
ical order and then compared against the dictionary
to catch any mis-hyphenated words.

To deal with the book publishing market (more
demanding than the newspaper market), Rocappi’s
typesetting system also supported kerning, tracking,
and ligatures.

Character width changing. Jonathan Seybold
also has described the following technique Rocappi
used (nearly 30 years before Zapf and Karow’s similar
ideas were published):13

I found at Rocappi that allowing the compo-
sition program to vary the set width of the
characters on a line of type in very fine incre-
ments gave the composition program a great
deal of added flexibility in producing beau-
tifully justified type. Changing the type set
width by a tenth of a point or so results in
changes to character and word shapes that are
imperceptible to the human eye, but which
make a considerable difference over the length
of a line.

Seybold is speaking of a Harris Intertype Fototronic
CRT typesetter which had been modified to allow
type to be sized to 1/10 of a point (1/720 of an
inch).15 Rocappi used this technique, for instance,
to typeset the King James Bible.

Pagination and vertical justification. Again to
cope with having a small computer, Rocappi’s system
scanned over a hyphenated and justified text file and

extracted just enough information about the text
to calculate where page breaks would go—the text
itself was not needed. Using the resulting “text facts”
file, the page makeup program could calculate the
best places for page breaks, including calculating
“vertical justification” adjustments within pages and
making adjustments to prior pages that improved
later pages. The program “produced a compact page
descriptor file that specified what was to go on every
page and what spacing adjustments were required to
make the page come out right.”11

For the Bible project, Jonathan discovered that
slight changes in interline spacing within a column to
make columns the same length were not noticeable
to readers even if one column had one more line than
the other column.

Over the life of Rocappi, the Seybolds had many
connections throughout the publishing industry. Vis-
itors came to see what they were doing. Jonathan
wrote a book describing and comparing all of the
then extant CRT typesetters. They did some consult-
ing. Jonathan has written,11 “[We] viewed Rocappi
as an opening chapter in what we expected would
be a revolutionary change in publishing technology.
Sharing what we were trying to do was a way to help
kindle that revolution.”

In 1967, Rocappi was sold to Lehigh Press, with
the Seybolds continuing to worki for the company.
In 1970 Jonathan left Rocappi “having played a role
in the embryonic states,” and wanting to find a way
to play a role in the bigger field that was going to
move very fast. His father left the same year. (The
Seybolds’ story is continued in section 3.2.)

2.4 Jerome Saltzer’s RUNOFF

As stated above, RUNOFF was aimed at interactive
use by authors drafting and formatting their own
documents rather than for use by professional type-
setters in the publishing industry, which is what Bar-
nett and Rocappi were working on. Saltzer released
RUNOFF in 1964 for use under the CTSS operating
system on MIT’s IBM 709 and 7090 computers; it
was written in the MAD programming language.

RUNOFF had only 16 formatting commands, as
shown on the left in Table 2 on page 9 at tug.org/
tug2016/walden-digital.pdf. From that list of
commands and the RUNOFF output shown in Fig-
ure 4 on page 10 at the same url, you can understand
RUNOFF’s limited but still useful capability.

RUNOFF was influential, leading to similar pro-
grams for other computers: Script for CP/CMS, and
roff, which led in turn to nroff, troff, ditroff, and
groff. Over time the text formatting systems for indi-
vidual interactive use that followed RUNOFF gained

David Walden

TUGboat, Volume 40 (2019), No. 3 221

in capability and became able to produce quality
that would be acceptable to the publishing industry.
With desktop publishing’s rise in the 1980s, the two
worlds came together.

2.5 PAGE-1

During 1965–66 Michael Barnett was employed by
the Graphic Systems Division of RCA to develop of
the PAGE-1 computer composition system.16 The
PAGE-1 system, written in assembly language for the
RCA Spectra 70 computer, was released in 1967 for
use with an RCA VideoComp 70|820 Electronic Pho-
tocomposer. PAGE-1 appears to have been primarily
aimed at typesetting books or book-like documents.
PAGE-1 was programmable in a rudimentary way
(unlike RUNOFF or, I believe, Barnett’s experimental
work at MIT). PAGE-1’s capabilities included:

• Thirteen typographic variables such as maxi-
mum interword space (mx), top boundary (tb),
and the typeface in use (tf).

• Three read-only variables for horizontal position
(cx), vertical position (cy), and current char-
acter (cc, decimal code for most recently set
character).

• Several types of global variables:

– page number (pn)
– footnote counter (fn)
– standard paragraph indentation (pi)
– up to 201 general variables (gvn where

0 < n ≤ 200); almost 150 of them conven-
tionally held particular information, e.g.,
point size for footnote text (gv14) and
space between primary text and footnotes
in points (gv172).

– up to 9 indirect variables (ivi where 1 ≤
i ≤ 9) [I don’t know what these were for.]

• Six arithmetic operators; the example given for
sum is as follows:

[ad,variable,parameter,parameter]

• Six conditional procedures where two parame-
ters are compared and if the condition is true,
the following action is taken, for example (the
operators for less-than, equal, and greater-than):

[lt,parameter,parameter[text-to-set]]

[eq,parameter,parameter[[code-to-be-executed]]]

[gt,parameter,parameter[[code-to-be-executed]text-to-set]]

• Eight instructions within the system for editing
the text; these were dropped from PAGE-2 as it
was simpler to use a separate text editor to edit
the source text and insert the PAGE-1 markup.

• Names for synonyms and formats:
—Synonyms had two-character names (e.g., x1)
where the first character is a letter in the range

from t–z and the second character is a number
from 1–9; these names are given to strings of
text and/or code for use within a job.
—Formats had two-character names (e.g., a3)
where the first character is a letter in the range
from a–s and the second character is a number
from 1–9; these names are given to strings that
are in a central library for use from job to job.

• An instruction for assigning a sequence of in-
structions and/or text strings to a name, for
example (from the first line of Figure 2):
[sy,x1[[gt,cx,gv1[[gv1,cx]];nl]]]
This sequence defines x1 as a synonym for the
rest of the characters between the open and fi-
nal close square brackets. Assuming gv1 (the
saved horizontal position) has previously been
initialized to 0, the rest of the string does the
following: If cx is greater than (gt) gv1, then
gv1 takes the new value of cx. Either way, a
newline (nl) finishes off the line.

[sy,x1[[gt,cx,gv1[[gv1,cx]];nl]]]

[sy,x2[[x1;df,gv1,rb,gv1;qo,gv1,gv1,2;us]]]

...

[gv1,0;su;lb,gv1]

Some text[x1]

Some more text[x1]

And this[x2]

Figure 2: A small example of PAGE-1.

Figure 2 shows a bit of PAGE-1 programming (para-
phrased from the Pierson book).16 I think the exam-
ple works as follows.

The first line of this example was already ex-
plained in the description above of how the syn-
onym instruction worked.

The second line defines another synonym, x2.
When the x2 code is executed, first the x1 code
is executed. Then the difference (df) between rb
(right boundary) and gv1 is taken and becomes
the new value of gv1. Next the quotient of gv1
over 2 is taken and becomes the new value of gv1.
Then, typesetting is unsuspended (us).

The next instruction shown in the example
first sets gv1 to zero. Then typesetting is sus-
pended (su). Then the left boundary is set to
gv1, i.e., also set to zero.

After the first line of text is scanned, x1 is
executed. This checks if the current character
position (cx) is bigger than the current value of
gv1. Since it is, i.e., cx is 9 and gv1 is zero, gv1
is set to the value of cx (9), and processing goes
on to the next line.

Which works the same as the prior line. At
the end of the line, cx is 14 which is greater than 9,
the previous value of gv1, so gv1 is set to 14, and
processing goes on to the next line.

Studying the histories of computerizing publishing and desktop publishing, 2017–2019

222 TUGboat, Volume 40 (2019), No. 3

Figure 3: Example PAGE-1 definitions used in marking up text with two columns,
footnotes, and allocated white space for subsequent “strip in” of graphics.

The next line is processed, and x1 within the
definition of x2 is executed which finds that 8 is
not greater than 14, so gv1 remains 14.

Executing the rest of x2, let’s suppose that
the right boundary (rb) is 60. Subtracting 14
(gv1) from rb gives 46 which becomes the new
value of gv1. The quotient (qo) of gv1 and 2 is
23 which becomes the new value of gv1.

Typesetting is then unsuspended (us) and
apparently this causes typesetting to jump back
to where it was suspended (su), i.e., in the middle
of an instruction to where the left boundary (lb)
is set—now to 23, the value of gv1. This second
time through the three lines of text, that same
calculation happens but none of it matters as the

three lines all begin at position 23, calculated
such that the longest bit of text is centered on
a line. (I didn’t try to figure out from the book
how PAGE-1 deals with proportional fonts.)

Programming in TEX macros doesn’t seem too
hard compared to PAGE-1. A more realistic PAGE-1
example is shown in Figure 3, a page from Pierson’s
book.16 The typeset text at upper right refers to the
definitions on the rest of the page and elsewhere.

In time, an expanded version of PAGE-1 was
developed, known as PAGE-2. Still later, Information
International Inc. delivered PAGE-1 and PAGE-2 on
one or two computers other than the Spectra 70.
Barbara Beeton has told me that the AMS used

David Walden

TUGboat, Volume 40 (2019), No. 3 223

PAGE-2 for administrative (non-math) publications,
before the Science Typographers, Inc. system which
came before TEX.

2.6 Atex

In Table 1, the Seybold Reports, started in 1971,
come before Atex which was started in 1973. How-
ever, even through the Seybolds are mentioned in this
section, I will discuss the Seybold Reports together
with the Seybold Seminars in section 3.

Jonathan Seybold has summarized nicely the desire
for automation by newspapers in the early 1970s.17

By the early 1970s, many reasonably sized
businesses were using computers for support
functions, especially for accounting, billing,
inventory, and so forth. In addition to these
functions, newspapers were also using small
computers (IBM 1130s and DEC PDP-8s) pro-
grammed to perform hyphenation and justifi-
cation (H&J) to increase productivity in the
composing (typesetting) room.

Next, newspapers set out to do something
far more ambitious: computerize the entire
process of creating and producing their prod-
uct. The news copy for the newspaper would
be written, edited, formatted, and composed
on interactive terminals. All of the “copy flow”
between writers and editors would take place
within the computer system. All classified ads
would be taken, priced, and composed on the
same system. Ultimately, all display advertis-
ing and all page makeup would be done using
interactive graphic display terminals.

Figure 4 shows a computerized newsroom.
In a 1991 report of the National Academy of

Engineering, Wilson Locke gives a detailed descrip-
tion of the 1970s effort of the Los Angeles Times to
computerize and the reasoning behind the effort.18

Living in the Boston area since 1964, I was aware
of the existence of Atex, but I knew nothing about
it until the May 2017 Computer History Museum
desktop publishing pioneers meeting and the writ-
ings about Atex17 that appeared in the first desktop
publishing special issue of the IEEE Annals of the

History of Computing.
Douglas Drane and brothers Charles and Rich-

ard Ying founded Atex in 1973. They met Jonathan
Seybold at a national computer conference, where
Jonathan learned what they intended to do. John
Seybold, Jonathan’s father, was consulting to U.S.

News and World Report magazine at the time, and
knew that U.S.News was seeking a new all-digital sys-
tem such as the one the Atex partners were planning.

Figure 4: Atex terminals in Newsday newsroom on
Long Island, 1977 [photo by John Seybold, courtesy of
Jonathan Seybold].

U.S.News gambled on Atex, providing upfront fund-
ing and the specification of the system they wanted.
Atex got the initial system working on U.S.News’
tight deadline and over the next few years supplied
systems to many other companies and institutions,
becoming the most popular supplier of computer
systems for newspapers and periodicals.

Each customer installation was a custom system
based on Atex’s highly efficient and relatively inex-
pensive hardware and software configuration, includ-
ing considerable hardware they developed themselves.
The Atex systems could drive whatever phototype-
setter the customer had. In time Atex was delivering
a full editorial system including digital images and
had many different systems in its product line (Fig-
ure 5).19

Figure 5: Atex product line circa 1985

Naturally competition for the Atex systems de-
veloped and managing the business became harder
as the company became bigger. Thus, in 1981 the
founders sold the company to Kodak. Charles Ying
remained with the company until Kodak closed the
part of the company for which he was working. After
Atex, he stayed close to the publishing industry, for
instance serving at different times as president of
Information International and Bitstream.20

Studying the histories of computerizing publishing and desktop publishing, 2017–2019

224 TUGboat, Volume 40 (2019), No. 3

3 Desktop publishing

Today desktop publishing is everywhere. However,
in 1980, commercial typesetting for newspapers, pe-
riodicals, and books was still a separate domain, and
commercial word processing products were a rela-
tively new product, mainly not thought of as a tool
for publishing.

3.1 Xerox PARC

The commercial desktop publishing market devel-
oped over the 1980s. However, much of the tech-
nology enabling what we now think of as desktop
publishing was developed in the 1970s. Of course,
computing and electronics technology had been im-
proving for a long time with the work of many com-
panies and people. But a surprising amount of the
relevant technology was demonstrated by Xerox Cor-
poration, particularly at Xerox Palo Alto Research
Center (PARC).

As a research organization in Xerox, PARC did
development that (nominally) related to computeri-
zation of the office. Below is a list of some of what
they developed—at least prototypes and sometimes
distributed fairly widely within Xerox or outside the
company.21,22,23,24,25

• The Alto networked (via Ethernet) workstation
(1973) with a raster display providing a graphical
user interface.

• Laser xerographic printers that could print high
resolution bitmaps for output pages.

• Printer servers (Electronic Array Raster Scan-
ner) on the local area network.

• “Press files” that could intermingle text and
graphics.

• The Fred program to create (on the Alto) outline
fonts for printing and display using cubic splines.

• The Draw program to create figures made up of
text, lines, and curves, again using cubic splines.

• The Press program to print Press files.
• The Bravo and Gypsy WYSIWYG editors.
• Interpress page description language (the prede-
cessor of PostScript).

The above technology was known outside of PARC

and thus aspects of it were highly influential as the
desktop publishing world developed. It also fed into
the word processing world.

3.2 Seybold Reports and Seminars

I began the story of the Seybolds’ activities in the
publishing world (starting in 1963) in the Rocappi
section (section 2.3). Another way the world got
ready for desktop publishing was through the activ-
ities of the Seybolds throughout the 1970s, during

which they found ways to keep current about and to
push forward publishing technology.

The section’s sketch is taken from Jonathan Sey-
bold’s paper about the Seybold Reports and Seybold
Seminars.26

Seybold Reports

After leaving Rocappi, John Seybold remained on
the east coast and established a company, John W.
Seybold & Associates, to consult to publishing com-
panies interested in applying computing technology.
Jonathan Seybold moved to southern California. He
initially helped Autologic company by specifying the
typographic capabilities of their new APS-4 photo-
typesetting system. By the spring of 1971, John and
Jonathan had begun to discuss writing another book
but decided the publishing world was moving too
fast for a book. A better idea would be a bi-monthly
“newsletter”, except that it would only contain in-
depth analysis.

The first year, the Graphic Communications
Computer Association (GCCA) operated the newslet-
ter, which they insisted would be called The Seybold

Report, while the Seybolds provided all the content,
typically a single long article on one product or prod-
uct line or occasionally a tutorial on important tech-
nology or market trends. The Seybolds took great
care to be accurate and conflict free, while producing
issues of 12–16 pages of typewriter copy. About six
months in, they added some pages of news at the
back of each issue, so there was something of interest
to readers not interested in the feature report in the
issue. Industry trade shows provided good sources
of news.

In the second year the Seybolds took over the
business of the Report themselves, with John han-
dling the business and Jonathan handling the “intel-
lectual side”. This was the start of Seybold Publi-
cations. The Report then expanded to 20–24 pho-
totypeset pages. By the end of the second year, 25
percent of subscribers were from outside the U.S.

John and Jonathan (as Seybold Publications)
also gave two-day tutorials several times a year on
latest developments in the industry. These were ar-
ranged in the U.S. by GCCA and by the Printing
Industry Research Association in the U.K. As with
the trade shows, the tutorials were an opportunity
to meet and get to know more people, thus build-
ing their network and knowledge. Between them
they also continued the consulting work they had be-
gun before starting the Report, for little newspaper
groups, big technology companies, and big publishing
companies.

David Walden

TUGboat, Volume 40 (2019), No. 3 225

While the Report’s subscription base and other
aspects of the Report grew, it never made much
money. Without advertising, the report was priced
in the hundreds of dollars which limited potential
subscribers and encouraged reading of a subscrip-
tion by multiple people and even piracy. However,
Jonathan says,

The Report was highly successful in achieving
its primary objective: The technological base of
an entire industry was being re-made in a single
decade. . . .

We were right in the middle of all of this. I
like to think that we played an important and
constructive role in helping to shape how it all
came out.

By the early 1980s, Jonathan’s sister Patricia
had started the Seybold Report on Word Processing,
and a little later Jonathan and Patricia started a
report on personal computers, and to sort this all
out, they renamed the reports, i.e.,
• The Seybold Report on Publishing Systems —the
original Seybold report

• The Seybold Report on Office Systems—prior
report on word processing

• The Seybold Report on Professional Computing —
the PC report

When John Seybold eventually retired, Jonathan
kept the publishing report, Patricia kept the office
systems report, and second son Andrew took the
computing report.

John Seybold had been “a true pioneer in automated
typesetting.”27 Frank Romano, in his dedication to
his book on the phototypesetting era continues, say-
ing of Seybold: Rocappi served “as the world’s first
commercial computer typesetting service bureau.”
Seybold published books on “the new typesetting
machines, companies, concepts, and applications”,
and that Seybold was first to apply “what you see
is what you get” to “display screen applications”.
“He played a key role in the decision by U.S.News

and World Report to become the first customer for
the Atex Publishing System.” And with Jonathan,
John created the Seybold Report, which (page 296
of Romano’s book) John called, “ ‘a book that had
to be constantly updated’ and promised to cover ev-
ery photocomposition and text editing device on the
market”, and “they tested every system and reported
their results and critiques”.

Seybold Seminars

As Jonathan saw the coming world of what became
desktop computing, he started the Seybold Seminars
as a way . . .

. . . to get the people involved together for a con-
ference designed to encourage interchange.

Four 1 1

2
hour sessions per day with generous

time for a group lunch and generous morning and
afternoon breaks to encourage lots of informal
interaction. Two presentations per session. No
sales pitches.

The seminar was an annual event. In keeping with
Jonathan’s goal, it became a place where developers
of desktop publishing systems and other relevant
parties got together.

From near the beginning, some seminar atten-
dees wanted to bring equipment to show. In 1986
Jonathan put together a desktop publishing confer-
ence that included a trade show. He also launched
a new Seybold Report on Desktop Publishing at the
same time. In time, the original conference also
grew into a trade show, with one held annually in
San Francisco and the other (a little smaller) held
in Boston. Both combined the conference with the
trade show, with the former having a few thousand
attendees and the latter having tens of thousands
of attendees. Also, as the technology evolved, the
distinction between professional publishing and desk-
top publishing disappeared. The Seybold Seminars
continued to expand.

Seybold and his people had always helped the
press when asked for answers or pointers to other
people. This was consistent with their mission to
help the industry change happen. (Being quoted in
the press was also good PR.) In time they estab-
lished an explicit press liaison office to help the press.
The same staff members also helped the PR peo-
ple in the companies they dealt with who might be
inexperienced and need pointers within the industry.

In 1989 Jonathan established a Digital World

conference, independent of the publishing confer-
ences, for people interested in the ever increasingly
digital world, and the monthly Digital Media publi-
cation came next.

In 1990 Jonathan sold the Seybold Seminars
and Seybold Publications to Ziff, while continuing to
work on these activities for the next few years. He
then left. Of this he says,

For me, it had been a great ride for a quarter
century. I was able to play a role in three suc-
cessive revolutions: the computerization of the
print publishing industry, the democratization of
publishing (desktop publishing), and then help-
ing a little to lay the foundations for our current
Digital World.

On pages 296 and 297 of his book,6 Frank Romano
vouches for Jonathan’s role in helping create the
revolution discussed in the next section.

Studying the histories of computerizing publishing and desktop publishing, 2017–2019

226 TUGboat, Volume 40 (2019), No. 3

3.3 Commercial desktop publishing

The systems discussed in this section are what we now
call desktop publishing systems—DTPs. For many
people, the definition of DTP involves a WYSIWYG

interface running on a desktop computer. To my
mind, the work stations from Sun, Apollo, etc., on
which some of the systems in this section initially ran
were the early versions of today’s personal computers.

The companies touched upon in the following
sketch of creation of the desktop publishing business
are Adobe,28,29,30 Aldus,31,32 Apple,33 Frame Tech-
nology,34,35 Interleaf,36,37 Quark,38 and Ventura.39

There were also other companies that I have omitted.
In 1981 the Seybold Seminars (as described in

the prior section) had been started as a way for peo-
ple to get together who might advance the use of dig-
ital technology for publishing. Many of the involved
people also subscribed to the Seybold Report or were
reading issues from other people’s subscriptions. Sey-
bold was constantly scouting what was happening in
the publishing and publishing technology industry
for his reports and seminars; he tended to know what
everyone was doing. As another point of reference, by
1980 outline fonts were available to publishers from
Linotype and Compugraphic, but bitmapped fonts
were still typically used for laser printing, screen
display, and in the newspaper industry.

Adobe was founded in 1983 to push the vision
of Charles Geschke and John Warnock for a page
description language that Xerox PARC had not been
interested in pursuing, and in 1983 they were able to
demonstrate a prototype PostScript laser printer. In
1984 Adobe released Level 1 PostScript. Along with
this came Adobe’s Type 1 and Type 3 fonts. Adobe
also did a deal to use ITC fonts in PostScript. With
PostScript, outline fonts began to spread for laser
printing and screen display.

Also in 1984, an Apple Mac computer with a
graphical user interface was available. Steve Jobs
had excitedly shown Jonathan Seybold a Mac the
year before, and in 1983 Jobs called Seybold back to
Apple to show him a Mac connected to a LaserWriter
with built-in PostScript. Apple and Adobe had done
a deal about PostScript and raster output devices.
Seybold says that the Mac-LaserWriter-PostScript
combination indicated to him that a revolution in
the publishing world was imminent; he also knew
what Aldus Corporation was doing.

Aldus Corporation was founded in 1983 by Paul
Brainerd. Out of college he worked in operations
for the Minneapolis Star and Tribune while they
converted from metal type to computer-based type-
setting. Atex was a key supplier. Next Brainerd went

to Atex and stayed there until it was sold. Then
he started Aldus which created PageMaker, initially
for the Mac. Brainerd is credited with coining the
term “desktop publishing”. PageMaker was aimed
at small businesses and also used by professional
and amateur book designers and others. Jonathan
Seybold encouraged Brainerd to get together with
the right group at Apple to see the Mac with its
PostScript laser printer and also encouraged people
at Apple to talk to Brainerd.

The deal between Apple and Adobe resulted
in the 1985 product release of the LaserWriter with
built-in PostScript with Adobe’s Type 1 and 3 font
technology. In 1985 Aldus PageMaker for “desktop
publishing” also was released, and groups at Ap-
ple, Adobe, Aldus began an informal collaboration
marketing desktop publishing to small businesses.
Apple sold the Mac hardware, Adobe got paid for
every PostScript LaserWriter that Apple sold, and
Aldus sold its PageMaker software package. It was
thus in everyone’s interest to help each other selling
this “desktop publishing solution”. They had found
a significant untapped market, and pushing desktop
publishing was a major benefit for all three compa-
nies. (Adobe was also licensing PostScript to other
printer and computer manufacturers.)

Interleaf also released a desktop publishing sys-
tem in 1985—their Interleaf Technical Publishing
Software (TPS); the company had been founded in
1981. Their product was aimed at technical publish-
ing and distribution with integrated text and graph-
ics. It originally ran on Sun and Apollo workstations.
The system was programmed in Lisp (Interleaf Lisp),
and users could modify the system.40 By 1987 Inter-
leaf was also running on more workstations, on the
Mac, and under Windows.

Also in 1986, Ventura Publisher for the IBM PC

was released by Ventura Software which had been
founded the previous year. The founders felt they
had an innovative way (better than PageMaker) to
lay out multi-article documents; their system also
became the first popular desktop publishing system
for the IBM PC class of computers.

Yet another desktop publishing company was
founded in 1986—Frame Technology. They released
FrameMaker for the Sun and other Unix worksta-
tions. Charles Corfield had developed FrameMaker
aimed at publishing large and very large and com-
plex documents, and thus a competitor of Interleaf.
(David Fuchs was the fifth employee of the company
after the four founders.)

In 1987 QuarkXPress 1.0 for the Mac was re-
leased, aimed at the high-end publishing (profes-

David Walden

TUGboat, Volume 40 (2019), No. 3 227

sional typesetting and page layout) market, com-
peting with PageMaker there. (Quark had been
founded in 1981 and did other things before going
into desktop publishing.) Within only two or three
years, QuarkXPress was putting serious pressure on
PageMaker and Aldus. Aldus brought out succes-
sive versions of PageMaker, and also broadened its
product line through acquisitions of other products.

By 1989 the tiny staff of Ventura was getting
tired (they never had more than five employees), and
in 1990 Ventura was acquired by Xerox, which had
been the distributor of Ventura Publisher from the
beginning. Three years later, Xerox sold the Ventura
business to Coral, which continues to sell the system
today as Coral Ventura. Also in 1990, Quark brought
out QuarkXPress 3.1 for Windows, and Quark be-
came the dominant player and QuarkXPress the
industry standard in the market.

By 1993 PageMaker had lost considerable mar-
ket share to Quark and other desktop publishing
systems. With such increasing competition for Page-
Maker and Aldus’ other products not generating
enough sales for the company to continue its early
extraordinary growth and profit, in 1993 Paul Brain-
erd initiated talks with Adobe and in 1994 Aldus
was acquired by Adobe.

Meanwhile, FrameMaker had been made to run
on Unix, Macs, and Windows PCs, and the company
tried to also compete in the home desktop publishing
market, which was a loss of business focus leading to
near insolvency. Adobe bought the product in 1995,
refocused on the business market, and the product
still has a significant following today.

QuarkXPress 4.0 continued the market dom-
inance by Quark. Adobe countered by rewriting
PageMaker and bringing the resulting software out
as InDesign 1.0. Over time InDesign cut deeply into
Quark’s market, although I think there is still compe-
tition between Quark and InDesign today. InDesign
is used by professional book designers and typeset-
ters (and by amateurs who want good typesetting
and would never think of using LATEX).

In 2000 Interleaf was was acquired by Broad-
vision, and the product was renamed Quicksilver.

Desktop publishing tapped a large market that effec-
tively included consumer products as well as products
for professionals. A common method of document
interchange, both layout and fonts, was a natural
outgrowth. Adobe and PostScript won the battle
for dominance over other companies and technolo-
gies. The competition for digital font technology
dominance resulted in a compromise.

By 1986, Adobe had pushed PostScript into
graphics applications, and a couple of years later
brought out the Encapsulated PostScript (EPS) for-
mat for graphics.

In 1989 Apple and Microsoft began what was
called the “font wars” when Microsoft claimed at
a Seybold conference that their (unfinished) True-
Type font technology was superior to PostScript font
technology. Naturally, Adobe forcefully disagreed,
and Adobe brought out Adobe Type Manager for
Mac, Windows, and other operating systems to coun-
teract TrueType. Apple’s first release of TrueType
was in 1991, and Microsoft released TrueType for
Windows 3.1 in 1992. In parallel with the compe-
tition about font technology, Adobe kept pushing
PostScript, bringing out PostScript Level 2 in 1991,
and Acrobat and Portable Document Format (PDF)
in 1993. With OpenType in 1996, Adobe, Apple, and
Microsoft combined their competing font technology
approaches.

I have heard PostScript being described as a
page description language or as a language for cre-
ating vector graphics. It was originally aimed at
driving printers and first became well known by its
use in Apple’s computers. PostScript (and EPS and
PDF) have clearly changed the way the typesetting
and printing worlds work.

In about a dozen years, the desktop publishing mar-
ket had developed and then consolidated.

Next step and acknowledgments

I was unable to attend TUG 2018 and present this con-
tent there, and this paper will have to do. I do intend
to finish the monograph I mentioned at the beginning
of this paper. The monograph will include relevant
parts of my TUG 2012 and TUG 2016 papers, the con-
tent of this paper, and a bit more.41 It will be posted
at tug.org/l/walden-digitype-monograph.

Over the past half a dozen years, dozens of people
have answered questions about the topic of this paper
(and its 2016 predecessor) or otherwise helped me
with the paper(s). I greatly appreciate the help of
each of them.

I must specifically acknowledge Burt Grad who
invited me to participate in the May 2017 desktop
publishing pioneers meeting at the Computer History
Museum.

In the past several years, I have also had more
or less frequent contact on a variety of these topics
with Barbara Beeton, Karl Berry, Chuck Bigelow,
David Hemmendinger, and Jonathan Seybold. Each
has contributed to my education on the history of
digital typography.

Studying the histories of computerizing publishing and desktop publishing, 2017–2019

228 TUGboat, Volume 40 (2019), No. 3

References and notes
1 walden-family.com/bbf/bbf-printing.pdf
2 tug.org/tug2016/walden-digital.pdf
3 history.computer.org/annals/dtp
4 Simonyi stopped by the meeting but didn’t participate

in any of the sessions.
5 John W. Seybold, The World of Digital Typesetting,

Seybold Publications, Inc., Media, PA, 1984,
computerhistory.org/collections/catalog/

102740425.
6 Frank Romano, History of the Phototypesetting Era,

Graphic Communications Institute at Cal Poly State
University, 2014.

7 Mike Marcus and George Trimble, Taking Newspapers
from Hot Lead into the Electronic Age, IEEE Annals of

the History of Computing vol. 28 no. 4, 2006, pp. 96–100.
8 Jonathan Seybold, Early steps in computer typeset-

ting in the 1960s, September 2018, history.computer.
org/annals/dtp/rocappi-typesetting.pdf.

9 en.wikipedia.org/wiki/Michael_P._Barnett
10Michael P. Barnett, Computer Typesetting: Experi-

ments and Prospects, MIT Press, 1965.
11 Jonathan W. Seybold, Rocappi: Computerizing the

Publishing Industry, IEEE Annals of the History of Com-

puting, vol. 40 no. 3, 2018, pp. 8–24.
12 Jonathan, having had his first experience with a

computer as a student of economics in 1964, joined his
father’s company in 1965 where within a year he was
effectively running Rocappi’s production operations.

13 Jonathan Seybold, email of 2019-05-08.
14 Rowley Atterbury, Colin Barber: Computer pioneer

who launched the greatest printing revolution since Guten-
berg, The Guardian obituary, October 3, 2006,
theguardian.com/technology/2006/oct/04/

news.guardianobituaries
15 Jonathan Seybold, email of 2019-05-13.
16 John Pierson, Computer Composition Using PAGE-1,

John Wiley & Sons, 1972.
17 Douglas Drane, How Atex Helped an Industry Change

the World, IEEE Annals of the History of Computing,
vol. 40 no. 3, 2018, pp. 25–29; Jonathan Seybold and
David Walden, More about Atex, IEEE Annals of the

History of Computing, vol. 40 no. 3, 2018, pp. 30–36.
18Wilson R. Locke, Telecommunication in the News

Industry: The Newsroom Before and After Computers,
a chapter in People and Technology in the Work Place,
Natl. Academy of Engineering, Washington, D.C., 1991.

19 The figure is taken from the 1985 supplement of John
Seybold’s book, reference 5 above.

20 Andrew Tribute, Charlie Ying 1946–2010, What They

Th!nk, October 20, 2010, tug.org/l/ying-obit
21Gardner Hendrie, interview of Gary Starkweather,

Computer History Museum, 2010,
tug.org/l/chm-starkweather

22 Robert F. Sproull, The Xerox Alto Publishing Plat-
form, IEEE Annals of the History of Computing, vol. 40
no. 3, 2018, pp. 38–54.

23 John E. Warnock, The Origins of PostScript, IEEE
Annals of the History of Computing, vol. 40 no. 3, 2018,
pp. 68–76.

24 Lawrence G. Tesler, How Modeless Editing Came
To Be, IEEE Annals of the History of Computing, vol. 40
no. 3, 2018, pp. 55–67.

25 Robert F. Sproull, Publishing a Computer Graphics
Book With Prototype Desktop Publishing Tools, IEEE
Annals of the History of Computing, vol. 40 no. 4, 2018,
pp. 69–76.

26 Jonathan W. Seybold, Seybold Publications and Sem-
inars, IEEE Annals of the History of Computing, vol. 41
no. 3, 2019.

27 Reference 6, dedication page.
28 John E. Warnock, The Origins of PostScript, IEEE

Annals of the History of Computing, vol. 40 no. 3, 2018,
pp. 68–76.

29Pamela Pfiffner, Inside the Publishing Revolution:

The Adobe Story, Peachpit Press, Berkeley, CA, 2003.
30 John Warnock and Charles Geschke, Founding and

Growing Adobe Systems Inc., IEEE Annals of the History

of Computing, vol. 41 no. 3, 2019.
31 Paul Brainerd oral history:

tug.org/l/brainerd-oralhistory
32 Suzanne Crocker, Paul Brainerd, Aldus Corporation

and the Desktop Publishing Revolution, IEEE Annals of

the History of Computing, vol. 41 no. 3, 2019.
33 John Scull and Hansen Hsu, Desktop Publishing:

The Killer App That Saved the Macintosh, IEEE Annals

of the History of Computing, vol. 41 no. 3, 2019.
34David J. Murray, Frame Technology and Frame-

Maker, IEEE Annals of the History of Computing, vol. 41
no. 3, 2019.

35 David Murray, The FrameMaker Document Model,
history.computer.org/annals/dtp.

36 Four Interleaf documents and three books may be
found at bitsavers.org/pdf/interleaf.

37 Paul M. English and Raman Tenneti, Interleaf Active
Documents, Electronic Publishing, vol. 7 no. 2, June 1994,
pp. 75–87, researchgate.net/publication/
228057523_Interleaf_Active_Documents.

38 Jay Nelson, Interview with Tim Gill, IEEE Annals

of the History of Computing, vol. 41 no. 3, 2019.
39 Lee Lorenzen, The Ventura Story, IEEE Annals of

the History of Computing, vol. 41 no. 3, 2019.
40 Karl Berry was with Interleaf for a while. Some read-

ers may remember author Tracy Kidder attending the
2014 TUG conference in Portland, Oregon. Kidder wrote a
book called A Truck Full of Money, published in Septem-
ber 2016, that talks a good bit about Interleaf as a
development organization and business.

41Charles Bigelow, Font Wars parts 1 and 2, IEEE

Annals of the History of Computing, to be published in
early 2020.

⋄ David Walden
walden-family.com/texland

David Walden

TUGboat, Volume 40 (2019), No. 3 229

TEX services at texlive.info

Norbert Preining

TEX Live has grown over the years from a DVD

distributed once a year to a full-fledged network-
enabled system with daily updates. Development of
TEX Live is done in the Subversion repository on tug.

org, and coordinated on several mailing lists.1 The
network distribution of TEX Live is served by CTAN

and their mirror system, relieving us from serving
huge amounts of data to the world, or reimplementing
another mirror system. (Thanks much to CTAN.)

Around the main distribution of TEX Live, sev-
eral additional services have accumulated over the
years — and in particular in recent months — so that
we thought it a good idea to summarize and present
all the available services in this article. Details about
each follow the overview.

1 Overview of the services

• TEX historic archives via rsync
rsync://texlive.info/historic

• tlnet archive via https
https://texlive.info/tlnet-archive

• tlpretest mirror
– via https

https://texlive.info/tlpretest

– via rsync
rsync://texlive.info/tlpretest

• CTAN

– mirror via https
https://texlive.info/CTAN

– mirror via rsync
rsync://texlive.info/CTAN

– git repository
git://git.texlive.info/CTAN

– git web interface
https://git.texlive.info/CTAN

• TEX Live git mirror
– repository

git://git.texlive.info/texlive

– web interface
https://git.texlive.info/texlive

– statistics
https://texlive.info/tlstats

• TEX Live GnuPG

– repository
https://texlive.info/tlgpg

– git web interface
https://git.texlive.info/tlgpg

– git repository
git://git.texlive.info/tlgpg

1 https://tug.org/texlive/lists.html

• TEX Live contrib
– repository

https://contrib.texlive.info

– git web interface
https://git.texlive.info/tlcontrib

– git repository
git://git.texlive.info/tlcontrib

For the git services, anonymous checkouts are sup-
ported. If a developer wants to have push rights,
please contact me.

2 TEX Live historic archive

The TEX Live historic archive2 hierarchy contains
many items of interest in TEX history, from individual
files to entire systems. See the TUGboat article by
Ulrik Vieth [1] for an overview.

We provide a mirror, available via rsync:
rsync://texlive.info/historic

3 tlnet archive

TEX Live is distributed via the CTAN network at
http://mirror.ctan.org/systems/texlive/tlnet.
The packages there are updated on a daily basis,
mostly stemming from uploads to CTAN that are
imported into the TEX Live repository. This has
created some problems for distributions requiring
specific versions, as well as problems with rollbacks
in case of buggy packages.

As of 2019-08-30, we archive (by date) the daily
tlnet updates, available at https://texlive.info/
tlnet-archive. We have also added the final tlnet
for TEX Live releases going back about ten years.

4 tlpretest mirror

During preparation of a new TEX Live release (the
pretest phase3) we are distributing preliminary builds
via a few tlpretest mirrors.4 The present server will
also provide access to tlpretest:

• via https
https://texlive.info/tlpretest

• via rsync
rsync://texlive.info/tlpretest

5 CTAN-related services

Besides providing another mirror for CTAN, we have
taken steps to insert the continual updates at CTAN

into a git repository. In a perfect world we could get
separate git commits for each package update, but
that requires significant work from the CTAN team
(maybe this will happen in the future); so for now
there is one commit per day containing all changes.

2 https://tug.org/historic
3 https://tug.org/texlive/pretest.html
4 https://tug.org/texlive/mirmon

TEX services at texlive.info

230 TUGboat, Volume 40 (2019), No. 3

Considering the total size of CTAN (currently
around 40GB), we decided to ignore files of types
that provide no useful information when put into git,
namely large binary files. The concrete list is: cab
deb dmg exe iso jar pkg rpm tar tgz zip, including
names containing one of these extensions (meaning
that files like foo.iso.gz will be ignored too). This
keeps the size of the .git directory at something
reasonable (a few GB for now).

We will see how the git repository grows over
time, and whether we can support this permanently.

While we exclude the above large files from be-
ing recorded in the git repository, the actual CTAN

directory is complete and contains all files, so every-
thing is available through rsync or https.

Access to these services is provided as follows:

• mirror via https
https://texlive.info/CTAN

• mirror via rsync
rsync://texlive.info/CTAN

• git repository
git://git.texlive.info/CTAN

• git web interface:
https://git.texlive.info/CTAN

6 TEX Live svn/git mirror

Since I prefer to work with git, and developing new
features with git on separate branches is much more
convenient than working with Subversion, I am run-
ning a git–svn mirror of the whole TEX Live subver-
sion repository.5 It is updated every 15 minutes.

There are also git branches matching the subver-
sion branches, and also some dev/ branches where
I am working on new features. The git repository
carries, similar to the subversion, the full history
back to our switch from Perforce to Subversion in
2005. This repository is quite large, so don’t do a
casual checkout — the size is currently close to 40GB.

We also (at irregular intervals) compute some
statistics of this repository using gitstats.6

• git repository
git://git.texlive.info/texlive

• git web interface
https://git.texlive.info/texlive

• statistics
https://texlive.info/tlstats

(Incidentally, the TEX Live repository on github,
https://github.com/TeX-Live/texlive-source,
contains only the relatively small tree of source files
to be compiled, due to github limitations.)

5 https://tug.org/texlive/svn
6 http://gitstats.sourceforge.net

7 TEX Live GnuPG

Starting with the 2016 release, TEX Live provides
facilities to verify authenticity of the TEX Live data-
base using cryptographic signatures. This requires
a working GnuPG program, either gpg (version 1)
or gpg2 (version 2). To ease adoption of verifica-
tion, this repository provides a TEX Live package
tlgpg that ships GnuPG binaries for Windows and
MacOS (universal and x86_64). On other systems
we expect GnuPG to be installed.

• repository
https://texlive.info/tlgpg

• git web interface
https://git.texlive.info/tlgpg

• git repository
git://git.texlive.info/tlgpg

8 TEX Live contrib

The TEX Live Contrib repository7 is a companion to
the core TEX Live (tlnet) distribution in much the
same way as Debian’s non-free tree is a companion
to the normal distribution. The goal is not to replace
TEX Live—packages that could go into TEX Live
itself should stay (or be added) there. The TEX
Live Contrib tries to fill a gap for users by providing
ready made packages for software that cannot be
distributed in TEX Live proper due to license reasons,
support for non-free software, etc.:

• repository
https://contrib.texlive.info

• git web interface
https://git.texlive.info/tlcontrib

• git repository
git://git.texlive.info/tlcontrib

9 Supporting these services

We will try to keep this service up and running as
long as server space, connectivity, and bandwidth
allow. If you find them useful, I happily accept
donations via PayPal8 or Patreon9 to support the
server as well as my time and energy!

⋄ Norbert Preining

Accelia Inc., Tokyo, Japan

preining.info

References

[1] U. Vieth. Overview of the TEX historic archive.
TUGboat 29:1 (2008), pp. 73–76.
https://tug.org/TUGboat/tb29-1/tb91vieth.pdf

7 https://contrib.texlive.info
8 https://tinyurl.com/preining-paypal
9 https://www.patreon.com/norbert

Norbert Preining

TUGboat, Volume 40 (2019), No. 3 231

Providing Docker images for TEX Live

and ConTEXt

Island of TEX

Abstract

With the spread of version control and continuous
integration services among TEX users there is a need
to provide TEX distributions for containerized ser-
vices. As most available images are not updated
regularly and many of them lack relevant tools, we
aim to provide images for the regular user who wants
continuous integration to work like any other TEX
distro.

1 An excursion into continuous integration

and the relevance of Docker images

Today, many TEX users rely on version control to
have a steady backup of their document sources.
While the sources are handled smoothly by version
control systems, binary files such as PDF are not. To
prevent bloating the repository with such, it is very
useful to have an alternative to pushing a compiled
result and still have it available on request. That is
where continuous integration steps in.

Basically, this requires the user to add yet an-
other text file to your repository specifying how the
continuous integration service (CI) should handle the
document. As an example we will have a look at a
GitLab CI file. (The image: line is only broken for
TUGboat; it should be all one line in the source.)

image: registry.gitlab.com/islandoftex/

images/texlive:latest

build:

script:

- arara -v mydocument.tex

artifacts:

paths:

- ./*.pdf

The above .gitlab-ci.yml file tells the GitLab
CI to pull our latest image of TEX Live (without
documentation and source files, as discussed later
on) and execute one build stage: calling arara on
a file mydocument.tex. After the run has finished
all PDF files from the current folder will be saved as
artifacts and are available for download.

Above, the first line represents the Docker im-
age the CI will use; most providers offer a similar
way to specify the image. A Docker image itself is
similar to a snapshot of a lightweight virtual ma-
chine. When running an image (then it is called
a container, broadly speaking) it shares the same
kernel as the host system but provides a complete

and independent infrastructure of operating system
and software packages, as well as configuration files
and environment variables.

2 Using the TEX Live images

For most (LA)TEX documents out there, people will
want to use a complete TEX distribution. Hence, we
are providing multiple images of TEX Live. The
respective Dockerfiles can be found at https://

gitlab.com/islandoftex/images/texlive.
The most important image is texlive:latest.

This image is based on GNU/Linux and ships with
all required tools for running TEX Live, among them
Java (e.g. for arara), Python (e.g. for Pygmentize)
and Perl (e.g. for xindy).

Please note that the latest image does not
contain the documentation and source tree of TEX
Live. For users that need these components we pro-
vide latest-doc, latest-src and latest-doc-src

which contain documentation, sources or documen-
tation and sources respectively.

The images starting with latest are rebuilt
weekly. If you want to use a stable snapshot, you
can select the one that suits your needs at https:
//gitlab.com/islandoftex/images/texlive/

container_registry.
To use our images in a custom Dockerfile, you

can use the following line (again broken only for
TUGboat):

FROM registry.gitlab.com/islandoftex/

images/texlive:latest

The source repository already contains Docker-
files for providing historic releases. While you have
to build them yourself for now, we are confident to
provide the images in the near future.

3 Using the ConTEXt images

Similar to the TEX Live images, we provide images
with the ConTEXt standalone distribution. The
respective Dockerfiles can be found at https://

gitlab.com/islandoftex/images/context.
Apart from the MkIV current release current

there are also images for the MkIV beta release
beta and the LMTX release lmtx. For the avail-
able snapshot releases, go to https://gitlab.com/

islandoftex/images/context/

container_registry.
The use in custom Dockerfiles is similar to the

TEX Live images:

FROM registry.gitlab.com/islandoftex/

images/context:lmtx

⋄ Island of TEX (developers)
https://gitlab.com/islandoftex

Providing Docker images for TEX Live and ConTEXt

https://gitlab.com/islandoftex/images/texlive
https://gitlab.com/islandoftex/images/texlive
https://gitlab.com/islandoftex/images/texlive/
https://gitlab.com/islandoftex/images/texlive/
https://gitlab.com/islandoftex/images/context
https://gitlab.com/islandoftex/images/context
https://gitlab.com/islandoftex/images/context/
https://gitlab.com/islandoftex/images/context/

232 TUGboat, Volume 40 (2019), No. 3

TEX on the Raspberry Pi

Hans Hagen

This is a short status report on Pi, not the famous
version number of TEX (among other things), but the
small machine, meant for education but nowadays
also used for Internet Of Things projects, process
control and toy projects. While the majority of TEX
installations run on an Intel processor, the Raspberry
Pi has an ARM central processing unit. In fact, its
main chip has the same foundation as those found
in settop boxes all around the world. It’s made for
entertainment, not for number crunching.

At the ConTEXt meetings, it has become tra-
dition to play with electronic gadgets. Every year
we are curious what Harald König might bring this
time. The last couple of meetings we also had talks
about using TEX and MetaPost for designing (home-
scale, automated) railroad systems, using LuaTEX
for running domotica applications, using MetaPost
for rendering high quality graphics from data from
appliances, presenting TEX at computer and electron-
ics bootcamps, and more. This year Frans Goddijn
also brought back memories of low speed modem
sounds, from the early days of TEX support. It is
these things that make the meetings fun.

This year the meeting was in Belgium, close to
the border of the Netherlands, and on the way there
Mojca Miklavec traveled via my home, where the
contextgarden compile farm runs on a server with
plenty of cores, lots of memory and big disks. But
the farm also has an old Mac connected as well as a
tiny underpowered Raspberry Pi 2 for ARM binaries
that we had to fix: the small micro SSD card in it
had finally given up. This is no surprise if you realize
that it does a daily compilation of the whole TEX
Live setup and also compiles LuaTEX, LuaMetaTEX
and pplib when changes occur. Replacing the card
worked out but nevertheless we decided to take the
small machine with us to the meeting. We also
took an external (2.5 inch) SSD box with us. The

idea was to order a Raspberry Pi 4 on location, the
much praised successor of the older models, the one
with 4 GB of memory, real USB 3 ports and proper
Ethernet.

At the meeting Harald showed us that he had
version 1, 3 and 4 machines with him because he was
looking into an energy control setup based on Zigbee
devices. So we had the full range of Pi’s there to
play with.

This is a long introduction but the message
is that we are dealing with a small but popular
device with up to now four generations, using an
architecture supported in TEX distributions. So how
does that relate to ConTEXt? One of the reasons for
LuaMetaTEX going lean and mean is that computers
are no longer getting much faster and ‘multiple small’
energy-wise has more appeal than ‘one large’. So
then the question is: how can we make TEX run
fast on small instead of gambling on big becoming
even bigger (which does not seem to be happening
anyway).

At the meeting Harald gave a talk “Which Rasp-
berry Pi is the best for ConTEXt?” and I will use his
data to give an overview: see Table 1.

After some discussion at the presentation we
decided to discard the (absurd) bogomips value for
the tiny Pi 1 computing board and not take the
values for the others too seriously. But it will be
clear that, especially when we consider the external
drive that things have improved. The table doesn’t
mention Ethernet speed but because the 4 now has
real support for it (instead of sharing the USB bus)
we get close to 1 GB/s there.

The real performance test is of course processing
a TEX document and what better to test than The

TEXbook. The processing time in seconds, after
initial caching of files and fonts is:

Pi model: 1 2 3 4
The TEXbook 13.649 7.023 4.553 1.694
context --make 19.949 11.796 6.034
context --make TL 89.454 46.578 29.256 14.146

Table 1: Capacities for Raspberry Pi models.

Pi model: 1 2 3 4
chipset BCM2835 BCM2835 BCM2835 BCM2835
CPU core v6l rev 7 v7l rev 5 v7l rev 4 v7l rev 3
cores 1 4 4 4
free mem 443080 948308 948304 3999784
idlemips 997.08 38.40 38.40 108.00
bogomips 997.08 57.60 76.80 270.00
read SD 23.0 MB/s 23.2 MB/s 23.2 MB/s 45.1 MB/s
read USB 30.0 MB/s 30.0 MB/s 320.0 MB/s

Hans Hagen

TUGboat, Volume 40 (2019), No. 3 233

The test of making the ConTEXt format using
LuaTEX gives an indication of how well the I/O

performs: it loads the file database, some 460 Lua
modules and 355 TEX source files. On my laptop
with Intel i7-3840QM with 16GB memory and de-
cent SSD it takes 3.5 seconds (and 1 second less for
LuaMetaTEX because there we don’t compress the
format file). Somehow a regular TEX Live instal-
lation performs much worse than the one from the
contextgarden.

We didn’t test real ConTEXt documents at the
meeting but when I came home the Pi 4 was bound
again to the compile farm. Harald and Mojca had
prepared the machine to boot from the internal micro
SSD and use the external disk for the rest. So, when
we could compile LuaMetaTEX again, I made an
ARM installer for LMTX, and after that could not
resist doing a simple test. First of course came
generating the format. It took 6.3 seconds to make
one, which is a bit more than Harald measured. I see
a hiccup at the end so I guess that it has to do with
the (external) disk or maybe there is some throttling
going on because the machine sits on top of a (warm)
server.

More interesting was testing a real document:
the upcoming LuaMetaTEX manual. It has 226 pages,
uses 21 font files, processes 225 MetaPost graph-
ics, and in order to get it LuaMetaTEX does more
than 50% of the work in Lua, including all font and
backend-related operations. On my laptop it needs
9.5 seconds and on the Pi 4 it uses 33 seconds. Of
course, if I take a more modern machine than this

8-year-old workhorse, I probably need half the time,
but still the performance of the Raspberry Pi 4 is
quite impressive. It uses hardly any energy and can
probably compete rather well with a virtual machine
on a heavily loaded machine. It means that when
we ever have to upgrade the server, I can consider
replacement by an Ethernet switch, with power over
Ethernet, connected to a bunch of small Raspberries,
also because normally one would connect to some
shared storage medium.

Because I was curious how the dedicated small
Fitlet that I use for controlling my lights and heating
performs I also processed the manual there. After
making the format, which takes 6 seconds, process-
ing the manual took a little less than 30 seconds.
In that respect it performs the same as a Rasp-
berry Pi 4. But, inside that small (way more expen-
sive) computer is a dual core AMD A10 Micro-6700T
APU (with AMD Radeon R6 Graphics), running a
recent 64-bit Ubuntu. It does some 2400 bogomips
(compare that to the values of the Pi). I was a bit
surprised that it didn’t outperform the Raspberry
because the (fast SSD) disk is connected to the main
board and it has more memory and horsepower. It
might be that in the end an ARM processor is simply
better suited for the kind of byte juggling that TEX
does, where special CPU features and multiple cores
don’t contribute much. It definitely demonstrates
that we cannot neglect this platform.

⋄ Hans Hagen
http://pragma-ade.com

TEX on the Raspberry Pi

234 TUGboat, Volume 40 (2019), No. 3

MuPDF tools

Taco Hoekwater

Abstract

The application MuPDF (http://mupdf.com) is a
very fast, portable, open-source PDF previewer and
development toolkit actively supported by Artifex,
the creators of Ghostscript (http://artifex.com).

But MuPDF is not just a very fast, portable,
open-source PDF previewer and toolkit. It also comes
with a handy collection of command-line tools that
are easily overlooked.

The command-line tools allow you to annotate,
edit, and convert documents to other formats such
as HTML, SVG, PDF, and PNG. You can also write
scripts to manipulate documents using JavaScript.

This small paper gives a quick overview of the
possibilities.

1 Introduction

In recent versions of the MuPDF distribution, most of
the tools have been combined into a single front-end
program called mutool. This combines the function-
ality of the half dozen or so programs from earlier
releases. If you use an older version of MuPDF, there
will be little programs like muclean, but in the new
combined version that functionality is now available
as mutool clean. A similar command-line adjust-
ment is needed for the other old command-line tool
names.

In the following, I am using MuPDF 1.14.0.
While the functionality of the separate tools remains
roughly the same, not all versions of MuPDF have
the exact same options. If you want to know the
options that ‘your’ version of a command supports,
just key in the name without arguments. Running
mutool alone will provide a list of all known tools,
and, e.g., mutool clean will show the list of options
specific to the clean tool.

2 mutool clean—rewrite PDF file

If you are familiar with the general structure of PDF

documents and you often work with PDF documents
handed to you from other sources, this is probably
the most valuable of all the tools.

Its main purpose is to ‘clean up’ a PDF. It can
perform garbage collection on unused objects and
clean up the page streams.

mutool clean can also convert a PDF into (near)
ASCII by decompressing all the internal structures.
The output is still a valid PDF, but since it has very

First published in MAPS 49 (2019.1), pp. 39–40. Reprinted
with permission.

little to no binary data any more, it can easily be
inspected and possibly edited in a regular text editor.
Beware though: this tends to make the file larger.

Alternatively, mutool clean can also convert a
PDF into ‘linearized’ format for distribution on the
web.

3 mutool convert—convert document

As the name suggests, this tool can convert a PDF

file into a variety of different formats. Noteworthy
supported formats in version 1.14 are: PNG, PNM,
PCL, PS, PDF, SVG, HTML and plain text. Each
of these has a number of sub-options to control the
output format.

This is quite similar to the convert command
from ImageMagick, except you do not need to have
Ghostscript installed; it is generally faster, and uses
less memory. On the down side, there are fewer
output formats and options supported.

4 mutool create—create PDF document

With mutool create, you can create a PDF from
text snippets that specify a page content stream.
Each of these snippets becomes a page in the output
PDF. It parses some special comments inside of those
snippets to define images and fonts and page size, so
for example a snippet could look like this:

%%MediaBox 0 0 300 300

%%Image Im0 /Users/taco/Downloads/22843.png

% Draw an image.

q

200 0 0 200 50 50 cm

/Im0 Do

Q

and the result would be a one-page PDF with that
image centered in the page.

Because you have to write the page content
stream, this is not a tool for beginners in PDF. Nev-
ertheless, it is much easier to create a PDF this way
than to write the PDF completely from scratch, be-
cause the required PDF objects and object references
are generated by mutool create. Nevertheless, just
using TEX is easier (albeit not as fast).

5 mutool draw—convert document

This is like mutool convert, except that it has more
difficult to use options and uses a different syntax
for those options. It is better to first see whether
mutool convert can do what you want and only if
it cannot, then look at mutool draw.

6 mutool trace—trace device calls

Produces a debug dump of the PDF document as
an XML file. This can be useful to track what the

Taco Hoekwater

TUGboat, Volume 40 (2019), No. 3 235

MuPDF library is actually doing, but too much in-
formation is lost from the PDF to do much else (at
least, that is my experience so far).

7 mutool extract—extract font and image

resources

Extracts images and embedded font resources from
a PDF document, dumping them as separate files in
the current directory.

8 mutool info— show information about

PDF resources

Dumps detailed information about various PDF doc-
ument internals to the standard output.

9 mutool merge—merge pages from

multiple PDF sources into a new PDF

Combines one or more PDF documents (or pages
from them) into a new combined PDF document.
The fact that it can combine ‘one’ PDF means that
this is an easy way to extract pages from a PDF.
In fact, this is what I use to generate the separate
article files for the on-line version of the Maps.

10 mutool pages— show information about

PDF pages

In particular, mutool pages shows the various bound-
ing boxes for all of the pages in XML format on the
standard output.

11 mutool portfolio—manipulate PDF

portfolios

PDF portfolios are a way of putting multiple indepen-
dent PDFs into a single container PDF. With mutool

portfolio you can create or modify the contents of
such a portfolio.

12 mutool poster— split large page into

many tiles

Splits each of the pages inside a PDF into tiles that
then become the separate pages of the output PDF. It
does not alter the page streams; mutool poster just
creates adjusted bounding boxes for those separate
pages so that they offer a different viewport to the
original content stream.

This is a useful trick if you want to print a large
PDF on a desktop printer, but it does not offer any
extra features like registration marks.

13 mutool sign—manipulate PDF digital

signatures

For now (this is a very new tool) this does nothing
except verify an existing signature in a signed PDF

document. And mine does not even do that yet,
because it seems to be a build option that is not
turned on in the MacOS version. . .

14 mutool run—run JavaScript

The MuPDF library has a quite elaborate interface
to JavaScript that can be used with mutool run to
execute scripts. These scripts have direct access to
the command line and the MuPDF internals both
for interpreting and for creating PDF documents, so
very powerful things can be done.

The full interface is documented on the Artifex
web pages.

15 mutool show—show internal PDF

objects

mutool show is a tool for displaying the internal
objects in a PDF file on the standard output. This
can be very useful in combination with ‘grep’ for
example, or if you do not want to load a multi-
megabyte PDF in a text editor.

⋄ Taco Hoekwater

taco (at) bittext dot nl

MuPDF tools

236 TUGboat, Volume 40 (2019), No. 3

LATEX on the road

Piet van Oostrum

1 The context

In July 2018, my wife Cary and I were travelling in
South America to visit friends in Brazil and Bolivia,
and additionally to have some vacation. We wanted
to travel light, so I had decided not to take my
MacBook with me, saving a little bit more than 2
kgs. of weight. We both had our iPhones and iPads
(mine is an iPad mini), and we hoped that would
do. They were mainly to be used for reading email,
interactions on social media, searching for city and
transport information, and the like.

I did not expect to do any TEX work, maybe
some light programming, for which I had a Python
system (Pythonista1) on my iPad.

While we were travelling in Brazil, on our way to
Bolivia, I got an email from a user of the multirow
package about a possible bug. It came with a solution
which was a very simple substitution, and back home
on the laptop, it would have been a few minutes to
make the change, check it into the version control
system, do some tests, generate a new version of
the documentation, and upload the new version to
CTAN.

Because this person had already made a local
change, and the problem was not urgent anyway, my
first reaction was: I will correct it when I am back
home, which, by the way, would be some two months
later. However, when we arrived in Bolivia, where
we were staying a couple of weeks, the temptation
to solve the problem right there became too large.

First published in MAPS 49 (2019.1), pp. 58–70. Reprinted
with permission.

1 http://omz-software.com/pythonista/

Figure 1: On our way to Brazil

Figure 2: Our trip

But what would have taken at most 10 minutes
at home became a major effort without having a
computer with a TEX system. In the end it took me
more than two days of struggling, but with victory
in the end.

If I distributed the package just as a collection of
.sty files (there are three included), with separate
documentation, the task would have been simple.
I could have downloaded the package from CTAN,
changed the .sty files with a text editor in my iPad,
and uploaded them back to CTAN. It might have
caused some frowning from the CTAN maintainers
if the version number in the documentation would
have been different from the one in the .sty files,
but that would have been temporary anyway.

However, the package is distributed as a .dtx

file, with a corresponding .ins file, and a separate
PDF file containing the documentation which is gen-
erated from the .dtx file. The .sty files are also
generated from the .dtx file with the aid of the .ins
file. This is the standard setup for most CTAN pack-
ages. But this requires the .dtx and .ins files to be
processed by LATEX (or TEX in case of the .ins file).
And I did not have a LATEX distribution on my iPad.

2 What were the options?

There were in practice two solutions:

• Install a LATEX system on my iPad.

• Use an online (cloud-based) LATEX system.

2.1 LATEX apps on the iPad

I found two LATEX apps in the iOS App Store: Tex-
pad and TeX Writer (see figure 3). Both are offline
apps, i.e. you don’t need an Internet connection to
compile your LATEX documents. But, on the other
hand, to limit the size of the application, they don’t

Piet van Oostrum

TUGboat, Volume 40 (2019), No. 3 237

Figure 3: Texpad and TeX Writer in iOS App Store

have every package from CTAN installed. You can
install additional packages, but as iOS is quite a
closed operating system, you are dependent on the
developers to supply these packages. Of course you
can always add the required files to your project
directory, but there might be some cases (e.g. if you
need additional fonts) where this is not sufficient.

Also it isn’t clear from the documentation of
these packages if they can process something like
.dtx and .ins files to extract the .sty files and the
documentation for the package, which was essential
in my case. I got the impression that they were
mainly meant for the ‘normal’ user to write articles
and reports.

They are also not particularly cheap. At the
time of writing Texpad costs e21.99 and TeX Writer
e16.99. If I remember correctly they were a little bit
cheaper at the time I was travelling. In itself that is
not a very steep price, but I did not expect to use it

very often, and for just this single case I thought it
was too much. And they don’t have a trial version to
see if it suits you, so if you buy one of these, and you
don’t like it, you have effectively lost your money.
And then there is this nagging choice: which of the
two is better? All in all, I decided not to go that way.

For the cloud-based systems, I had heard about
Overleaf (formerly called WriteLatex) and Share-
LaTeX, so I decided to investigate these. It appeared
that at that time, these two systems were in the
process of being merged. The result was Overleaf
version 2 which had the ShareLaTeX interface, but
was still in beta phase. For the simple task that I
had, a free account would be sufficient, so I started to
try that. However, the merging process introduced
some teething troubles. In fact it made editing the
files from the iPad browser almost impossible. It
wasn’t clear if this was a specific problem on the
iPad, or if the browser interface in general was not
yet mature enough. In effect it wasn’t usable at all,
because its behaviour was very erratic.

I also tried the Overleaf version 1 interface, but
I could not get that working either. I have no idea
whether these problems were iPad specific, but any-
way I could not use it. By the way, the Overleaf
editor is now functioning also on the iPad. How-
ever, some functionality is not available without an
external keyboard, because they are invoked with
control keys. For example the search function is in-
voked by Control-F on Windows and Linux, and by
Command-F on MacOS. On an iPad you can’t give
these with the virtual keyboard. With an external
keyboard it is possible. The current Overleaf editor
is reasonable. It has some TEX-specific functional-
ity. For example, if you type \begin{enumerate}

the editor adds \item and \end{enumerate} and
positions the cursor after the \item (see figure 4).

Figure 4: Overleaf editor supplies useful parts

2.2 Cloud-based LATEX systems

Despite the problems that the editor gave at that
time, it seemed to me that this was the best way
to go forward. Figure 5 shows the screen from the
current version of Overleaf on my MacBook. The
default screen has an edit window with the LATEX
source text and a preview window with the resulting
PDF. The preview is not live, you have to hit the
Recompile button to update it. There is also a file

LATEX on the road

238 TUGboat, Volume 40 (2019), No. 3

Figure 5: An early version of this article in Overleaf, with some of the maps.cls documentation still in place

Figure 6: Overleaf screen with virtual keyboard on an iPad

Piet van Oostrum

TUGboat, Volume 40 (2019), No. 3 239

Figure 7: Overleaf screen with virtual keyboard on an
iPad in portrait mode

Figure 8: iPad mini with external keyboard

list on the left and it has the capability to hide or
show each of these parts and to adjust the sizes of
each part. Especially on the smaller iPad screen
it is advisable to have only the source code part
showing while editing. But even then, the virtual
iPad keyboard takes so much space that hardly any
source code is visible (see figure 6). Also in this case,
the file list at the left would make the edit window
even smaller, but the file list can be hidden, as shown
in the image.

It helps to put the iPad in portrait mode, as
shown in figure 7. But then the keyboard is rather
small. For a setup like this to be workable, it would
be better to use an external keyboard. There are
several keyboards on the market that can be used.
They are generally connected through Bluetooth.
They are light-weight and don’t take much space, so
are ideal for travelling light (see figure 8). I did not
have one at that moment, however.

3 Setting up the project

Setting up the project is easy. You can create a new
project in the Overleaf in the Web interface. You
can upload each file individually, or a zip file with
everything included. Overleaf will unpack the zip
file in your project.

Immediately, it became apparent that there was
a problem with my project. Overleaf wants you
to designate one of your files as the main TEX file,
which for me would have been multirow.dtx, but
it doesn’t accept this. It wants to have a .tex file.
It does not recognise the .dtx file as a valid LATEX
file. Nor does it want to edit the .dtx file, but as
the editor was unusable, this was of a minor concern.
I would have to edit the files locally on my iPad
anyway.

So I had to give it a .tex file extension to make
it (and myself) happy. I tried two ways

• Copy multirow.dtx to multirow.tex

• Make a file multirow.tex that just contains
\include{multirow.dtx}

I had expected that each of these would compile the
.dtx file when the Compile button would be pressed.
However, it didn’t. It took some time to find out
why. My multirow.dtx contains a line

\DocInput{\jobname.dtx}

which is quite usual in .dtx files. After some search-
ing I found out that \jobname wasn’t multirow as
was to be expected, but output. It appears that
Overleaf runs the job in a kind of sandbox where the
jobname of the main file is output.

After some googling I found that Overleaf uses
Latexmk2 to process the job. It provides a standard,
but invisible, latexmkrc file that controls the com-
pilation process. However, you can also supply your
latexmkrc file. This file, and the handling of the
output name, is described in section ‘Latexmk’ on
page 242.

So the challenge was now to upload a correct
latexmkrc file, and to update the multirow.dtx

file. This could be done by uploading these files after

2 https://mg.readthedocs.io/latexmk.html

LATEX on the road

240 TUGboat, Volume 40 (2019), No. 3

each modification, but this might be an error-prone
process, and you don’t have a record of what has
been done. Enter version management.

4 Distributed version management

In any project where you have to make changes more
or less regularly, it is important to keep track of
what you have done. Also, in general it is useful
to have access to previous versions of your project,
for example if you want to go back to a previous
situation. Some people do this by making copies of
their files at regular moments. Sometimes they put
the date and the time in the file names, to keep a kind
of history. But this soon becomes unwieldy. This is
the problem that version management systems (also
called version control systems) offer a solution for.
Any serious developer, whether of software or text,
should consider using a version management system.

For those readers that are unfamiliar with ver-
sion management, here follows a brief description.
You have a working copy or working directory, which
is the collection of files that you work upon in your
project. This is just like when you do not use version
management. Additionally you have a repository,
which is a kind of database containing the history of
your project. It will contain the state of your work-
ing copy at certain moments in the past, together
with information about who made the changes, and
a description of what has changed.

If, at a certain moment, you have a state of your
project that you want to keep, you commit, which
means a copy is stored in the repository, together
with a description that you enter. The opposite
operation (i.e. making a copy from your repository
to your working directory) is called checkout. You
usually have a separate repository for each project.
The repository can be on your local computer, or on
a server. In the latter case it is possible that different
people working on the same project use the same
repository. They would then each have their own
working copy. As they are working independently,
these could be different. A version management
system usually has provisions to resolve conflicting
working copies.

Although these systems can store any type of
file, they work best with plain text files. As our TEX
sources are plain text, they are ideal candidates for
using a version management system.

There are several version management systems
available. One older, well-known system is subversion
(SVN3). It usually has the repositories on a central
server, but you can also have the repository on your

3 http://subversion.apache.org

local computer, if you are working alone. As SVN

has only one repository per project it is called a
centralised version management system.

Centralised version management systems have
some big disadvantages for cooperation in teams:

• If you work together the repository must be on
a central server, which means you cannot use it
when you are offline.

• If you want to keep your changes registered often
in the repository, then this can be confusing for
the other team members. On the other hand, if
you want to keep the repository relatively clean,
that is, only commit major updates, then you
lose the possibility to keep your own history
detailed.

One solution is to have both a central repository
for the team, and a local repository for your own
work, but then synchronising these repositories could
become tedious. However, this is where distributed

version management systems have their strength.
In a distributed version management system you

can have both a local repository on your computer
and a central repository on a server. Or even more
than one of each. Furthermore, these can be easily
synchronised. The usual way to work in a team is to
have a central repository for the team, and a local
repository on each team member’s computer. Each
team member keeps a history in the local repository.
This can be done often, and also offline. When
changes are good enough to be put in the central
repository, a team member pushes the local changes
to the central repository, often after making one set
of changes that do not reflect all the details of the
work done locally. Another team member can then
fetch these changes from the central repository when
they want to be up to date. It is then probable that
the newly-fetched changes are not consistent with
other changes that they have made themselves in
the meantime. The two sets of changes must then
be merged. This is the basic scenario. Much more
complicated workflows are also possible.

Both centralised and distributed version man-
agement systems support the concept of branches.
A branch is a separate line of development in your
project. For example you have a project that you
publicly release from time to time. The development
of this release version would for example take place
on the main branch in your repository. Now after
a release you want to start working on some very
new experimental features for a future release. If you
just continue your development, then when a bug in
your release is detected, your project would be in an
unstable state. So you cannot just apply a bug-fix

Piet van Oostrum

TUGboat, Volume 40 (2019), No. 3 241

to the current state of your project, but you would
have to go back to the state just after the release. As
the repository has kept the history of your project,
this is easy, but you want also to keep the current
state, so that you can go back there after making
the bug-fix.

Here branches come to the rescue. After your
release you create a new branch for your experimen-
tal work, and continue working there. When you
want to make the bug-fix, you switch back to the
main branch. The repository will remember your
experimental branch, and after releasing the bug-fix
you can switch back to the experimental branch. If
you wish you can then also merge the fix in your
experimental branch. Later when your experiment is
successful and you want to release it, you can merge
it back to the main branch. You can have as many
branches as you want. For example if your bug-fix is
expected to be complicated, you can first try it out
on a separate branch.

A very popular site for central repositories is
Github.4 This site is based on the distributed version
management system Git. Git is probably the most
popular version management system in use today.
For my own projects I use Git exclusively nowadays,
often only locally, but sometimes in combination
with Github.

4.1 Use with Overleaf

To come back to the TEX project I am currently
describing, it appeared that Overleaf also had Git
capabilities. Although these were in beta phase at
that moment, it could be used for my project. Nowa-
days you need a paid account on Overleaf to use the
Git facilities, but because I had started using them
during the beta testing, I have access to them in my
free account.

Git can be used in two ways on Overleaf.

• your Overleaf project can function as a Git
repository;

• your Overleaf project can be synchronised
with a Github repository.

I decided to take the Github route, mainly be-
cause I have experience with Github and I could not
get the direct Git repository on Overleaf working
from the iPad. At this moment it is working, but its
functionality is very limited compared to Github.

In order to use Git on the iPad you need a Git
app. I found Git2Go,5 which is said to be the first
app to use Git on iOS. It worked well for my needs,
but later I tried two others that I found: Working

4 https://www.github.com
5 https://git2go.com

Github

repo

Overleaf

Git

repo

iPad

Git

repo

PushFetch

Overleaf

Working

Copy

iPad

Working

Copy

commitcommit
(automatic)

checkout
(automatic)

LaTeX Edit

Figure 9: Git workflow

Copy6 and TIG.7 In the appendix I give a comparison
of these apps.

My workflow can be seen in figure 9. My editing
took place in the lower right corner, on the working
copy (managed by Git2Go). I could have used the
editor that Git2Go provides, but it is not very so-
phisticated. It does not have syntax highlighting for
LATEX files, and it gives no editing support beyond
the standard iPad keyboard. I also had a much better
text editing program called Textastic.8 It has syntax
highlighting for LATEX, good search facilities and an
extended keyboard (see figure 10) that makes it eas-
ier to enter non-alphanumeric symbols. Also it has a
special provision for easy cursor movement. Git2Go,
and the other Git apps mentioned above, function
as a kind of file system, which means that Textastic
can directly edit their files without copying between
the two apps. So the only extra operation to edit
in Textastic rather than in Git2Go itself is switch-
ing between the apps. This extra effort I deemed
worthwhile for the added comfort of using a good
text editor.

After editing the file(s), I switch to Git2Go,
commit the change, and immediately push it to the
Github repository. Then I switch to Overleaf in the
browser, fetch the changes from Github to Overleaf
in the Overleaf synchronisation menu, and process
the files, hopefully producing a new PDF file. Many

6 https://workingcopyapp.com
7 https://itunes.apple.com/us/app/tig-git-client/

id1161732225
8 https://www.textasticapp.com

LATEX on the road

242 TUGboat, Volume 40 (2019), No. 3

Figure 10: Textastic extended keyboard

times it did not yet work correctly, so I had to go
back to Textastic and start a new cycle.

The problem wasn’t so much in the LATEX code,
as the changes there were very simple. The main
problem was getting the latexmkrc file correct. One
difficulty was that Overleaf did not have good docu-
mentation about the context in which the Latexmk
program was running. Also, running it on their server
did not give as much feedback as running on your
own computer. Several times I had to write extra
information to a text file, and then download that to
the iPad to see what happened. For example, I had
to make directory listings, and write them to a text
file, just to see what files were generated and what
their names were. And the process was a bit tedious
because I had to synchronise the files as described
above before each try. But after some 50 tries, ev-
erything worked perfectly. I will spare you all the
attempts that I made, but in the next section I will
give you the resulting latexmkrc file, and explain
what it does.

5 Latexmk

Latexmk is a program (a Perl script) to process a
LATEX file with all the necessary bibtex, makeindex
and similar calls. It will run LATEX and these other

programs as many times as is necessary to get a
completely processed and stable output.

For the run-of-the-mill LATEX file, Latexmk has
enough knowledge to know what to do. However,
when there are additional requirements, like a non-
standard index, glossaries, etc., you must give La-
texmk a recipe of how to process the various stages.
The recipe is given in the latexmkrc file, which in
fact is also a Perl script. Latexmk has an enormous
number of possibilities, and its manual9 contains 48
pages. So it took some time to get everything right.

Overleaf provides a standard latexmkrc file for
its jobs, but as we have seen above, this is not ad-
equate for processing the .ins and .dtx files. To
make Overleaf happy, we must provide a main .tex

file, but with our latexmkrc file we don’t use it, so
its content is unimportant.

In figure 11 the resulting latexmkrc for this
process is given, annotated with line numbers. In
the remainder of this section I explain what it does.

line 1. This sets the timezone to your local time.
This is so that messages with date and time
will get your local time, and not the time of
Overleaf’s servers, which would be useless in
most cases. As I was in Bolivia at the time, the
timezone was ‘America/La Paz’. Now at home
it would be ‘Europe/Amsterdam’.

line 3-6. In a .dtx file the extension .glo, which
is normally used for glossaries, is used for the
list of changes. And the sorted version, to be
created by makeindex, will be .gls. These lines
give a recipe how to create the .gls file from
the .glo file using makeindex.

line 8. For processing the normal index in a .dtx

file makeindex needs the additional argument
-s gind.ist.

line 10. This defines which extra file extensions we
need in the process. Besides the already men-
tioned .glo and .gls, there is also .glg which
is the log output of the makeindex command
from line 5. And the .txt extension is used for
debugging.

line 12. Here comes the trick to let Overleaf do
our work. Normally it will run pdflatex on
the main TEX file in the project, which in our
case is multirow.tex. But you can define the
$pdflatex variable to let it use another com-
mand. In our case we let it run the internal
function mylatex that follows. In this function
we do all the preparatory work before we run
the actual pdflatex command.

9 http://mirrors.ctan.org/support/latexmk/latexmk.

pdf

Piet van Oostrum

TUGboat, Volume 40 (2019), No. 3 243

Latexmkrc file:

1 $ENV{’TZ’} = ’America/La Paz’;

2

3 add_cus_dep(’glo’, ’gls’, 0, ’makeglo2gls’);

4 sub makeglo2gls {

5 system("makeindex -s gglo.ist -o \"$_[0].gls\" \"$_[0].glo\"");

6 }

7

8 $makeindex = ’makeindex -s gind.ist -o %D %S’;

9

10 push @generated_exts, ’glo’, ’gls’, ’glg’, ’sty’, ’txt’;

11

12 $pdflatex = ’internal mylatex’;

13 sub mylatex {

14 my @args = @_;

15 (my $base = $$Psource) =~ s/\.[^.]+$//;

16 system("tex $base.ins");

17 # backslashes are interpreted by (1) perl string (2) shell (3) sed regexp

18 # therefore we need 8 backslashes to match a single one

19 system("sed -e s/\\\\\\\\jobname/$base/g $base.dtx > $base.tex");

20 return system("pdflatex @args");

21 }

Figure 11: The final latexmkrc file. The line numbers are not part of the file.

line 14. Pick up the arguments from the call to
mylatex in the variable @args. This is standard
Perl prose.

line 15. Latexmk puts the name of the main TEX
file in $$Psource (see page 45 in the Latexmk
manual). This line is actually a shorthand for
two statements:

my $base = $$Psource;

$base =~ s/\.[^.]+$//;

The first line copies $$Psource to a local vari-
able $base. The second line strips off any-
thing after (and including) the last dot. So
the string ‘multirow.tex’ will be transformed
to just ‘multirow’. I use $$Psource rather than
just using multirow so that now the latexmkrc
file is also usable for other .dtx files.

line 16. First we run tex on our .ins file, which
would be multirow.ins in our case. This gen-
erates the required .sty files. This is to ensure
that we use the new versions of our .sty files,
rather than an outdated version in Overleaf’s
TEX system.

line 19. From our .dtx file we generate a .tex

file where the text \jobname is replaced by
the actual base name of our file (in our case
multirow). This is necessary as Overleaf de-
fines a \jobname of output. So in this case
we generate multirow.tex from multirow.dtx.

This .tex file will input multirow.dtx during
its processing.

We do the replacement by calling the Unix
program sed. The \jobname is inside a regular
expression in sed, therefore the backslash must
be doubled. But then, this command is pro-
cessed by the Unix shell, which also interprets
backslashes. Therefore we must double all the
backslashes again. And then this command is
inside a Perl string where backslashes are also
interpreted. So we must double them again, and
we end up with 8 backslashes to represent a
single one.

line 20. Finally we run the real pdflatex command
with the original arguments. Note that we pro-
cess the new multirow.tex file, because that
is what Overleaf expects to do. Also, because
this is run in a sandbox (i.e. on a copy of the
original files in a separate directory), this does
not affect our original file.

Finally, we also show a modified latexmkrc file
with debugging statements included in figure 12, and
the corresponding output in figure 13. You see the
values of $$Psource and $base, the arguments to
the pdflatex call, and the directory listing at the
end of the process. Note that in the directory listing
there is a file multirow.log; this is the result of
the call tex multirow.ins. Note also the generated

LATEX on the road

244 TUGboat, Volume 40 (2019), No. 3

Latexmkrc with debugging:

$ENV{’TZ’} = ’America/La Paz’;

add_cus_dep(’glo’, ’gls’, 0, ’makeglo2gls’);

sub makeglo2gls {

system("makeindex -s gglo.ist -o \"$_[0].gls\" \"$_[0].glo\"");

}

$makeindex = ’makeindex -s gind.ist -o %D %S’;

push @generated_exts, ’glo’, ’gls’, ’glg’, ’sty’, ’txt’;

$pdflatex = ’internal mylatex’;

sub mylatex {

my @args = @_;

Run_subst("echo \"%%B=%B %%R=%R %%S=%S %%T=%T\" > debugout.txt"); ## DEBUG ##

system("echo ’\@args’ = \"@args\" >> debugout.txt"); ## DEBUG ##

system("echo ’\$\$Psource’ = \"$$Psource\" >> debugout.txt"); ## DEBUG ##

(my $base = $$Psource) =~ s/\.[^.]+$//;

system("echo ’\$base’ = \"$base\" >> debugout.txt"); ## DEBUG ##

system("tex $base.ins");

backslashes are interpreted by (1) perl string (2) shell (3) sed regexp

therefore we need 8 backslashes to match a single one

system("sed -e s/\\\\\\\\jobname/$base/g $base.dtx > $base.tex");

$status = system("pdflatex @args");

system("ls -l >> debugout.txt"); ## DEBUG ##

return $status;

}

Figure 12: latexmkrc file with debug statements

Debug output:
%B=output %R=output %S=multirow.tex %T=multirow.tex
@args = -synctex=1 -interaction=batchmode -recorder

-output-directory=/compile --jobname=output
multirow.tex

$$Psource = multirow.tex
$base = multirow
total 1176
-rw-r--r-- 1 tex tex 3871 Mar 4 14:12 README
-rw-r--r-- 1 tex tex 49 Mar 4 14:12 README.md
-rw-r--r-- 1 tex tex 1417 Mar 4 14:12 bigdelim.sty
-rw-r--r-- 1 tex tex 1234 Mar 4 14:12 bigstrut.sty
-rw-r--r-- 1 tex tex 203 Mar 4 14:12 debugout.txt
-rw-r--r-- 1 tex tex 1054 Mar 4 14:12 latexmkrc
-rw-r--r-- 1 tex tex 80398 Mar 4 14:12 multirow.dtx
-rw-r--r-- 1 tex tex 2182 Mar 4 14:12 multirow.ins
-rw-r--r-- 1 tex tex 3719 Mar 4 14:12 multirow.log
-rw-r--r-- 1 tex tex 5022 Mar 4 14:12 multirow.sty
-rw-r--r-- 1 tex tex 80398 Mar 4 14:12 multirow.tex
-rw-r--r-- 1 tex tex 3487 Mar 4 14:12 output.aux
-rw-r--r-- 1 tex tex 0 Mar 4 14:12 output.chktex
-rw-r--r-- 1 tex tex 25207 Mar 4 13:10 output.fdb_latexmk
-rw-r--r-- 1 tex tex 20593 Mar 4 14:12 output.fls
-rw-r--r-- 1 tex tex 3281 Mar 4 14:12 output.glo
-rw-r--r-- 1 tex tex 3578 Mar 4 08:13 output.gls
-rw-r--r-- 1 tex tex 3270 Mar 4 14:12 output.idx
-rw-r--r-- 1 tex tex 891 Mar 4 08:13 output.ilg
-rw-r--r-- 1 tex tex 2655 Mar 4 08:13 output.ind
-rw-r--r-- 1 tex tex 34086 Mar 4 14:12 output.log
-rw-r--r-- 1 tex tex 610336 Mar 4 14:12 output.pdf
-rw-r--r-- 1 tex tex 262970 Mar 4 14:12 output.synctex.gz
-rw-r--r-- 1 tex tex 1467 Mar 4 14:12 output.toc

Figure 13: latexmkrc debug output (the @args line
has been broken into several lines for print)

.sty files. The files resulting from the pdflatex call
on multirow.tex/dtx are all called output.*. So
makeindex must also act on these files. In figure 11,
line 5, this is accomplished because the file name is
given as an argument to the function makeglo2gls.
In line 8 it is accomplished because the patterns %S
and %D are replaced by the source and destination

of the command, respectively, i.e. output.idx and
output.ind.

6 Conclusion

Although working at home on my MacBook is much
more comfortable, it is possible to do some serious
LATEX work on your iPad while you are travelling.
It takes some effort to find the proper way to do it,
however. I hope this article helps you to get started
if you need this work flow.

A Appendix— iOS Git apps compared

In this section I compare the three Git apps on iOS

that I tried. I did all the production work in Git2Go,
but after it was finished I also tried Working Copy
and TIG.

Piet van Oostrum

TUGboat, Volume 40 (2019), No. 3 245

Git2Go has a limitation that it only cannot work
with Git repositories on all servers. It works with
a limited number of services, namely Github,
Bitbucket10 and Gitlab11. Other remote repos-
itories can be used if they offer access by the
SSH protocol. SSH is one of the two main proto-
cols used to connect to Git servers. The other
is HTTPS. Overleaf only offers HTTPS, which
Git2Go does not support.

To create a repository on your iPad you must
clone (i.e. copy) an existing repository on one
of the supported servers. You cannot create a
local-only repository on the iPad. Once you
have the repository on your iPad, you can edit
the files in the repository, commit the changes,
create new branches. It can fetch from and
push to the remote repository, but these are
not separate operations. It always does a fetch
(which may be empty), followed by a push. It
can also merge different branches. It is a lim-
ited set of operations compared to the full Git
functionality, but it is sufficient for a normal
workflow as described above. Also cooperation
with other people would be possible as long as
the more esoteric Git functionality is not re-
quired. Git2Go’s editor has syntax highlighting
for a limited number of programming languages.
Git2Go is free, as long as you only access

public repositories (i.e. repositories that every-
body can see). To access private repositories
you would have to buy an upgrade.

For the push operation you will have to login,
and Git2Go will remember your username and
password, until you explicitly logout.
And occasionally it crashes.
Last minute note: I later tried to re-install

Git2Go on my iPhone, and got the message that
it was no longer available on the App Store. Also
a search in the App Store did not come up with
Git2Go. I have no idea if this is a permanent
situation, or if it might be in the process of
updating.

Working Copy is the nicest of the three apps. It
has a very elaborate set of functions. It can con-
nect to all kinds of servers, including Overleaf.
However, to use the push functionality you have
to pay. The price is quite steep (e17.99 at the
time of writing), but you can get a free 10 day
trial. I used this for writing this article to see
how it worked.

10 https://bitbucket.org
11 https://gitlab.com

Working Copy can clone from existing reposi-
tories, including through SSH and HTTPS, and
also create local repositories. It can also create
a local repository from a .zip file. Once you
have a repository it can connect your reposi-
tory to more than one remote repository, which
sometimes can be quite handy. For example in
the current example, the repository on the iPad
could have been connected both to the Overleaf
repository and to the Github repository. Of
course you will have to be careful not to mess
up your workflow.

If your iPad is connected to a Mac or PC with
iTunes, you can drag and drop a repository on
your computer through iTunes, and it will be
copied to the iPad.
Working Copy’s editor has syntax highlight-

ing for more than 50 different languages. It
can show nice graphical representations of your
branches and your commit history (see figure 14).
Besides the merge functionality it also has the
rebase functionality, which is an alternative for
merge. For cooperating in large projects this
functionality is sometimes necessary.
There is more than fits in this limited space,

but Working Copy is by far the best of the three
apps. It is expensive, but if you do a lot of work
with Git on your iPad, it is worth the price.
Working Copy operates in a small market, so
the price is understandable.

TIG is the third app I tried. It takes more or less
a middle ground between Git2Go and Working
Copy. Like Working Copy it can connect to all
kinds of repositories, including Overleaf, and it
has push functionality. And it is free. It can
clone existing repositories, and create local ones.
It can also connect repositories to more than
one remote repository.

Its editor has syntax highlighting support for
166 languages.

However, although the functionality is great
for a free app, I found its user interface some-
times confusing. And to fetch/push to your
remote repositories you have to enter your user-
name and password every time. I did not find a
way in which it could remember these. This is
very annoying. And it crashed quite often.

As I mentioned above, all these apps have the
facility that you can open their files in an external ed-
itor. Figure 15 shows how to open files from Git2Go
in Textastic. This is done inside Textastic with the

LATEX on the road

246 TUGboat, Volume 40 (2019), No. 3

Figure 14: Graphical commit history in Working Copy

Figure 15: Opening a Git2Go file or repository in
Textastic

“Open. . . ” button, then selecting “Git2Go”. It is
then possible to choose “Open” down in the pop-up,
which will open the whole directory in Textastic, or
select one filename, which will open that file.

Summary:

• If you only need access to repositories hosted
by Github, Bitbucket or Gitlab, or repositories
that can be accessed by the SSH protocol, and
your requirements are modest, you can choose
Git2Go (if still available).

• If you need access to repositories that do not
fall in the previous categories (such as Overleaf),
and you can live with a not so optimal user
interface, and your requirements are modest,
you can choose TIG. It may be a good choice
when you want to connect to a repository that
Git2Go does not support, and when you find
Working Copy too expensive.

• If you want the top Git app on your iPad (or
iPhone) and are willing to pay the price, I would
recommend Working Copy. If you want to do
serious work with Git, this is the choice and it
would be worth the price.

There are nowadays some other Git apps available,
but it seems that they are roughly comparable to
one of the above. Some of them only support just
Github, Bitbucket or Gitlab. I have not found any
free app that comes with the functionality of Git2Go
or TIG. Other paid apps may be slightly cheaper than
Working Copy, but they also have less functionality.

⋄ Piet van Oostrum
http://piet.vanoostrum.org

piet (at) vanoostrum dot org

Piet van Oostrum

TUGboat, Volume 40 (2019), No. 3 247

A Brazilian Portuguese work on MetaPost,

and how mathematics is embedded in it

Estevão Vińıcius Candia

Abstract

This article presents a summary of my final work
[1] for the master’s degree course in Mathematics,
presented on November 1, 2018. This work shows an
introduction to the basic commands of the MetaPost
language. For this, some mathematical concepts are
explained, as they are part of its programming. It
is shown how these concepts can be used to create
high-quality figures used in areas of mathematics
such as geometry and the study of graphs of real
functions.

Introduction

Written communication is the basis for teaching and
learning in various areas of knowledge. Writing a
legible and elegant mathematical work was not so
simple in the old days without the computational
tools available today. The ability to expose knowl-
edge in accordance with technical requirements, or
even personal norms, moved people to create typo-
graphic writing systems that included mathematical
symbols and concepts. MetaPost is a very useful tool
for this.

When I needed a research topic for my master’s
thesis, my advisor, Professor Elisabete Freitas, in-
troduced me to MetaPost and said that it would be
very nice to study some of the mathematics behind
it. She said she uses MetaPost whenever she needs
to create pictures for her work on TEX and that it
has powerful tools that can contribute to the work of
Mathematics teachers. So, I met this language and
started studying its pedagogical use.

What did I study?

Chapter 1 of the dissertation presents some com-
mands for creating basic figures for an interested
reader who has never heard of MetaPost. To iden-
tify the positions in a drawing, MetaPost uses the
one-to-one correspondence between the points of a
plane and the set of ordered pairs of real numbers.
Mathematics!

In this initial chapter, the reader learns about
the commands draw, drawdot, cycle, paths with --

and .., style commands that change the width, size,
or shape of a solid or dashed line, label, dotlabel,
drawarrow, drawdblarrow, some data types, com-
mands for colors, filling and mathematical operators.
It also contains the conversion table of the units of
measurement used in MetaPost, as shown in Table

1 and a short tutorial on how to insert a MetaPost
figure into a TEX document.

Unit of measurement Conversion
pt 0,035145 cm
bp 0,035278 cm
in 2,54 cm
pc 0,423333 cm
mm 0,1 cm
cc 0,451167 cm
dd 0,0376 cm

Table 1: Conversion table of the units of measurement
used in MetaPost

Some mathematical concepts of vectors and ge-
ometry can be used to make drawings in MetaPost.
MetaPost has vector operators and is able to under-
stand the data of the type pair as vectors. Chapter 2
addresses the mathematical basis for this, as well as
some applications of these operations in geometry.

This chapter defines vectors and shows some
vector properties. It presents the concept of colinear-
ity and dot product (inner product) of two vectors.
An application of these concepts is used to show how
to plot the altitude of a triangle with the dotprod

operator, as seen in fig. 1.

A

B

C

HC

u:=1cm;

z1=origin; z2=(5u,-u); z3=(2u,2u);

draw z1--z2--z3--cycle;

dotlabel.llft(btex A etex, z1);

dotlabel.lrt(btex B etex, z2);

dotlabel.top(btex C etex, z3);

(z2-z1) dotprod (z4-z3)=0;

z4=whatever[z1,z2];

draw z3--z4 dashed evenly;

dotlabel.llft(btex H_C etex, z4);

Figure 1: Triangle ABC with relative altitude drawn
on side AB

The second chapter also shows the mathematics
behind the drawing of a regular polygon and the four
triangle centers: centroid, circumcenter, incenter and
orthocenter. In addition, it shows how to draw them
with MetaPost (figs. 2–6).

Chapter 3 discusses transformations in the plane,
as well as features that allow you to use them in Meta-
Post to draw various graphics. Some applications

A Brazilian Portuguese work on MetaPost, and how mathematics is embedded in it

248 TUGboat, Volume 40 (2019), No. 3

Figure 2: Decagon of side 1 cm.

A

B

C

G

Figure 3: Medians and the centroid G of ABC.

A

B

C

r

s

t

O

Figure 4: Perpendicular bisectors and the
circumcenter O of ABC.

A

B

C

H

Figure 5: Altitudes and the orthocenter H of ABC.

A

B

C

I

Figure 6: Angle bisectors and the incenter I of ABC.

of these transformations are also presented for the
sketch of circles and ellipses.

A transformation in the plane R
2 is a func-

tion T : R2 → R
2, i.e, a correspondence that as-

sociates with each point P of the plane another
point P1 = T (P) of the plane, called its image by
T . In MetaPost, transformations are performed us-
ing the transform type. With them, along with
the fullcircle command, you can draw circles and
ellipses, as shown in figures 7 and 8.

X

Y

A

P

r

C

b

a

y

xO

Figure 7: Circle C of center A and radius r

X

Y

P

E

y

xOF1

−c

F2

c
−a a

b

−b

Figure 8: Ellipse E of center O, focuses F1 and F2 and
major axis 2a

Although it may seem obvious that using the
scaled, xscaled, yscaled, and shifted transforms
generates the circles and ellipses from the initial circle
fullcircle, the mathematics behind this concept
is accurate and, if I may say, particularly beautiful.
These results are exemplified with two interesting
problems of geometry: the nine-point circle and the
problem of tracing the ellipse tangent to the triangle
with one of its focuses an inner point of the triangle,
as shown in figures 9 and 10.

Estevão Vińıcius Candia

TUGboat, Volume 40 (2019), No. 3 249

A B

C

D

EF

G

H

I

J K

L

O

numeric u; u=1cm;

pair A,B,C,D,E,F,G,H,I,J,K,L,O,X;

A=(0,u);

B=(5u,u);

C=(u,10u);

D=.5[A,B];

E=.5[B,C];

F=.5[A,C];

G=whatever[C,B];

H=whatever[A,C];

I=whatever[B,A];

(A-G) dotprod (B-C) =

(B-H) dotprod (C-A) =

(C-I) dotprod (A-B) = 0;

X = whatever[A,G] = whatever[B,H];

J=.5[A,X]; K=.5[B,X]; L=.5[C,X];

(O-0.5(D+I)) dotprod (D-I) =

(O-0.5(G+K)) dotprod (G-K) = 0;

draw A--B--C--cycle;

draw fullcircle

scaled (2*abs(O-D)) shifted O;

Figure 9: Nine-point circle

Chapter 4 deals with the elaboration of graphs
of continuous functions defined in intervals of the line.
Initially a summary is made with some propositions
about continuous functions. Next, some MetaPost
techniques are outlined to sketch function graphs
through macros (fig. 11). The techniques in this
chapter discuss how to use a loop to calculate coor-
dinates of graph points, how to cut a piece of the
graph you want to see, how to use or create macros
for non-predefined math functions in MetaPost, and
how to plot graphs with asymptotes.

A

B

C

F

numeric u,a,b,c,theta; transform T;

pair A,B,C,F[],G[],O,P[]; path E;

u=1cm; A=(-u,-3u); B=(3u,0); C=(u,7u);

draw A--B--C--cycle; F1=(u,-u); F3=whatever[A,C];

F4=whatever[A,B]; F5=whatever[C,B];

(F3-F1) dotprod (A-C)= (F4-F1) dotprod (A-B)=

(F5-F1) dotprod (C-B)=0;

G1 = F1 rotatedaround (F3,180);

G2 = F1 rotatedaround (F4,180);

G3 = F1 rotatedaround (F5,180);

(F2-0.5(G2+G3)) dotprod (G2-G3) =

(F2-0.5(G1+G2)) dotprod (G1-G2) = 0;

P1=whatever[A,C]=whatever[F2,G1]; O=0.5[F1,F2];

2a=abs(F1-P1)+ abs(F2--P1); c=abs(F1--O); b=a+-+c;

theta=angle(F2-F1); T:= identity xscaled 2a

yscaled 2b rotated theta shifted O;

E:= fullcircle transformed T; draw E;

Figure 10: Ellipse inscribed in the triangle ABC with
one focus at F

x

y

Figure 11: Functions f(x) = 1 +
√

1− |x− 1|2 and
g(x) = 1 + arccos (1− |x|)− π (grayscaled for print)

A Brazilian Portuguese work on MetaPost, and how mathematics is embedded in it

250 TUGboat, Volume 40 (2019), No. 3

For instance, the graph of figure 12 was sketched
using some of these techniques. First, some macros
are defined for the calculation of the cosine function.
Then the limits of the axes of the Cartesian plane
and the limits of the graph of the function are defined.
Since the function is defined in two disjoint intervals,
a loop is used to calculate 1000 points of each interval.
Then another loop is used to define the two smooth
curves through these points. The last step is to draw
these two curves respecting the preset limits.

x

y

def pi = arclength fullcircle enddef;

numeric radian; radian := 180/pi;

vardef cos primary x = (cosd(x*radian)) enddef;

numeric u, minx, maxx, miny, maxy; path q;

u:=0.8cm; minx:=-4; maxx:=4; miny:=-4; maxy:=4;

drawarrow ((minx,0)--(maxx,0)) scaled u;

drawarrow ((0,miny)--(0,maxy)) scaled u;

label.bot (btex x etex, (maxx*u,0));

label.llft (btex y etex, (0,maxy*u));

q:=((minx,miny)--(maxx,miny)--(maxx,maxy)--

(minx,maxy)--cycle) scaled 0.95;

numeric h,n; path p[];

n:=1000; a:=0.1; b:=maxx; h:=(b-a)/n;

for i=0 upto n: x[i]:=a+i*h;

y[i]:=(cos (10*x[i]))/x[i]; endfor;

p[1]=z[0] for j=1 upto n: ..z[j] endfor;

a:=minx; b:=-0.1; h:=(b-a)/n;

for i=0 upto n: x[i]:=a+i*h;

y[i]:=(cos (10*x[i]))/x[i]; endfor;

p[2]=z[0] for j=1 upto n: ..z[j] endfor;

pickup pencircle scaled 1bp;

draw (p1 cutafter q cutbefore q)

scaled u withcolor red;

draw (p2 cutafter q cutbefore q)

scaled u withcolor red;

Figure 12: Function f(x) =
cos 10x

x
(grayscaled for print)

Final considerations

MetaPost is a powerful tool for using mathematical
knowledge in the preparation of figures. The images
generated through this language have a satisfactory
professional level for what is expected of an academic
work. People who teach and research mathematics
can improve the presentation of their work and guide
their students in the application of acquired math-
ematical knowledge. Thus, I hope that this work
may, in a way, have contributed to the development
of mathematics teachers and, consequently, to the
development of their students.

I am part of a research group of the Institute
of Mathematics of the Federal University of Mato
Grosso do Sul, called “Fundamentals of Mathematics
for High School and the use of the language Meta-
Post”. This project proposes to provide material for
the high school curriculum using TEX and MetaPost.
We also intend to disseminate this language in the
academic environment of Brazil, since there is very
little work on MetaPost in Portuguese. If you would
like to collaborate, please contact us via my email
address.

References

[1] CANDIA, Estevão V. Matemática e o Meta-

Post. Master’s degree thesis. UFMS, 2018. Avail-
able at http://sca.profmat-sbm.org.br/sca_

v2/get_tcc3.php?id=160350039.

⋄ Estevão Vińıcius Candia
estevao.candia (at) ifms dot edu dot br

Estevão Vińıcius Candia

http://sca.profmat-sbm.org.br/sca_v2/get_tcc3.php?id=160350039
http://sca.profmat-sbm.org.br/sca_v2/get_tcc3.php?id=160350039

TUGboat, Volume 40 (2019), No. 3 251

LATEX News
Issue 30, October 2019

Contents

LATEX-dev formats now available 1

Our hopes . 1
Details please . 2
Setting up menu items 2

Improving Unicode handling in pdfTEX 2

Improving file name handling in pdfTEX 2

Improving the filecontents environment 2

Making more user commands robust 2

Other changes to the LATEX kernel 3

Guard against \unskip in tabular cells 3
Fix Unicode table data 3
Improve \InputIfFileExists’s handling of file

names . 3
Improve interface for cross-references 3
Improve wording of a warning message 3
Avoid bad side-effects of \DeclareErrorFont . 3
nfssfont: Make font table generation the default

action . 3
trace: Add package support in the kernel . . . 3

Changes to packages in the tools category 4

array: Warn if primitive column specifiers are
overwritten 4

multicol: Introduce minrows counter for balancing 4
varioref: Better support for cleveref 4
xr: Support citations to bibliographies in

external documents 4

Changes to packages in the amsmath category 4

amsmath: Introduce \overunderset command 4

Documentation updates 4

Highlighting the standard NFSS codes for series 4
LATEX base and doc distribution reunited . . . 4

LATEX-dev formats now available

We know that many of you, especially developers
and maintainers of important packages, have a strong
interest in a stable LATEX environment.

In order to keep LATEX very stable for users whilst
allowing for further development to continue, we

now have a development branch of LATEX on GitHub
containing development code for the upcoming release.
When this code is ready for wider consumption and
testing, we generate a pre-release of LATEX from this
development branch and make it available on CTAN.

For users of the TEX Live and MiKTEX distributions it
is therefore now straightforward to test their documents
and code against the upcoming LATEX release with ease,
simply by selecting a different program name (when
using the command line) or by selecting a menu entry
(after setting it up; see below).

If you do this then the latest version of the LATEX
development format will be used to process your
document, allowing you to test the upcoming release
with your own documents and packages. For example, if
you run

pdflatex-dev myfile

then you will be greeted on the screen with something like
LaTeX2e <2019-10-01> pre-release-2 (identifying
the pre-release format) instead of the normal LaTeX2e

<2018-12-01>. In this pre-release you will find the
latest new features that we have developed.

Our hopes

We don’t expect everybody to start using the devel-
opment formats to participate in testing, but we hope
that people with a strong interest in a stable LATEX
environment (especially developers and maintainers of
important packages) will use the new facilities and help
us to ensure that future public releases of LATEX do not
(as has happened in the past) require some immediate
patches because of issues that were not identified by our
internal regression test suite or by other testing we do.

Any issue identified when using the development
format should preferably be logged as an issue on
GitHub, following the procedure outlined on our website
at https://www.latex-project.org/bugs/ including
the use of the latexbug package as described.

Our bug reporting process normally states that issues
involving third-party software are out of scope as we
can’t correct external packages; see [1]. However, in the
particular case of the development format showing an
incompatibility with a third-party package, it is fine to
open an issue with us (in addition, please, to informing
the maintainer of that package) so that we know about
the problem and can jointly work on resolving it.

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2019, all rights reserved.

LATEX News #30

252 TUGboat, Volume 40 (2019), No. 3

Details please . . .

More details and some background information about the
concepts and the process are available in an upcoming
TUGboat article: “The LATEX release workflow and the
LATEX dev formats” [2].

Setting up menu items

While the command line call works out of the box if
you have a recent TEX Live or MiKTEX installation, its
use within an integrated editing environment doesn’t at
this point in time (maybe the developers of these editors
will include it in the future). However, it is normally
fairly simple to enable it as most (or even all?) of them
provide simple ways to call your own setup. How this
works in detail depends very much on the environment
you use, so we can’t give much help here.

But as an example: to provide an additional menu
entry for XeLaTeX-dev on a MacBook all that is
necessary is to copy the file XeLaTeX.engine to
XeLaTeX-dev.engine and change the call from xelatex

to xelatex-dev inside.

Improving Unicode handling in pdfTEX

Perhaps the most important improvement in this release
is even better support for UTF-8 characters when using
pdfTEX.1

When using a “Unicode engine”, any Unicode
character (that is not acting as a command, i.e., is
not “active”) can be used as part of the \label/\ref

mechanism or can be displayed in a message or written
to a file. In 8-bit engines, however, this was severely
restricted: essentially you had to limit yourself to using
ASCII letters, digits and a few punctuation symbols.
With the new release, most of these restrictions have
been removed and you now can write labels such as

\label{eq:größer}

or use accented characters, etc., as part of a \typeout

message. The only requirement remaining is that
only those UTF-8 characters that are also available for
typesetting can be used, i.e., only those characters for
which adequate font support is loaded. Otherwise you
will get an error message stating that the particular
Unicode character is not set up for use with LATEX.

Note, however, that the restrictions on what characters
can be used in the names of commands have not changed.

What is not possible when using an 8-bit engine such
as pdfTEX is to use characters other than ASCII letters
as part of a command name. This is due to the fact
that all other characters in such engines are not single
character tokens, but in fact consist of a sequence of
bytes and this is not supported in command names.

1The Japanese engines e-pTEX and e-upTEX can’t use these fea-

tures yet as they don’t support the primitive \ifincsname. Work

is under way to resolve this in the engines.

Improving file name handling in pdfTEX

A related change is that file names used as part of
\input, \includegraphics, etc., commands can now
contain any Unicode characters allowed by the file
system in use, including spaces. In this case, even
characters that can’t be typeset (due to lack of font
support) can be used.

Improving the filecontents environment

The filecontents environment now supports an
optional argument in which you can specify that it is
allowed to overwrite an already existing file; by default
nothing is written if a file with the given name exists
anywhere in the search tree. An alternative name for
this option is force. Even then the environment will
refuse to write to \jobname.tex to avoid clobbering its
own input file. However, if you use a different extension
on your input file you could still overwrite it (there is no
way to test for that).

There is also an option nosearch, which specifies that
only the current directory is examined for an existing
file, not the whole TEX inputs tree. This is useful if
you want to write a local copy of a standard system
file. Finally, noheader prevents writing a preamble to
the file (this is the same as using the star form of the
environment).

Another change is that this environment is now
allowed anywhere in the document, which means it
provides everything (and more) of what the now obsolete
filecontents package provided.

Making more user commands robust

In the early days of LATEX many commands were fragile,
i.e., they needed \protect in front of them when used
in places such as section headings and other “moving
arguments”, etc. In LATEX 2ε many of these commands
were made robust, but still a fairly large number
remained unnecessarily fragile.

In this release of LATEX we have now made a lot more
commands robust. There is a very small collection of
commands that must stay fragile because their expansion
(maybe partially) at just the right time is critical. Yet
others are unlikely to ever be needed in a “moving
argument”.

Doing this for \begin and \end was rather tricky as
the standard mechanism with \DeclareRobustCommand

doesn’t work here, at least not for \end as that needs
to expand during typesetting without generating a
\relax (from the \protect). Such a token would start
a new row in table environments, such as tabular,
etc. Furthermore, some packages try to look into the
definition of \end by expanding it several times. Thus
expansion with \expandafter had to produce exactly
the same result as before. But in the end we overcame

LATEX News #30

TUGboat, Volume 40 (2019), No. 3 253

that hurdle too, so now environments are automatically
robust if used in places like headings or \typeout and
so forth.

What hasn’t been tackled yet is the redefinitions in
amsmath: this package redefines a number of basic math
constructs that are now robust, so that they become
fragile again once the package is loaded. This area will
be addressed in a followup release. (github issue 123)

Other changes to the LATEX kernel

Guard against \unskip in tabular cells

If a tabular or array cell started with a command that
started with an \unskip then centering the column broke
because the stretching glue on the left got removed.
The fix for this was to add a minuscule, and hence
unnoticeable, additional space after the stretching space:
removing this extra space causes no problems.

This change was also applied in the array package.
(github issue 102)

Fix Unicode table data

U+012F which is “i with ogonek” produced a “dotless i
with ogonek” by mistake. This has been corrected.

(github issue 122)

The Unicode slots 27E8 and 27E9 have been mapped
to \textlangle and \textrangle which is the
recommended mapping. In the past they raised a
LATEX error. (github issue 110)

When doing cut-and-paste from other documents or
websites, f-ligatures and others ligatures might end up as
single Unicode characters in your file. In the past those
got rejected by LATEX. We now define those Unicode
slots and map them back to the sequence of individual
characters constituting the ligature. If supported by
the current font (which is normally the case) they are
then reconstructed as ligatures and thus get typeset as
desired. Otherwise they will come out as individual
characters which is still better than an error message.

(github issue 154)

Improve \InputIfFileExists’s handling of file names

In rare circumstances it was possible that
\InputIfFileExists would work incorrectly, e.g.,
a construction such as

\InputIfFileExists{foo}{\input{bar}}{}

would not load the files foo.tex and bar.tex but would
load bar.tex twice. This has been corrected.

(github issue 109)

Improve interface for cross-references

The packages fncylab and varioref provided a slightly
improved definition of \refstepcounter which allowed
the internal \p@.. commands to receive the counter
value as an argument, instead of acting as a simple

prefix. This supports more complex formatting of the
value in the reference.

These packages also provided the command
\labelformat to help in the specification of
such formatting in an easy way. For example,
\labelformat{equation}{eq.~(#1)} specifies that
references to equations automatically come out as
“eq. (5)” or similar. As such a \labelformat dec-
laration means a \ref command can no longer be
successfully used at the start of a sentence, the packages
also provided \Ref for such scenarios.

Both of these commands, \labelformat and \Ref,
are now removed from the packages and instead made
available in the kernel so there is no need to load
additional packages.

Improve wording of a warning message

The kernel now says “Trying to load . . . ” instead of
“Try loading . . . ” in one of its informal messages to
match style of similar messages. (github issue 107)

Avoid bad side-effects of \DeclareErrorFont

As a side effect of setting up the error font for NFSS,
this declaration also changed the current font size back
to 10pt. In most circumstances that doesn’t matter,
because that declaration was meant to be used only
during the format generation and not during a LATEX
run. However, it has turned out to be used by some
developers in other places (incorrectly in fact: e.g.,
inside some .fd files) where resetting the size causes
havoc seemingly at random. The command has now
changed to not produce such side effects.

(gnats issue latex/4399)

nfssfont: Make font table generation the default action

With the small file nfssfont.tex it is possible to
produce font tables and other font tests in the style
set up by Don Knuth. In nearly all cases a font table
is wanted, so this action has been made the default.
Now one can simply hit enter instead of having to write
\table\bye.

trace: Add package support in the kernel

The trace package implements the commands \traceon

and \traceoff that work like \tracingall but skip
certain code blocks that produce a lot of tracing output.
This is useful when debugging, to suppress uninteresting
tracing from, for example, loading a font. Code blocks
that should not be traced need to be surrounded
by the commands \conditionally@traceoff and
\conditionally@traceon.

The LATEX kernel now provides dummy definitions for
these two commands so that package writers can use
them in their packages regardless of trace being loaded
or not.

LATEX News #30

254 TUGboat, Volume 40 (2019), No. 3

Changes to packages in the tools category

array: Warn if primitive column specifiers are overwritten

With \newcolumntype it is possible to define your own
column specifiers for a tabular preamble; it is also
possible to change existing ones. However, doing that for
a primitive column specifier, such as c, is seldom a good
idea, since then its functionality becomes unavailable.
The package was therefore supposed to warn the user
in this case, but due to a missing \expandafter in the
code it never did—now it does. (github issue 148)

multicol: Introduce minrows counter for balancing

When there are only a few lines of text on a page at the
end of a multicols environment, balancing the columns
often looks rather odd: such as three columns each
containing a single line. The balancing behavior can
now be controlled through the counter minrows (default
is 1) which specifies that, after balancing, there must be
at least that many lines in the first column. Thus, if
you set minrows to 2 then you would get a distribution
of 2+1+0 lines and if set to three, the result would be
3+0+0 instead of the default 1+1+1.

What is most appropriate really depends on the
circumstances, but this now gives you the tools to make
local or global adjustments.

varioref: Better support for cleveref

The varioref package has been internally updated to
provide better interfaces for packages such as hyperref

and cleveref.

It also has a new package option nospace that
stops varioref from meddling with space in front of its
commands. The original behavior was always somewhat
problematical and it is suggested that all new documents
use this option (which should really have been the
default).

Support was also added for the Arabic language
through the option arabic.

xr: Support citations to bibliographies in external

documents

The xr package can be used to cross-reference an external
LATEX document. This means that even when a work is
split over different documents (that need to be processed
separately), \ref or \pageref can use labels from any
document, creating links between them. This facility
has now been extended so that \cite commands and
their cousins can now also reference bibliographies in
external documents; this feature was first provided in
the package xcite by Enrico Gregorio.

Note that for technical reasons xr doesn’t work with
hyperref. Use xr-hyper instead if you need the latter
package.

Changes to packages in the amsmath category

amsmath: Introduce \overunderset command

The amsmath package has always offered the commands
\overset and \underset to produce binary operators
with something set above or below. But sometimes one
needs to put something above and something below: The
newly added \overunderset makes this easily possible.

Documentation updates

There are a number of documentation updates in files
on the documentation page of the project website [4].

Highlighting the standard NFSS codes for series

The Font Selection Guide [3] has been updated to
strongly recommend that the standard codes should be
used when providing font support. The reason for this
recommendation is explained here.

The font selection scheme uses a number of standard
codes for \fontseries and \fontshape to ensure that
different fonts are comparable, e.g., that you get a
“light” weight if you specify l and “extra bold” when
you write eb, etc. Over the years people came up with
a number of other creative short codes like k, j, t

and others with the result that changing a font family
required different codes and thus prevented users from
easily mixing and matching different families. Some
work has been undertaken to get back to a coherent
scheme and all the font families supported through the
program autoinst are now producing the standard
codes again.

LATEX base and doc distribution reunited

For a long time the LATEX distribution available from
CTAN was split into several parts to allow them to be
uploaded or downloaded separately. As this is these
days more confusing than helpful we have recombined
the base part with the documentation part (as both are
anyway always updated together). Thus the package
latex-doc is no longer separately available from CTAN

but contained in the latex-base distribution.

References

[1] Frank Mittelbach: New rules for reporting bugs in

the LATEX core software. In: TUGboat, 39#1, 2018.
https://latex-project.org/publications/

[2] Frank Mittelbach: The LATEX release workflow and

the LATEX dev formats. In: TUGboat, 40#2, 2019.
https://latex-project.org/publications/

[3] LATEX Project Team: LATEX 2ε font selection.
https://latex-project.org/documentation/

[4] LATEX documentation on the LATEX Project Website.
https://latex-project.org/documentation/

LATEX News #30

TUGboat, Volume 40 (2019), No. 3 255

Understanding scientific documents

with synthetic analysis on mathematical

expressions and natural language∗

Takuto Asakura

1 Introduction

Converting Science, Technology, Engineering, and
Mathematics (STEM) documents to formal expres-
sions has a large impact on academic and industrial
society. It enables us to construct databases of math-
ematical knowledge, search for formulae, and develop
a system that generates executable code.

However, such conversion is an exceedingly ambi-
tious goal. Mathematical expressions are commonly
used in scientific communication in numerous fields
such as mathematics and physics, and in many cases,
they express key ideas in STEM documents. De-
spite the importance of mathematical expressions,
formulae and texts are complementary to each other,
and neither can be understood independently. Thus,
deep synthetic analyses on natural language and
mathematical expressions are necessary.

To date, much effort has been made for develop-
ing Natural Language Processing (NLP) techniques,
including semantic parsing (SP) [4], but their targets
are mostly ‘general’ texts. Naturally, conventional
NLP techniques include only limited features to treat
formulae and numerous linguistic phenomena specific
to STEM documents [3].

Meanwhile, semantics on mathematical expres-
sions also has been deeply investigated. Such results
can be seen in logic theories, the MathML specifi-
cation [1], etc. However, there is a large distance
between formal expressions such as first-order logic
and actual formulae in natural language texts.

2 Research goals

There is substantial work remaining to achieve con-
version from STEM documents to a computational
form (Figure 1). At first, we are going to focus on
the two foundational parts for the synthetic analyses.
The first is token-level analyses on formulae. The
main part of the analyses is associating formulae
tokens to mathematical objects and text fragments
(Section 2.1). This is a fundamental step for the
conversion, but it is still almost untouched. The
second step is the morphology of mathematical ex-
pression and semantics covering both formulae and
texts (Section 2.2). Studying underlying theories is
essential to deeply understand the structure of STEM
documents. We aim for practical applications via a
bottom-up approach.

∗ A version of this extended abstract was published at the

Doctoral Programme of CICM 2019.

Token-level

(Grounding)

Word-level

(Morphology, lexical
semantics)

Fragment-level

(Parsing)

Phrase-level

(Syntax, PSG)

Formulae-
level

(SP)

Sentence-
level

(Semantics)

Applications

(conversion, IR,
searching, etc.)

Mathematical
expressions

Natural language

Figure 1: Overview of our task definitions.
At first, we are tackling the token-level analyses on
mathematical expressions (Section 2.1) and theories
covering both formulae and texts (Section 2.2).

2.1 Associating tokens in formulae with

mathematical objects and their

descriptions in texts

Tokens in formulae (e.g., x, ε, ×, log) and their
combinations can refer to mathematical objects. We
human beings are able to detect what each token
or combination pointing to, by using common sense,
domain knowledge, and referencing descriptions in
the document or in the others. This detection is
fundamental and should be one of the initial steps for
understanding STEM documents, but unfortunately,
it cannot be easily done by a machine. There are at
least four factors which make the detection highly
challenging: (1) ambiguity of tokens, (2) syntactic
ambiguity of formulae, (3) need for “common” sense
and domain knowledge, and (4) severe abbreviation.
These difficulties often appear in formulae; giving
an example for (1) as a representative, already in
the first chapter of a book Pattern Recognition and

Machine Learning (PRML) [2], a character y (letter
‘y’ in bold roman) is used with several meanings
including a function, vectors, and a value (Table 1).

The other part of the initial steps of understand-
ing STEM documents is connecting text fragments
to the subjective mathematical objects. Our hypoth-
esis is that for this step, general NLP approaches
such as dependency parsing are more or less appli-
cable. Of course, some tuning for STEM documents
will be required. Also, this process might need to
be done by considering the result of mathematical
object detection for formulae.

2.2 Semantics and morphology

Semantics on natural language and mathematical
expressions have been studied separately. However,
to understand STEM documents, it is important to

Understanding scientific documents with synthetic analysis

256 TUGboat, Volume 40 (2019), No. 3

Table 1: Usage of character y in the first chapter of PRML (except exercises). Underlines by the author.

Text fragment from PRML Chap. 1 Meaning of y

. . . can be expressed as a function y(x) which takes . . . a function which takes an image as input

. . . an output vector y, encoded in . . . an output vector of function y(x)

. . . two vectors of random variables x and y . . . a vector of random variables

Suppose we have a joint distribution p(x,y) from . . . a part of pairs of values, corresponding to x

investigate a synthetic semantics covering both of
texts and formulae.

Though morphology has been studied for natural
languages, this is not so much the case for formulae.
As a matter of fact, in terms of morphology, words
also exist in formulae. For instance, a token M is a
word in “Matrix M”, but M is not a word in “An en-
try Mi,j” (Mi,j is a word). Unlike morphemes in nat-
ural language, tokens in formulae do not have lexical
categories, but some symbols (e.g., parentheses and
equal sign) and positional information (e.g., super/
subscript) have typical usages.

3 Completed and remaining research

For the beginning of our research, we simplified the
detection task which we described in Section 2.1.
Specifically, we are making annotations on some
research papers in the following manner:

1. Detecting minimal groups of tokens (we call
them chunks), each referring to a mathematical
object (chunking).

2. Categorizing chunks by the mathematical object
they referring to.

This annotation (pilot annotation) is the fundamen-
tal process for creating the first gold dataset for
associating tokens and mathematical objects. The
annotated data will also be helpful for investigating
the morphology on mathematical expressions.

In other words, we defined a classification task
before annotating descriptions for formulae tokens.
Since there are many ways to describe a mathemati-
cal object, this classification can be done more coher-
ently through the pilot annotation. Moreover, we are
expecting that the classification is naturally rather
easier to be automated than giving descriptions au-
tomatically in the first attempt.

Besides the pilot annotation, all the jobs that
have to be done to achieve our goal remain. For the
next step, we are planning to automate the anno-
tation process by using features such as apposition
nouns and syntactic information in formulae. At the
same time, we have to decide the form of mathe-
matical objects. For now, we can say that every
mathematical object should have a description and
some attributes such as types (e.g., int and float).

What attributes are necessary and sufficient is still
not clear, and we will find out after trying the anno-
tation for several documents.

4 Publication plans and evaluation plans

Currently, we are creating a new language resource
as the pilot annotation, and we are planning to pub-
lish it for the community of language resources. For
the further future, we will develop automation algo-
rithms for mathematical object detection, which are
works suitable for NLP and the digital mathematical
library community, including CICM. The analyses
on underlying morphology and semantics are more
like works in computational linguistics.

For the initial dataset, it is better to ensure
agreement among a few experts, if possible. Subse-
quent progress on developing algorithms and analyses
on linguistic phenomena should be evaluated with
our handmade gold datasets.

Acknowledgments. I would like to thank my su-
pervisors Prof. Yusuke Miyao (the University of
Tokyo) and Prof. Akiko Aizawa (National Institute
of Informatics) for their most helpful advice. This
work was supported by JST CREST Grant Number
JPMJCR1513, Japan.

References

[1] R. Ausbrooks, S. Buswell, et al. Mathematical
Markup Language (MathML) 3.0 Specification.
World Wide Web Consortium (W3C), 2014.

[2] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer, 2006.

[3] M. Kohlhase and M. Iancu. Co-representing
structure and meaning of mathematical documents.
Sprache und Datenverarbeitung, Intl. J. for
Language Data Processing 38(2):49–80, 2014.

[4] S. Reddy, O. Täckström, et al. Transforming
dependency structures to logical forms for semantic
parsing. Transactions of the Association for
Computational Linguistics 4:127–140, Dec. 2016.

⋄ Takuto Asakura
The Graduate University for

Advanced Studies, SOKENDAI

Department of Informatics
Chiyoda, Tokyo, Japan
tkt.asakura (at) gmail dot com

Takuto Asakura

TUGboat, Volume 40 (2019), No. 3 257

Modern Type 3 fonts

Hans Hagen

Support for Type 3 fonts has been on my agenda
for a couple of years now. The reason is that they
might be useful for embedding (for instance) runtime
graphics (such as symbols) in an efficient way. In TEX
systems Type 3 fonts are normally used for bitmap
fonts, the PK output that comes via METAFONT.
Where for instance Type 1 fonts are defined using
a set of font specific rendering operators, a Type 3
font can contain arbitrary code, in PDF files these
are PDF (graphic and text) operators.

A program like LuaTEX supports embedding of
several font formats natively. A quick summary of
relevant formats is the following:1

Type 1: these are outline fonts using cff descrip-
tions, a compact format for storing outlines.
Normally up to 256 characters are accessible
but a font can have many more (as Latin Mod-
ern and TEX Gyre demonstrate).

OpenType: these also use the cff format. As with
Type 1 the outlines are mostly cubic Bezier
curves. Because there is no bounding box data
stored in the format the engine has to pseudo-
render the glyphs to get that information. When
embedding a subset the backend code has to
flatten the subroutine calls, which is another
reason the cff blob has to be disassembled.

TrueType: these use the ttf format which uses
quadratic B-splines. The font can have a sepa-
rate kerning table and stores information about
the bounding box (which is then used by TEX
to get the right heights and depths of glyphs).
Of course those details never make it into the
PDF file as such.

Type 3: as mentioned this format is (traditionally)
used to store bitmap fonts but as we will see it
can do more. It is actually the easiest format to
deal with.

In LuaTEX any font can be a “wide” font, there-
fore in ConTEXt a Type 1 font is not treated differ-
ently than an OpenType font. The LuaTEX backend
can even disguise a Type 1 font as an OpenType font.
In the end, as not that much information ends up in
the PDF file, the differences are not that large for the
first three types. The content of a Type 3 font is less
predictable but even then it can have for instance
a ToUnicode vector so it has no real disadvantages
in, say, accessibility. In ConTEXt LMTX, which uses
LuaMetaTEX without any backend, all is dealt with
in Lua: loading, tweaking, applying and embedding.

1 Technically one can embed anything in the PDF file.

The difference between OpenType and True-
Type is mostly in the kind of curves and specific
data tables. Both formats are nowadays covered
by the OpenType specification. If you Google
for the difference between these formats you can
easily end up with rather bad (or even nonsense)
descriptions. The best references are https://

en.wikipedia.org/wiki/B%C3%A9zier_curve and
the ever-improving https://docs.microsoft.com/

en-us/typography website.
Support for so-called variable fonts is mostly

demanding of the front-end because in the backend
it is just an instance of an OpenType or TrueType
font being embedded. In this case the instance is
generated by the ConTEXt font machinery which
interprets the cff and ttf binary formats in doing so.
This feature is not widely used but has been present
from the moment these fonts showed up.

Type 3 fonts don’t have a particularly good
reputation, which is mainly due to the fact that
viewers pay less attention in displaying them, at
least that was the case in the past. If they describe
outlines, then all is okay, apart from the fact that
there is no anti-aliasing or hinting but on modern
computers that is hardly an issue. For bitmaps the
quality depends on the resolution and traditionally
TEX bitmap fonts are generated for a specific device,
but if you use a decent resolution (say 1200 dpi)
then all should be okay. The main drawback is that
viewers will render such a font and cache the (then
available) bitmap which in some cases can have a
speed penalty.

Using Type 3 fonts in a PDF backend is not
something new. Already in the pdfTEX era we were
playing with so-called PDF glyph containers. In
practice that worked okay but not so much for Meta-
Post output from METAFONT fonts. As a side note:
it might actually work better now that in Meta-
fun we have some extensions for rendering the kind
of paths used in fonts. But glyph containers were
dropped long ago already and Type 3 was limited
to traditional TEX bitmap inclusion. However, in
LuaMetaTEX it is easier to mess around with fonts
because we no longer need to worry about side effects
of patching font related inclusion (embedding) for
other macro packages. All is now under Lua con-
trol: there is no backend included and therefore no
awareness of something built-in as Type 3.

So, as a prelude to the 2019 ConTEXt meeting,
I picked up this thread and turned some earlier ex-
periments into production code. Originally I meant
to provide support for MetaPost graphics but that is
still locked in experiments. I do have an idea for its

Modern Type 3 fonts

258 TUGboat, Volume 40 (2019), No. 3

interface, now that we have more control over user
interfaces in Metafun.

In addition to ‘just graphics’ there is another
candidate for Type 3 fonts—extensions to Open-
Type fonts:

1. Color fonts where stacked glyphs are used (a
nice method).

2. Fonts where SVG images are used.

3. Fonts that come with bitmap representations in
PNG format.

It will be no surprise that we’re talking of emoji
fonts here although the second category is now also
used for regular text fonts. When these fonts showed
up support for them was not that hard to implement
and (as often) we could make TEX be among the first
to support them in print (often such fonts are meant
for the web).

For category one, the stacked shapes, the ap-
proach was to define a virtual font where glyphs are
flushed while backtracking over the width in order to
get the overlay. Of course color directives have to be
injected too. The whole lot is wrapped in a container
that tells a PDF handler what character actually is
represented. Due to the way virtual fonts work, every
reference to a character results in the same sequence
of glyph references, (negative) kern operations and
color directives plus the wrapper in the page stream.
This is not really an issue for emoji because these are
seldom used and even then in small quantities. But it
can explode a PDF page stream for a color text font.
All happens at runtime and because we use virtual
fonts, the commands are assembled beforehand for
each glyph.

For the second category, SVG images, we used
a different approach. Each symbol was converted to
PDF using Inkscape and cached for later use. Instead
of injecting a glyph reference, a reference to a so-
called XForm is injected, again with a wrapper to
indicate what character we deal with. Here the
overhead is not that large but still present as we
need the so-called ‘actual text’ wrapper.

The third category is done in a similar way
but this time we use GraphicsMagick to convert the
images beforehand. The drawbacks are the same.

In ConTEXt LMTX a different approach is fol-
lowed. The PDF stream that stacks the glyphs of
category one makes a perfect stream for a Type 3
character. Apart from some juggling to relate a
Type 3 font to an OpenType font, the page stream
just contains references to glyphs (with the proper
related Unicode slot). The overhead is minimal.

For the second category ConTEXt LMTX uses its
built-in SVG converter. The XML code of the shape

is converted to (surprise): MetaPost. We could go
directly to PDF but the MetaPost route is cheap and
we can then get support for color spaces, transfor-
mations, efficient paths and high quality all for free.
It also opens up the possibility for future manipula-
tions. The Type 3 font eventually has a sequence of
drawing operations, mixed with transformations and
color switches, but only once. Most of the embedded
code is shared with the other categories (a plug-in
model is used).

The third category follows a similar route but
this time we use the built-in PNG inclusion code.
Just like the other categories, the page stream only
contains references to glyphs.

It was interesting to find that most of the time
related to the inclusion went into figuring out why
viewers don’t like these fonts. For instance, in Ac-
robat there needs to be a glyph at index zero and
all viewers seem to be able to handle at most 255
additional characters in a font. But once that, and
a few more tricks, had become clear, it worked out
quite well. It also helps to set the font bounding box
to all zero values so that no rendering optimizations
kick in. Also, some dimensions can are best used
consistently. With SVG there were some issues with
reference points and bounding boxes but these could
be dealt with. A later implementation followed a
slightly different route anyway.

The implementation is reasonably efficient be-
cause most work is delayed till a glyph (shape) is
actually injected (and most shapes in these fonts
aren’t used at all). The viewers that I have installed,
Acrobat Reader, Acrobat X, and the mupdf-based
SumatraPDF viewer can all handle the current im-
plementation.

An example of a category one font is Microsoft’s
seguiemj. I have no clue about the result in the
future because some of these emoji fonts change every
now and then, depending also on social developments.
This is a category one font which not only has emoji
symbols but also normal glyphs:

\definefontfeature[colored][default][colr=yes]

\definefont[TestA][file:seguiemj.ttf*colored]

\definesymbol[bug1]

[\getglyphdirect{file:seguiemj.ttf*colored}

{\char"1F41C}]

\definesymbol[bug2]

[\getglyphdirect{file:seguiemj.ttf*colored}

{\char"1F41B}]

The example below demonstrates this by show-
ing the graphic glyph surrounded by the x from the
emoji font, and from a regular text font.

{\TestA x\char"1F41C x\char"1F41B x}\quad

{x\symbol[bug1]x\symbol[bug2]x}\quad

Hans Hagen

TUGboat, Volume 40 (2019), No. 3 259

{\showglyphs x\symbol[bug1]x\symbol[bug2]x}%

x�🐜x�🐛x x�🐜x�🐛x x�🐜x�🐛x

In this mix we don’t use a Type 3 font for the
characters that don’t need stacked (colorful) glyphs,
which is more efficient. So the x characters are
references to a regular (embedded) OpenType font.

The next example comes from a manual and
demonstrates that we can (still) manipulate colors
as we wish.

\definecolor[emoji-red] [r=.4]

\definecolor[emoji-blue] [b=.4]

\definecolor[emoji-green] [g=.4]

\definecolor[emoji-yellow][r=.4,g=.5]

\definecolor[emoji-gray] [s=1,t=.5,a=1]

\definefontcolorpalette[emoji-red]

[emoji-red,emoji-gray]

\definefontcolorpalette[emoji-green]

[emoji-green,emoji-gray]

\definefontcolorpalette[emoji-blue]

[emoji-blue,emoji-gray]

\definefontcolorpalette[emoji-yellow]

[emoji-yellow,emoji-gray]

\definefontfeature[seguiemj-r][default]

[ccmp=yes,dist=yes,colr=emoji-red]

\definefontfeature[seguiemj-g][default]

[ccmp=yes,dist=yes,colr=emoji-green]

\definefontfeature[seguiemj-b][default]

[ccmp=yes,dist=yes,colr=emoji-blue]

\definefontfeature[seguiemj-y][default]

[ccmp=yes,dist=yes,colr=emoji-yellow]

\definefont[MyColoredEmojiR][seguiemj*seguiemj-r]

\definefont[MyColoredEmojiG][seguiemj*seguiemj-g]

\definefont[MyColoredEmojiB][seguiemj*seguiemj-b]

\definefont[MyColoredEmojiY][seguiemj*seguiemj-y]

�👨�👩 �👨�👩 �👨�👩 �👨�👩
Let’s look in more detail at the woman emoji.

On the left we see the default colors, and on the right
we see our own:

�👩 �👩
The multi-color variant in ConTEXt MkIV ends

up as follows in the page stream:

/Span << /ActualText <feffD83DDC69> >> BDC

q

0.000 g

BT

/F8 11.955168 Tf

1 0 0 1 0 2.51596 Tm [<045B>]TJ

0.557 0.337 0.180 rg

1 0 0 1 0 2.51596 Tm [<045C>]TJ

1.000 0.784 0.239 rg

1 0 0 1 0 2.51596 Tm [<045D>]TJ

0.000 g

1 0 0 1 0 2.51596 Tm [<045E>]TJ

0.969 0.537 0.290 rg

1 0 0 1 0 2.51596 Tm [<045F>]TJ

0.941 0.227 0.090 rg

1 0 0 1 0 2.51596 Tm [<0460>]TJ

ET

Q

EMC

and the reddish one becomes:

/Span << /ActualText <feffD83DDC69> >> BDC

q

0.400 0 0 rg 0.400 0 0 RG

BT

/F8 11.955168 Tf

1 0 0 1 0 2.51596 Tm [<045B>]TJ

1 g 1 G /Tr1 gs

1 0 0 1 0 2.51596 Tm [<045C>1373<045D>1373

<045E>1373<045F>1373<0460>]TJ

ET

Q

EMC

Each time this shape is typeset these sequences
are injected. In ConTEXt LMTX we get this in the
page stream:

BT

/F2 11.955168 Tf

1 0 0 1 0 2.515956 Tm [<C8>] TJ

ET

This time the composed shape ends up in the
Type 3 character procedure. In the colorful case
(reformatted because it actually is a one-liner):

2812 0 d0

0.000 g BT /V8 1 Tf [<045B>] TJ ET

0.557 0.337 0.180 rg BT /V8 1 Tf [<045C>] TJ ET

1.000 0.784 0.239 rg BT /V8 1 Tf [<045D>] TJ ET

0.000 g BT /V8 1 Tf [<045E>] TJ ET

0.969 0.537 0.290 rg BT /V8 1 Tf [<045F>] TJ ET

0.941 0.227 0.090 rg BT /V8 1 Tf [<0460>] TJ ET

and in the reddish case (where we have a gray trans-
parent color):

2812 0 d0

0.400 0 0 rg 0.400 0 0 RG

BT /V8 1 Tf [<045B>] TJ ET

1 g 1 G /Tr1 gs

BT /V8 1 Tf [<045C>] TJ ET

BT /V8 1 Tf [<045D>] TJ ET

BT /V8 1 Tf [<045E>] TJ ET

BT /V8 1 Tf [<045F>] TJ ET

BT /V8 1 Tf [<0460>] TJ ET

Modern Type 3 fonts

260 TUGboat, Volume 40 (2019), No. 3

but this time we only get these verbose composi-
tions once in the PDF file. We could optimize the
last variant by a sequence of indices and negative
kerns but it hardly pays off. There is no need for
ActualText here because we have an entry in the
ToUnicode vector: <C8> <D83DDC69>.

To be clear, the /V8 is a sort of local reference to
a font which can have an /F8 counterpart elsewhere.
These Type 3 fonts have their own resource references
and I found it more clear to use a different prefix in
that case. If we only use a few characters of this kind,
of course the overhead of extra fonts has a penalty
but as soon we refer to more characters we gain a lot.

When we have SVG fonts, the gain is a bit less.
The PDF resulting from the MetaPost run can of
course be large but they are included only once. In
MkIV these would be (shared) so-called XForms. In
the page stream we then see a simple reference to such
an XForm but again wrapped into an ActualText.
In LMTX we get just a reference to a Type 3 character
plus of course an extra font.

The emojionecolor-svginot font is somewhat
problematic (although maybe in the meantime it has
become obsolete). As usual with new functionality,
specifications are not always available or complete
(especially when they are application specs turned
into standards). This is also true with for instance
SVG fonts. The current documentation on the Micro-
soft website is reasonable and explains how to deal
with the viewport but when I first implemented sup-
port for SVG it was more trial and error. The original
implementation in ConTEXt used Inkscape to gener-
ate PDF files with a tight bounding box and mix that
with information from the font (in MkIV and the
generic loader we still use this method). This results
in a reasonable placement for emoji (that often sit
on top of the baseline) but not for characters. More
accurate treatment, using the origin and bounding
box, fail for graphics with bad viewports and strange
transform attributes. Now one can of course argue
that I read the specs wrong, but inconsistencies are
hard to deal with. Even worse is that successive
versions of a font can demand different hacks. (I
would not be surprised if some programs have built-
in heuristics for some fonts that apply fixes.) Here
is an example:

<svg transform="translate(0 -1788) scale(2.048)"

viewBox="0 0 64 64" ...>

<path d="... all within the viewBox ..." .../>

</svg>

It is no problem to scale up the image to normal
dimensions, often 1000, or 2048 but I’ve also seen
512. The 2.048 suggests a 2048 unit approach, as
does the 1788 shift. Now, we could scale up all

dimensions by 1000/64 and then multiply by 2.048
and eventually shift over 1788, but why not scale
the 1788 by 2.048 or scale 64 by 2.048? Even if we
can read the standard to suit this specification it’s
just a bit too messy for my taste. In fact I tried
all reasonable combinations and didn’t (yet) get the
right result. In that case it’s easier to just discard
the font. If a user complains that it (kind of) worked
in the past, a counter-argument can be that other
(more recent) fonts don’t work otherwise. In the end
we ended up with an option: when the svg feature
value is fixdepth the vertical position will be fixed.

\definefontfeature[whatever][default]

[color=yes,svg=fixdepth]

\definefont[TestB]

[file:emojionecolor-svginot.ttf*whatever]

x�🐜�🐛x

The newer emojionecolor font doesn’t need
this because it has a viewBox of 0 54.4 64 64 which
fixes the baseline.

\definefontfeature[whatever][default]

[color=yes,svg=yes]

\definefont[TestB]

[file:emojionecolor.otf*whatever]

x�🐜�🐛x

Another example of a pitfall is running into
category one glyphs made from several pieces that
all have the same color. If that color is black, one
starts to wonder what is wrong. In the end the Con-
TEXt code was doing the right thing after all, and I
would not be surprised if that glyph gets colors in
an update of the font. For that reason it makes no
sense to include them as examples here. After all, we
can hardly complain about free fonts (and I’m also
guilty of imposing bugs on users). By the way, for
the font referred to here (twemojimozilla), another
pitfall was that all shapes in my copy had a zero
bounding box which means that although a width is
specified, rendering in documents can give weird side
effects. This can be corrected by the dimensions

feature that forces the ascender and descender values
to be used.

\definefontfeature[colored:x][default]

[colr=yes]

\definefontfeature[colored:y][default]

[colr=yes,dimensions={1,max,max}]

\definefont[TestC]

[file:twemojimozilla.ttf*colored:x]

\definefont[TestD]

[file:twemojimozilla.ttf*colored:y]

Hans Hagen

TUGboat, Volume 40 (2019), No. 3 261

�🐜 �🐜 �🐜 �🐜
An example of a PNG-enhanced font is the

applecoloremoji font. The bitmaps are relatively
large for the quality they provide and some look like
scans.

\definefontfeature[sbix][default][sbix=yes]

\definefont[TestE]

[file:applecoloremoji.ttc*sbix at 10bp]

#�⏳�⏲
As mentioned above, there are fonts that color

characters other than emoji. We give two exam-
ples (sometimes fonts are mentioned on the ConTEXt
mailing list).

\definefontfeature[whatever]

[default,color:svg][script=latn,language=dflt]

\definefont[TestF]

[file:Abelone-FREE.otf*whatever @13bp]

\definefont[TestG]

[file:Gilbert-ColorBoldPreview5*whatever @13bp]

\definefont[TestH]

[file:ColorTube-Regular*whatever @13bp]

Of course one can wonder about the readability
of these fonts and unless one used random colors
(which bloats the file immensely) it might become
boring, but typically such fonts are only meant for
special purposes.

The previous font is the largest and as a conse-
quence also puts some strain on the viewer, especially
when zooming in. But, because viewers cache Type 3
shapes it’s a one-time penalty.
�C�o�m�i�n�g �b�a�c�k �t�o �t�h�e �u�s�e �o�f �t�y�p�e�f�a�c�e�s �i�n �e�l�e�c�t�r�o�n�i�c �p�u�b�l�i�s�h�i�n�g�: �m�a�n�y �o�f �t�h�e �n�e�w �t�y�-

�p�o�g�r�a�p�h�e�r�s �r�e�c�e�i�v�e �t�h�e�i�r �k�n�o�w�l�e�d�g�e �a�n�d �i�n�f�o�r�m�a�t�i�o�n �a�b�o�u�t �t�h�e �r�u�l�e�s �o�f �t�y�p�o�g�r�a�p�h�y

�f�r�o�m �b�o�o�k�s�, �f�r�o�m �c�o�m�p�u�t�e�r �m�a�g�a�z�i�n�e�s �o�r �t�h�e �i�n�s�t�r�u�c�t�i�o�n �m�a�n�u�a�l�s �w�h�i�c�h �t�h�e�y �g�e�t

�w�i�t�h �t�h�e �p�u�r�c�h�a�s�e �o�f �a �P�C �o�r �s�o�f�t�w�a�r�e�. �T�h�e�r�e �i�s �n�o�t �s�o �m�u�c�h �b�a�s�i�c �i�n�s�t�r�u�c�t�i�o�n�, �a�s

�o�f �n�o�w�, �a�s �t�h�e�r�e �w�a�s �i�n �t�h�e �o�l�d �d�a�y�s�, �s�h�o�w�i�n�g �t�h�e �d�i�f�f�e�r�e�n�c�e�s �b�e�t�w�e�e�n �g�o�o�d �a�n�d

�b�a�d �t�y�p�o�g�r�a�p�h�i�c �d�e�s�i�g�n�. �M�a�n�y �p�e�o�p�l�e �a�r�e �j�u�s�t �f�a�s�c�i�n�a�t�e�d �b�y �t�h�e�i�r �P�C�’�s �t�r�i�c�k�s�, �a�n�d

�t�h�i�n�k �t�h�a�t �a �w�i�d�e�l�y�-�-�p�r�a�i�s�e�d �p�r�o�g�r�a�m�, �c�a�l�l�e�d �u�p �o�n �t�h�e �s�c�r�e�e�n�, �w�i�l�l �m�a�k�e �e�v�e�r�y�t�h�i�n�g

�a�u�t�o�m�a�t�i�c �f�r�o�m �n�o�w �o�n�.

This font is rather lightweight. Contrary to what
one might expect, there is no transparency used (but
of course we do support that when needed).

�C�o�m�i�n�g �b�a�c�k �t�o �t�h�e �u�s�e �o�f �t�y�p�e�f�a�c�e�s

�i�n �e�l�e�c�t�r�o�n�i�c �p�u�b�l�i�s�h�i�n�g �m�a�n�y �o�f �t�h�e

�n�e�w �t�y�p�o�g�r�a�p�h�e�r�s �r�e�c�e�i�v�e �t�h�e�i�r �k�n�o�w�l

�e�d�g�e �a�n�d �i�n�f�o�r�m�a�t�i�o�n �a�b�o�u�t �t�h�e �r�u�l�e�s �o�f

�t�y�p�o�g�r�a�p�h�y �f�r�o�m �b�o�o�k�s �f�r�o�m �c�o�m�p�u�t�e�r

�m�a�g�a�z�i�n�e�s �o�r �t�h�e �i�n�s�t�r�u�c�t�i�o�n �m�a�n�u�a�l�s

�w�h�i�c�h �t�h�e�y �g�e�t �w�i�t�h �t�h�e �p�u�r�c�h�a�s�e �o�f �a

�P�C �o�r �s�o�f�t�w�a�r�e�. �T�h�e�r�e �i�s �n�o�t �s�o �m�u�c�h �b�a

�s�i�c �i�n�s�t�r�u�c�t�i�o�n �a�s �o�f �n�o�w �a�s �t�h�e�r�e �w�a�s �i�n

�t�h�e �o�l�d �d�a�y�s �s�h�o�w�i�n�g �t�h�e �d�i�f�f�e�r�e�n�c�e�s �b�e

�t�w�e�e�n �g�o�o�d �a�n�d �b�a�d �t�y�p�o�g�r�a�p�h�i�c �d�e�s�i�g�n�.

�M�a�n�y �p�e�o�p�l�e �a�r�e �j�u�s�t �f�a�s�c�i�n�a�t�e�d �b�y �t�h�e�i�r

�P�C�s �t�r�i�c�k�s �a�n�d �t�h�i�n�k �t�h�a�t �a �w�i�d�e�l�y�p�r�a�i�s�e�d

�p�r�o�g�r�a�m �c�a�l�l�e�d �u�p �o�n �t�h�e �s�c�r�e�e�n �w�i�l�l

�m�a�k�e �e�v�e�r�y�t�h�i�n�g �a�u�t�o�m�a�t�i�c �f�r�o�m �n�o�w

�o�n�.

This third example is again rather lightweight.
Such fonts normally have a rather limited repertoire
although there are some accented characters included.
But they are not really meant for novels anyway.
If you look closely you will also notice that some
characters are missing and kerning is suboptimal.

I considered testing some more fonts but when
trying to download some interesting looking ones I
got a popup asking me for my email address in order
to subscribe me to something: a definite no-go.

I already mentioned that we have a built-in
converter that goes from SVG to MetaPost. Al-
though this article deals with fonts, the following
code demonstrates that we can also access such graph-
ics in Metafun itself. The nice thing is that because
we get pictures, they can be manipulated.

\startMPcode

picture p ; p :=

lmt_svg [filename="mozilla-svg-001.svg"] ;

numeric w ; w := bbwidth(p) ;

draw p ;

draw p xscaled -1 shifted (2.5*w,0);

draw p rotatedaround(center p,45)

shifted (3.0*w,0) ;

draw image (

for i within p : if filled i :

draw pathpart i withcolor green ;

fi endfor ;

) shifted (4.5*w,0);

draw image (

for i within p : if filled i :

fill pathpart i withcolor red

withtransparency (1,.25) ;

fi endfor ;

) shifted (6*w,0);

\stopMPcode

This graphic is a copy from a glyph from an
emoji font, so we have plenty of such images to play
with. The above manipulations result in:

Modern Type 3 fonts

262 TUGboat, Volume 40 (2019), No. 3

Now that we’re working with MetaPost we may
as well see if we can also load a specific glyph, and
indeed this is possible.

\startMPcode

picture lb, rb ;

lb := lmt_svg

[fontname = "Gilbert-ColorBoldPreview5",

unicode = 123] ;

rb := lmt_svg

[fontname = "Gilbert-ColorBoldPreview5",

unicode = 125] ;

numeric dx ; dx := 1.25 * bbwidth(lb) ;

draw lb ;

draw rb shifted (dx,0) ;

pickup pencircle scaled 2mm ;

for i within lb :

draw lmt_arrow [

path = pathpart i,

pen = "auto",

alternative = "curved",

penscale = 8

]

shifted (3dx,0)

withcolor "darkblue"

withtransparency (1,.5) ;

endfor ;

for i within rb :

draw lmt_arrow [

path = pathpart i,

pen = "auto",

alternative = "curved",

penscale = 8

]

shifted (4dx,0)

withcolor "darkred"

withtransparency (1,.5) ;

endfor ;

\stopMPcode

Here we first load two character shapes from a
font. The Unicode slots (which here are the same as
the ASCII slots) might look familiar: they indicate
the curly brace characters. We get two pictures and
use the within loop to run over the paths within
these shapes. Each shape is made from three curves.
As a bonus a few more characters are shown.

It is not hard to imagine that a collection of
such graphics could be made into a font (at runtime).

One only needs to find the motivation. Of course one
can always use a font editor (or Inkscape) and tweak
there, which probably makes more sense, but some-
times a bit of MetaPost hackery is a nice distraction.
Editing the SVG code directly is not that much fun.
The overall structure often doesn’t look that bad
(apart from often rather redundant grouping):

<svg xmlns="http://www.w3.org/2000/svg">

<path fill="#d87512" d="..."/>

<g fill="#bc600d">

<path d="..."/>

</g>

<g fill="#d87512">

<path d="..."/>

<path d="..."/>

</g>

<g fill="#bc600d">

<path d="..."/>

</g>

...

</svg>

In addition to paths there can be line, circle
and similar elements but often fonts just use the
path element. This element has a d attribute that
holds a sequence of one character commands that
each can be followed by numbers. Here are the start
characters of four such attributes:

M11.585 43.742s.387 1.248.104 3.05c0 0 ...

M53.33 39.37c0-4.484-35.622-4.484-35.622 0 0 ...

M42.645 56.04c1.688 2.02 9.275.043 ...

M54.2 41.496s-.336 4.246-4.657 9.573c0 0 ...

Indeed, numbers can be pasted together, also
with the operators, which doesn’t help with seeing at
a glance what happens. Probably the best reference
can be found at https://developer.mozilla.org/
en-US/docs/Web/SVG where it is explained that a
path can have move, line, curve, arc and other oper-
ators, as well use absolute and relative coordinates.
How that works is for another article.

How would the TEX world look like today if
Don Knuth had made METAFONT support colors?
Of course one can argue that it is a bitmap font
generator, but in our case using high resolution bit-
maps might even work out better. In the example
above the first text fragment uses a font that is very
inefficient: it overlays many circles in different colors
with slight displacements. Here a bitmap font would
not only give similar effects but probably also be
more efficient in terms of storage as well as render-
ing. The MetaPost successor does support color and
with MPlib in LuaTEX we can keep up quite well . . .
as hopefully has been demonstrated here.

⋄ Hans Hagen

http://pragma-ade.com

Hans Hagen

TUGboat, Volume 40 (2019), No. 3 263

Typesetting the Bangla script in Unicode

TEX engines —experiences and insights

Md Qutub Uddin Sajib

Abstract

The typesetting of Bangla (also known as Bengali)
script in TEX was first introduced more than 15 years
ago through transliteration-based systems. These
systems have shortcomings: among others, the source
files are harder to read and they require one or two
particular Bangla typeface families for typesetting.
With the introduction of Unicode-aware TEX en-
gines, such as X ETEX, and the emergence of Unicode-
compliant free Bangla fonts, new possibilities have
evolved. Today both X ETEX and LuaTEX, as avail-
able in TEX Live 2019, support Bangla typesetting
allowing the user to input the text directly with Uni-
code Bangla fonts in the editor. Although several
years have passed since the X ETEX system was first
seen to work, it is still in a state where the finest

typographic quality is nearly unachievable for this
particular script. Several rendering issues were ob-
served while working with Unicode Bangla fonts in
four Unicode-aware TEX engines. Precision typeset-
ting of the Bangla script in Unicode TEX requires
attention in terms of fonts, rendering, hyphenation,
use of colors, and more.

1 Introduction

The language Bangla, also known as Bengali, is one
of the ten most-spoken languages in the world, as
reported by Ethnologue in its 2019 edition. Native
speakers of this language are mainly from Bangladesh,
a small but populous country in south Asia. Another
good number of native speakers are from the West
Bengal state of India. The Bangla script, the written
form of the Bangla language, is one of the thirteen
major Indic scripts and has made its way into the
Unicode Standard. Publishing in this script has a
history of many centuries. Like other Indic scripts,
typesetting of the Bangla script in TEX has seen
several attempts in the last few years but typographic
quality has yet to reach a peak.

Apart from beautiful rendering of mathematical
contents in TEX, another goal of this typesetting
system is the finest typographic quality [5]. The
same philosophy can be expected in typesetting other
scripts, including Bangla. Considering the present-
day support of the Bangla script in TEX, this article
discusses a few rendering issues, mostly gathered
from the author’s day-to-day typesetting experiences;
it also provides some insights for future development.

2 Scope of this article

Before the Unicode Standard was created to enable
the writing of most scripts of the world on comput-
ers, the attempts to typeset Bangla script in TEX
were confined to ASCII-based transliteration systems.
Brief discussions of ASCII- and Unicode-based type-
setting of this script are presented in sections 3 and 4.
The TEX packages and fonts available today that
support Unicode Bangla typesetting are discussed in
sections 5 and 6.

It is predictable that most Bangla documents
contain at least English, math, and possibly other
scripts. In this article, however, we have consid-
ered typesetting of the Bangla script only, using the
four TEX engines that support the Unicode Standard.
This article does not cover the discussion on font se-
lection techniques for different scripts except Bangla.
For information on selecting specific fonts for Roman
(English) and math along with Bangla, the fontspec

package [11] can be consulted.
TEX engines known to support the Unicode Stan-

dard are X ETEX, LuaTEX, HarfTEX, and LuaHBTEX.
The first two are available in TEX Live 2019; the
last two via tlcontrib or Akira Kakuto’s w32tex and
w64tex distributions (http://w32tex.org/). We
used all four engines to typeset some text of Bangla
script to observe the rendering with different fonts
(Section 7), hyphenation (Section 9), and use of col-
ors (Section 10). Some development ideas for this
particular script are discussed in Section 12.

In this paper, using X ETEX means compiling
the .tex file with xelatex; using LuaTEX, HarfTEX,
and LuaHBTEX means compiling the same file with
lualatex, harflatex, and luahblatex, respectively. The
TEX-specific examples presented here were produced
using the TEX Live 2019 distribution on a computer
running the GNU/Linux operating system (Slack-
ware 14.2). The HarfTEX and LuaHBTEX engines
were installed via tlcontrib, following the instructions
at https://contrib.texlive.info/.

3 ASCII-based transliteration systems

ASCII-based systems to typeset the Bangla script in
TEX were first seen to work more than 15 years
ago. The two transliteration schemes known to
support the Bangla script are ITRANS (Indian lan-
guages TRANSliteration) by Avinash Chopde and
the Velthuis system by Frans Velthuis. Both of these
schemes were primarily developed for the Devanagari
script. Later, the schemes were adapted to typeset
the Bangla script in TEX.

The typeface families that work with ITRANS

include the “SonarGaon” (sgaon) fonts by Anisur
Rahman [7] and “AroSgaon” fonts by Muhammad

Typesetting the Bangla script in Unicode TEX engines—experiences and insights

http://w32tex.org/
https://contrib.texlive.info/

264 TUGboat, Volume 40 (2019), No. 3

ek l�eb emAr kAYÆ, keh sÆ
A rib {\bn ke la{}ibe mor kaarya, kahe sandhyaa rabi

�inyA jgB reh in�¬r Cib . "suni.yaa jagaT rahe niruttar chabi |

mAiTr p�dIp iCl, es kihl, �Aim maa.tir pradiip chila, se kahila, sbaami

aAmAr eYTuku sAx
 kirb tA aAim . aamaar ye.tuku saadhya kariba taa aami |

{ ribÅ�nAz ZAku r -- rabindranaath .thaakur}

�Aim

l�eb Eleb

Figure 1: Typesetting of Bangla script in TEX with a
transliteration system using the METAFONT-generated
“Bengali” fonts (source: [7]).

Masroor Ali [1]. The latter was available with its
METAFONT sources and was replaced by the Type 1
“ITXBengali” fonts of Shrikrishna Patil in ITRANS.
The bwti (Bengali Writer TEX Interface) package by
Abhijit Das included METAFONT-generated “Bengali”
fonts and worked in TEX through a special interface.

The bengali package [8] by Anshuman Pandey
uses the Velthuis transliteration scheme instead of
ITRANS. It uses the latest version of Das’s “Bengali”
fonts for typesetting. The bangtex package [6] by
Palash Baran Pal includes class files and METAFONT

sources for its “Bangla” fonts. The Type 1 fonts
for this package were created by Ananda Kumar
Samaddar [6] and are included in the bengali-omega

package [10] of Lakshmi K. Raut. The latter uses
the Velthuis transliteration scheme. It also supports
Unicode-based input but would convert the Unicode
text into the transliteration scheme for typesetting.

The transliteration-based systems require the
user to input Bangla text in a specific scheme with
fonts from the Roman script. Then the text would
be processed with preprocessors for typesetting in
TEX. Although these systems work, the source file
is harder to read (Figure 1). They seem to use the
“Bengali” fonts (from bwti) or “Bangla” fonts (from
bangtex) to typeset the document. The typographic
quality of these fonts may not be comparable with
fonts we see in modern Bangla publications.

4 Unicode-aware TEX engines

With the introduction of X ETEX and LuaTEX around
2007, and the fontspec package for selecting TrueType
and OpenType fonts, typesetting of Bangla in TEX
using Unicode fonts became a reality. Today, a good
number of Unicode-compliant Bangla fonts are freely
available that work with these engines.

To start, one needs a keyboard layout that sup-
ports the input of Unicode Bangla characters in an ed-
itor. In most GNU/Linux systems, a keyboard layout
called Probhat is available for this purpose. A pop-
ular alternative is the Avro Keyboard, available for
free (https://www.omicronlab.com/index.html),
which can be installed in GNU/Linux, MacOSX,
and Windows systems. In the emacs editor, as of ver-
sion 26.2, three layouts are available, namely bengali-

ȓক লইেব ȓমার কায�, কেহ সű�ারিব।
ǧিনয়া জগৎ রেহ িনǫŒর ছিব।
মাǃর Ċদীপ িছল, ȓস কিহল, íামী,
আমার ȓযটুকু সাধ� কিরব তা আিম।

– রবীŰনাথ ঠাকুর

¿�/
=* ¿,6.�6-�G�=32iÇ6.7*s\\
Å7'F6 ��B .=3 7'ÃP. �7*s\\
,6ú.Ý%8(7�/G ¿2�73/G�6,8G\\
	,6. ¿-�<�9 26&Ç �7.*#6	7,s

\�����Q��\����������
HH .*8q'6$ �6�9 .

Figure 2: Typesetting of Bangla script in X ETEX
with Unicode fonts (spelling of a few words, as they
appeared in Figure 1, were corrected following [14]).

inscript, bengali-itrans, and bengali-probhat.
None of the Unicode Bangla keyboard layouts

available today were designed with TEX users in mind;
hence one may need to switch the layout frequently
in order to type special TEX characters (\, %, &, etc.).
An appropriate font containing the Bangla script
has to be set via the fontspec package (details in
Section 6). Then, upon processing the .tex file with
xelatex, lualatex, harflatex, or luahblatex one gets the
typeset document.

The Unicode-based systems in TEX for this
script have many advantages over the older systems.
For example, the source file is now easy to read
(Figure 2, right versus Figure 1, right). In addi-
tion, any font that contains the glyphs for this script
can be used for typesetting. However, the current
situation is not free from shortcomings. The ver-
batim text in Figure 2 (right), which should read
“\vskip6pt\raggedleft”, is unreadable because the
font used there contains glyphs only from the Bangla
script. Other shortcomings that we have observed
are discussed in the following sections.

5 LATEX packages for Unicode Bangla

The polyglossia package by François Charette [2] is
designed to provide support for typesetting Bangla
script, along with other scripts, using suitable Uni-
code fonts and TEX engines. It provides a style file
(begalidigits.sty) for this script that translates
the Arabic numerals into Bangla numerals. The
language definition file (gloss-bengali.ldf) imple-
ments the Bangla numerals in LATEX counters. It
also provides Bangla translation for the names of
LATEX sections and counters, and for the Gregorian
calendar months.

The latexbangla package by Adib Hasan [3] intro-
duces some control sequences to select Bangla fonts.
To our knowledge, there are no Unicode Bangla fonts
designed to be used with TEX. As such, the pack-
age sticks with the limited fonts available today and
makes bold, slanted, and monospaced text using fonts
from different designers. It uses the AutoFakeBold

and AutoFakeSlant features to produce fake styles. As
a result, the typeset document looks something pass-
able but not of great aesthetic taste. The fonts used

Md Qutub Uddin Sajib

https://www.omicronlab.com/index.html

TUGboat, Volume 40 (2019), No. 3 265

X��{�¤�� ����� ���q o��{�Zzw�{�� ������� w�� ��¤­ �������
���{¤{ �¤���¤��� �|� X���z¤� | � X��� z©� {� w�X�¤� ��� ��V p�¤�
w�X�� �¤�� {���� p� }�¤�� X��V ������� �l�� o�� {����­ p� }�¤�
�� y � ¤�� �m{�¤�� ��� ������ �¤�� ����� p{� Z�¤{ ¥� ��¤­¤��� �{�
�l�� ��¤�� ���� X� p@� Z��{��¤� ��Ð���� } ���zw�|�� {�¤� ��¤|� "

»��{�¤�� ������ �(�q o��{� ½Mw�{�� ���Ò ���� w�� ��¤­ �������
���{¤{ �¤���¤��� �|� »���-�¤k | � »��� z©� �� w�»�¤� ��� ��Q p�¤�
w�»�� �¤�� {���� p� }�¤�� »��Q ���Ò ���� ��l� o�3� {����­ p� }�¤�
�h y � ¤�� �m{�¤��)��� ������ �¤�� ���c� p{� ½�¤{ �� ��¤­¤��� �{ö
��l� ��¤�� ���� »� p£�½��{��¤� ��3���� } ���Mw�|�� {�¤� ��¤|� "

Figure 3: Rendering of Bangla script in X ETEX using
Free Serif fonts: top: using MiKTEX 2.8; bottom:
using TEX Live 2019 (red boxes indicate wrong
rendering).

in this package are not available in TEX Live 2019.
Besides, its dependence on the ucharclasses pack-
age [4] makes it unusable with other engines than
X ETEX.

6 Unicode-compliant Bangla fonts and TEX

TEX Live 2019 comes with the gnu-freefont package
which contains Unicode fonts in both TTF and OTF

formats and covers a wide range of the Unicode char-
acter set. Fonts for the Bangla script are available in
serif and sans-serif versions, in regular and slanted
styles. Unfortunately, no bold or bold italic fonts are
available for this particular script. Figure 3 shows
the rendering of a few lines of Bangla script using
Free Serif fonts with xelatex. In this figure, the type-
set text on top is from the author’s own typesetting
for a book [9] that was compiled in 2012 with xelatex

using the MiKTEX 2.8 distribution. The same piece
of text was found producing a bit different output
when compiled with xelatex using TEX Live 2019; to
be specific, a few conjunct characters and ligatures
are incorrectly rendered. This rendering problem,
whether it concerns the Free Serif fonts or the xelatex

program, needs to be fixed in the future.
Besides the Free Serif fonts in TEX Live 2019, the

noto font family from Google (https://www.google.
com/get/noto/) includes Noto Serif Bengali and
Noto Sans Bengali fonts in TTF format. The serif
version includes the regular and bold styles while
the sans-serif version contains seven other styles. All
these fonts can be used to typeset Unicode Bangla
in TEX but they must be downloaded and set up
correctly so that TEX finds them. The OTF version
of this font family is available in TEX Live 2019 but
it does not include the fonts for Bangla script.

A good number of Unicode-compliant Bangla
fonts are available today and can be downloaded for
free. The Avro Keyboard website has a dedicated
page for such fonts (https://www.omicronlab.com/

bangla-fonts.html); the Ekushey project also has
a page (http://ekushey.org/index.php/page/33)
for this purpose. Most Unicode Bangla fonts avail-
able today, except the two mentioned above, are not
available in slanted, italic, bold, etc., styles. This is
probably due to the fact that those fonts were not
designed with professional publication in mind; also,
not with TEX users in mind. When using X ETEX,
the AutoFakeBold and AutoFakeSlant features can
be used and the result is somewhat acceptable. In
LuaTEX, HarfTEX, and LuaHBTEX, however, these
features are not supported.

Besides the lack of publication-quality Unicode
Bangla fonts, the rendering of Bangla script in Uni-
code TEX engines needs deeper attention. To ex-
periment with the four engines available today, we
selected three fonts to typeset the same piece of
texts. The first one is the Free Serif font available
in TEX Live 2019, second one is the Noto Serif Ben-
gali, and third one is the Lohit Bengali font. This
last is available in most GNU/Linux distributions;
otherwise, it can be downloaded from the Ekushey

font page mentioned above. The font setup used for
all examples in this article is given below. The Noto
Sans Bengali font was used in Figure 2 to typeset
the verbatim text. Considering the x-height of Free
Serif fonts as “normal”, other fonts were scaled ac-
cordingly to get the identical typeset output. This
font setup works with xelatex, lualatex, harflatex, and
luahblatex:

\usepackage{fontspec}

\usepackage{ifxetex}

%

\newfontfamily{\freeserifbn}{FreeSerif.ttf}

[Script=Bengali, Ligatures=TeX]

\newfontfamily{\notoserifbn}

{NotoSerifBengali-Regular.ttf}

[Script=Bengali, Scale=0.85, Ligatures=TeX]

\newfontfamily{\notosansbn}

{NotoSansBengali-Light.ttf}

[Script=Bengali, Scale=1, Ligatures=TeX]

\ifxetex

\newfontfamily{\lohitbn}{lohit_bn.ttf}

[Path=/usr/share/fonts/TTF/,

Script=Bengali, Scale=0.82, Ligatures=TeX]

\else

\newfontfamily{\lohitbn}{lohit_bn.ttf}

[Script=Bengali, Scale=0.82, Ligatures=TeX]

\fi

7 The dotted circle in rendering the

Bangla script

The glyph named dotted circle is in the Geometric-

Shapes Unicode block, assigned the character code
U+25CC. Thus it can be typeset with the TEX
command \char"25CC, using the font setup above

Typesetting the Bangla script in Unicode TEX engines—experiences and insights

https://www.google.com/get/noto/
https://www.google.com/get/noto/
https://www.omicronlab.com/bangla-fonts.html
https://www.omicronlab.com/bangla-fonts.html
http://ekushey.org/index.php/page/33

266 TUGboat, Volume 40 (2019), No. 3

and compiling the input file with xelatex, lualatex,
harflatex or luahblatex to get: ◌ (here with the Free
Serif font). In non-Roman scripts, the dotted cir-

cle can be used as the base character to typeset
a combining mark [15] which would otherwise be
combined with a real base character of a script.

In the Bangla script, a vowel sign or the short
form of a vowel (known as kaar) replaces the glyph
of that vowel when the vowel is followed by (or mod-
ifies) a consonant (base character). For example,
the vowel “আ” (bengali letter aa) has the short
form “ া” (bengali vowel sign aa). When the
consonant “ক” (bengali letter ka) is modified by
the vowel আ, the vowel sign (া) replaces the actual
vowel and the consonant-vowel conjunct is typeset as
“কা”. Similarly, several consonants have short forms
(known as phalas); they replace their actual glyphs
(bases) when two or more consonants are combined
to produce a conjunct character.

The kaars and phalas in Bangla script can col-
lectively be called combining marks. Since different
kaars and phalas have different positions to stand
with a base character, the dotted circle can be
helpful to visualize the actual position of a combining
mark when a kaar or phala is typeset independently.

In Figure 4, the most common vowel signs are
shown as independently typeset combining marks
(first row of a pair) and combined with the con-
sonant ক (second row of a pair). The example is
shown using three fonts, Free Serif, Noto Serif Ben-
gali, and Lohit Bengali, compiling each with our
four Unicode TEX engines. As seen in this figure, a
dotted circle unexpectedly appears when a vowel

sign is typeset with xelatex; this is not the case with
lualatex, harflatex or luahblatex. On the other hand,
when vowels are combined with a consonant, xelatex

seems to render the script correctly; the other three
engines fail except for few consonant-vowel combi-
nations with the Lohit Bengali font. In the case of
consonant-consonant combinations, xelatex failed for
specific combinations with the Free Serif font (Fig-
ure 4, middle column, top), although it worked for
other combinations (not shown in figure).

Problem arises when one intends to typeset a
vowel sign or other combining marks without the
dotted circle. It is particularly necessary when
these signs are taught to children. Ideally, in TEX,
one should be able to typeset the combining marks
(kaars or phalas) independent of the dotted cir-

cle. We say ideally because: (i) when a consonant
combines with a vowel sign, the dotted circle

disappears implying the presence of these signs as in-
dependent glyphs in the current font; (ii) as described
in the Unicode Standard and mentioned previously,

◌া ি◌ ◌ী ◌ু ◌ূ ◌ৃ ⊻◌ ⊼◌ ⊻◌া ⊻◌ৗ
কা িক কী কু কূ কৃ ⊻ক ⊼ক ⊻কা ⊻কৗ

␱রা⍣ xelatex

া ি ী ু ূ ৃ ে ৈ ো ৌ
কা কি কী কু কূ কৃ কে কৈ কো কৌ

শ্রান্ত lualatex

া ি ী ু ূ ৃ ে ৈ ো ৌ
কা কি কী কু কূ কৃ কে কৈ কো কৌ

শ্রান্ত harflatex

া ি ী ু ূ ৃ ে ৈ ো ৌ
কা কি কী কু কূ কৃ কে কৈ কো কৌ

শ্রান্ত luahblatex

◌া ি◌ ◌ী ◌ু ◌ূ ◌ৃ ȓ◌ Ȕ◌ ȓ◌া ȓ◌ৗ
কা িক কী কু কূ কৃ ȓক Ȕক ȓকা ȓকৗ

Ēাũ xelatex

া ি ী ু ূ ৃ ে ৈ ো ৌ
কা কি কী কু কূ কৃ কে কৈ কো কৌ

শ্রান্ত lualatex

া ি ী ু ূ ৃ ে ৈ ো ৌ
কা কি কী কু কূ কৃ কে কৈ কো কৌ

শ্রান্ত harflatex

া ি ী ু ূ ৃ ে ৈ ো ৌ
কা কি কী কু কূ কৃ কে কৈ কো কৌ

শ্রান্ত luahblatex

◌া ি◌ ◌ী ◌ু ◌ূ ◌ৃ ে◌ ৈ◌ ে◌া ে◌ৗ
কা িক কী কু কূ কৃ েক ৈক েকা েকৗ

শর্ান্ xelatex

া ি ী ু ূ ৃ ে ৈ ো ৌ
কা িক কী কু কূ কৃ কে কৈ কো কৌ

শ্রান্ lualatex

া ি ী ু ূ ৃ ে ৈ ো ৌ
কা িক কী কু কূ কৃ কে কৈ কো কৌ

শ্রান্ harflatex

া ি ী ু ূ ৃ ে ৈ ো ৌ
কা িক কী কু কূ কৃ কে কৈ কো কৌ

শ্রান্ luahblatex

Figure 4: Typesetting of the vowel signs,
independently and as a conjunct with a consonant
(left column), and a consonant-consonant conjunct
character (middle column) in four engines using the
Free Serif (top), Noto Serif Bengali (middle), and Lohit
Bengali (bottom) fonts.

the dotted circle can be used as a base charac-
ter to a combining mark; and (iii) in a font viewer
like FontForge, the vowel signs are indeed found as
independent glyphs. Therefore, rendering of the com-
bining marks, especially the vowel signs, in xelatex

with a dotted circle even when it is undesirable
can be considered as a bug (more in Section 11).

8 Rendering of Bangla script in HarfBuzz,

word processors, and elsewhere

In order to understand the appearance of dotted

circle in typesetting the combining marks, it is log-
ical to look into the output produced by the text ren-
dering stack HarfBuzz (https://www.freedesktop.
org/wiki/Software/HarfBuzz/). This software is
known to work behind the X ETEX engine as well as
in many word processors, text editors, web browsers,
and probably elsewhere. Two modules hb-view and
hb-shape are available in the HarfBuzz Indic Shaper
and can be used on Unix systems to get the rendered
output of a Unicode script. As shown in Figure 5,
HarfBuzz produces the same result for different fonts
as we have seen with xelatex in Figure 4.

Md Qutub Uddin Sajib

https://www.freedesktop.org/wiki/Software/HarfBuzz/
https://www.freedesktop.org/wiki/Software/HarfBuzz/

TUGboat, Volume 40 (2019), No. 3 267

bash-4.3$ hb-view FreeSerif.ttf ሑ◌া bash-4.3$ hb-view FreeSerif.ttf িক bash-4.3$ hb-view FreeSerif.ttf ᎹরাᎰত

bash-4.3$ hb-shape FreeSerif.ttf ሑ◌া bash-4.3$ hb-shape FreeSerif.ttf িক bash-4.3$ hb-shape FreeSerif.ttf ᎹরাᎰত
[bn_initekaar=0+276|dottedcircle=0+

810|bn_aakaar=0+207]

[bn_ikaar=0+194|bn_ka=0+584] [bn_sh_mlm_hasanta=0+519|bn_ra=2+

453|bn_aakaar=2+207|bn_n_ta=4+580]

bash-4.3$ hb-view NotoSerifBengali-Regular.ttf ሑ◌া bash-4.3$ hb-view NotoSerifBengali-Regular.ttf িক bash-4.3$ hb-view NotoSerifBengali-Regular.ttf ᎹরাᎰত

bash-4.3$ hb-shape NotoSerifBengali-Regular.ttf ሑ◌া bash-4.3$ hb-shape NotoSerifBengali-Regular.ttf িক bash-4.3$ hb-shape NotoSerifBengali-Regular.ttf ᎹরাᎰত
[bnmE.init=0+652|uni25CC=0+

1217|bnmAA=0+457]

[bnmI=0+457|bnKA=0+1429] [bn_SH_RA=0+1291|bnmAA=0+

457|bnN_TA=4+1123]

bash-4.3$ hb-view lohit_bn.ttf ሑ◌া bash-4.3$ hb-view lohit_bn.ttf িক bash-4.3$ hb-view lohit_bn.ttf ᎹরাᎰত

bash-4.3$ hb-shape lohit_bn.ttf ሑ◌া bash-4.3$ hb-shape lohit_bn.ttf িক bash-4.3$ hb-shape lohit_bn.ttf ᎹরাᎰত
[u09C7.init=0+312|uni25CC=0+

719|u09BE=0+223]

[u09BF=0+220|u0995=0+537] [u09B6_u09B0_u09CD.blwf.vatu=0+558|u09BE=

0+223|u09A8_u09CD.half_u09A4.pres=4+529]

Figure 5: Rendering of Bangla script in HarfBuzz
using different fonts in a GNU/Linux shell.

LibreOffice Writer (version 6.2.4.2)

OpenOffice Writer (version 4.1.6)

Microsoft Word (version 2007)

Emacs (version 26.2)

GNOME Character Map (version 3.12.1)

Figure 6: Rendering of the Unicode Bangla in word
processors and emacs (top); Bengali (Bangla) and
Hebrew scripts in GNOME Character Map (bottom).

When Unicode Bangla characters are input in
word processors or the emacs editor using a compat-
ible keyboard layout, the rendering (Figure 6) can
be seen to be the same as the HarfBuzz-generated
output (Figure 5). In the address bars of popular
web browsers, as tested in Firefox and Chromium,
the same kind of rendering was also observed (not
shown in figure). The GNOME Character Map, how-
ever, displays the combining marks of Bangla and
Hebrew scripts differently in terms of the dotted

circle (Figure 6).
The examples in figures 5 and 6 imply that Harf-

Buzz is responsible for the unexpected appearance
of dotted circle in X ETEX when the vowel signs
are typeset independently. This assumption is also
supported by the fact that the LuaTEX engine pro-
duces expected results in terms of dotted circle

(first row of second pairs in Figure 4), as it does not
depend on HarfBuzz for rendering. The HarfTEX
and LuaHBTEX rendering (third and fourth pairs in
Figure 4), however, seems puzzling as they are known
to use HarfBuzz but output LuaTEX-like rendering,
although X ETEX-like rendering could be expected.

আমােদর ȓপাƱমাƱার
কিলকাতার ȓছেল। জেলর
মাছেক ডাঙায় তুিলেল ȓয-রকম
হয়, এই গŌøােমর মেধ� আিসয়া
ȓপাƱমাƱােররও ȓসই দশা উপিƶত
হইয়ােছ। একখািন অűকার
আটচালার মেধ� তঁাহার আিপস;
অদেূর একǃ পানাপুকুর এবং তাহার
চাির পােড় জĲল।

আমােদর ȓপাƱমাƱার কিলকা-
তার ȓছেল। জেলর মাছেক ডাঙায় তু-
িলেল ȓয-রকম হয়, এই গŌøােমর
মেধ� আিসয়া ȓপাƱমাƱােররও ȓসই
দশা উপিƶত হইয়ােছ। একখািন অű-
কার আটচালার মেধ� তঁাহার আিপস;
অদেূর একǃ পানাপুকুর এবং তাহার
চাির পােড় জĲল।

আমাদের পোস্টমাস্টার কলিকা-
তার ছেলে। জলের মাছকে ডাঙায়
তুলিলে যে-রকম হয়, এই গণ্ডগ্রা-
মের মধ্যে আসিয়া পোস্টমাস্টারে-
রও সেই দশা উপস্থিত হইয়াছে। এক-
খানি অন্ধকার আটচালার মধ্যে তাঁ-
হার আপিস; অদূরে একটি পানাপুকুর
এবং তাহার চারি পাড়ে জঙ্গল।

আমাদের পোস্টমাস্টার কলিকা-
তার ছেলে। জলের মাছকে ডাঙায়
তুলিলে যে-রকম হয়, এই গণ্ডগ্রা-
মের মধ্যে আসিয়া পোস্টমাস্টারে-
রও সেই দশা উপস্থিত হইয়াছে। এক-
খানি অন্ধকার আটচালার মধ্যে তাঁ-
হার আপিস; অদূরে একটি পানাপুকুর
এবং তাহার চারি পাড়ে জঙ্গল।

আমাদের পোস্টমাস্টার কলিকা-
তার ছেলে। জলের মাছকে ডাঙায় তু-
লিলে যেরকম অবস্থা হয় এই গণ্ড
গ্রামের মধ্যে আসিয়া পোস্টমাস্টা-
রেরও সেই দশা উপস্থিত হইয়াছে।
একখানি অন্ধকার আটচালার মধ্যে
তঁকহার অফিস। অদূরে এটি পানাপু-
কুর একবং তাহার চার পাড়ে জঙ্গল।

Figure 7: Hyphenated text from [12, p. 391] (top left),
xelatex with no hyphenation (top middle).
polyglossia-generated hyphenation in:
xelatex (top right), lualatex (bottom left),
harflatex (bottom middle), and luahblatex

(bottom right). (The spelling of a few words
was corrected following [13]).

9 Dealing with hyphenation

In modern-day Bangla publications, hyphenation is
hardly seen, either because of technical limitations
or lack of interest. Fortunately, the polyglossia pack-
age supports hyphenation for Bangla script which
seems to work well (Figure 7). All four Unicode TEX
engines were found to be working with hyphenation,
although the lualatex, harflatex, and luahblatex have
rendering issues as discussed previously. However,
the hyphenation rule hyphenmins={2,2} as found in
the gloss-bengali.ldf file is probably too low for
this script. It was also found that any changes made
in this file, e.g., hyphenmins={3,3} has the desired
effect but using the same in a .tex file has no effect
in the hyphenation pattern.

10 Typesetting with color

Use of colors in text can significantly improve the
visual as well as readability for particular types of
contents. Colorful text can be essential in books writ-
ten for children. For Bangla, sometimes it is desirable
to typeset different parts of a conjunct character in
different colors to help children learn and recognize
them with ease. A good example is to flag a kaar

in a different color than its consonant base, as can
be seen in textbooks for children (Figure 8, first col-
umn, first and second row). Such use of color was
not found to be working with xelatex; the lualatex,
harflatex and luahblatex were found to be working in
a few combinations (Figure 8, second column, first
and second row) but failing in other cases. Similarly,
typesetting a ligature with its different parts flagged
in different colors was found to be not possible (Fig-
ure 8, third row). The code to typeset the colorful

Typesetting the Bangla script in Unicode TEX engines—experiences and insights

268 TUGboat, Volume 40 (2019), No. 3

ক◌াক◌া য◌ায়। ড◌াব খ◌ায়। xelatex

কাকা যায়। ডাব খায়। lualatex

কাকা যায়। ডাব খায়। harflatex

কাকা যায়। ডাব খায়। luahblatex

মȓ◌ৗ রািখ কȓ◌ৗটা ভির xelatex

মৌ রাখি কৌটা ভরি lualatex

মৌ রাখি কৌটা ভরি harflatex

মৌ রাখি কৌটা ভরি luahblatex

� দ◌� xelatex

ন্‍দ্র lualatex, harflatex, luahblatex

3
G ZW

J

&$+QHQ`&;`22M'$+?�`]yN�3$+?�`]yN*.$+?�`]kyy.'W

&$+QHQ`&#Hm2'$+?�`]yN�e'W

&$+QHQ`&`2/'$?bFBT@8Ti$+?�`]kyy*$+?�`]yN*.$+?�`]yN"y'

ZW

NJ

G :

1

Figure 8: Use of different colors for different parts of a
conjunct or ligature is a challenge; left: example from
http://tiny.cc/bdnctb-classone (top and middle
rows) and http://tiny.cc/4xly9y (bottom row);
middle column: TEX output.

ligature (Figure 8, fourth row) is somewhat complex
and may not be very useful in real life typesetting.

11 The dotted circle mystery, revisited

To put it simply, one should be able to typeset any
glyph of a font independently, that is, without the
dotted circle as a base when expected. As seen in
previous examples, a few glyphs cannot be typeset in-
dependently. To understand this behavior in TEX, we
try to deconstruct the rendering of dotted circle

using the TEX primitive \char" and typesetting some
Unicode character codes from Bangla script (Fig-
ure 9). In this example, the appearance of dotted

circle (\char"25CC) can be considered as unusual

because a single call of \char"09BE is seen to typeset
both “◌” (\char"25CC) and “ া” (\char"09BE). Also,
both \char"09BE and \char"25CC\char"09BE com-
mands are seen to produce the same typeset output.
Other examples in this figure further suggest that
the rendering may not be called satisfactory.

The apparent problem that dotted circle

cannot be separated even when it is undesired in
typesetting Indic scripts was previously reported
as a bug in LibreOffice (http://tiny.cc/bsebez),
and also mentioned on the xetex mailing list (http:
//tiny.cc/atgbez). The LibreOffice page has de-
clared this issue as not a bug while no conclusion
was found on the list. However, Khaled Hosny gave

\char"25CC ◌

\char"09BE ◌া
\char"09BF ি◌
\char"09C1 ◌ু
\char"09CB ȓ◌া

\char"25CC\char"09BE ◌া
\char"25CC\char"09BF ি◌
\char"25CC\char"09C1 ◌ু
\char"25CC\char"09CB ȓ◌া

\char"25CC\char"25CC\char"09CB ◌ȓ◌া

\char"098B ঋ
\char"09CE ৎ

\char"25CC\char"098B ◌ঋ
\char"25CC\char"09CE ◌ৎ

\char"0982 ◌ং
\char"0981 ◌ঁ

\char"25CC\char"0982 ◌ং
\char"25CC\char"0981 ◌ঁ

\char"25CC\char"25CC\char"0981 ◌◌ঁ

Figure 9: Deconstructing the dotted circle in
X ETEX with base characters from Bangla script.

\char"25CC ◌ \char"09C7 ⊻◌

SP
ZW

SP

\char"0020\char"09C7 ␣⊻◌ \char"200B\char"09C7 ে◌

NB

SP
WJ

\char"00A0\char"09C7 ⊻ ␣ \char"2060\char"09C7 ে◌

ZW

NBSP

ZW

NBSP

NB

SP

\char"FEFF\char"09C7 ে◌ \char"FEFF\char"00A0\char"09C7 ে ␣

ZW

NJ

ZW

NJ

NB

SP

\char"200C\char"09C7 ⊻◌ \char"200C\char"00A0\char"09C7 ে ␣

ZW

J

ZW

J

NB

SP

\char"200D\char"09C7 ⊻◌ \char"200D\char"00A0\char"09C7 ে ␣

্ ZW

J

\char"09B2 ল \char"09B2\char"09CD\char"200D ⋚

\char"09AA প \char"09AA\char"09CD\char"200D ⋓

\char"09DC ড় \char"0997 গ

্

\char"09DC\char"09CD\char"0997 ⏋

্ ZW

NJ

\char"09DC\char"09CD\char"200C\char"0997 ␵ গ

Figure 10: Deconstructing the dotted circle to
typeset combining marks and special conjuncts in
X ETEX with Bangla script.

advice on the LibreOffice page to use a space or no-

break space before the given glyph when dotted

circle is undesired.
The no-break space (nbsp) was found to work

to “remove” the dotted circle when used before
a combining mark while use of a space (sp), as
predicted, did not work (Figure 10, top). However,
this trick for removing dotted circle may not be
acceptable because it actually replaces the dotted

circle with a space (shown with a “␣” in figure).
Other combinations were tested, using zero

width space (zwsp), word joiner (wj), zero

Md Qutub Uddin Sajib

http://tiny.cc/bdnctb-classone
http://tiny.cc/4xly9y
http://tiny.cc/bsebez
http://tiny.cc/atgbez
http://tiny.cc/atgbez

TUGboat, Volume 40 (2019), No. 3 269

width no-break space (zwnbsp), zero width

non-joiner (zwnj), and zero width joiner (zwj).
The result is interesting as we get ⊻ ␣ and ে ␣ (notice
the horizontal stroke on top, known as maatra in
Bangla script) using different combinations but the
same character code (U+09C7). The zwnj and zwj

characters were found useful in typesetting short
forms of consonants and special conjunct characters
(Figure 10, bottom).

12 What next?

In order to achieve the finest typographic quality in
Bangla script, several things can be taken into con-
sideration. The rendering issues especially with the
dotted circle in X ETEX, and conjunct characters
and ligatures in other engines may take priority. Con-
tact can be made with the HarfBuzz developers for
this purpose. For now, because rendering issues are
observed in X ETEX, LuaTEX, HarfTEX, and LuaHB-
TEX, it is probably necessary to experiment with all
these engines. Eventually we may want to settle on
one particular engine.

The Noto Bengali fonts, both serif and sans-serif,
can be included in the future versions of TEX Live.
This would allow the users to try Unicode-aware
TEX engines with at least two font families including
the already existing Free Serif and Free Sans fonts.
Eventually, a dedicated font family for the Bangla
script should be designed especially with TEX users
in mind and a supporting macro package developed.
Supporting only the fontspec package at the primary
stage would be fine; integration with the polyglossia

package may come next.
A keyboard layout can be designed for the pur-

pose of Unicode Bangla character input making it
emacs- and TEX-friendly. In this design, keys for the
special TEX characters (\, %, &, etc.) can be retained,
so that these keys can be used to format Bangla text
without having to switch keyboard layouts. Keys
for the Unicode characters no-break space, zero

width non-joiner, zero width joiner, zero

width no-break space, etc., should also be in the
layout design since these characters can be helpful in
typesetting combining marks and special conjuncts.
As these characters are not visible in the editor when
input directly, they can be even better input with
newly-defined TEX macros.

13 Conclusion

The present-day Bangla publishing industry is mostly
not using the fine typographic power of TEX. The
reasons behind this are many, of which a few are
discussed here. Interest in solving those issues has
been seen in recent years. Although use of TEX in

typesetting Bangla fiction books might be a bigger
challenge, mostly due to non-TEXnical reasons, a
good number of science books can be expected in the
future. For this to happen, the current limitations of
Unicode TEX engines and fonts need to be addressed.
The few insights we were able to bring into light in
this article may lead us to the beginning of the finest

typographic quality in Bangla publishing.

References

[1] M. M. Ali. AroSgaon (More SGAON) 2.1, 1996.

[2] F. Charette. Polyglossia: An Alternative to Babel
for X ELATEX and LuaLATEX, 1.44 edition, 2019.

[3] A. Hasan. The LATEXbangla Package: Enhanced
LATEX integration for Bangla, 0.2 edition, 2016.

[4] M. P. Kamermans. ucharclasses, 2017.

[5] D. E. Knuth. The TEXbook, vol. A of Computers &
Typesetting. Addison–Wesley Publishing Company,
Massachusetts, 2012.

[6] P. B. Pal. Bangtex: A package for typesetting
documents in Bangla using the TEX/LATEX
systems, 2002. http://www.saha.ac.in/theory/

palashbaran.pal/bangtex/bangtex.html

[7] A. Pandey. Typesetting Bengali in TEX.
TUGboat 20(2):119–126, 1999.
https://tug.org/TUGboat/tb20-2/tb63pand.pdf

[8] A. Pandey. Bengali for TEX, 2.0 edition, 2002.

[9] A. M. H. Rashid. Baanglaay Renesnaar
Pothikrit: Rabindranath O Chaar Bangali
Bigynani (Trailblazer of Renaissance in Bengal:
Rabindranath and Four Bengali Scientists).
Nabajuga Prokashani, Dhaka, 2015. in Bangla.

[10] L. K. Raut. Typesetting Bengali in Ω using
Velthuis Transliteration or Unicode Text, 2006.

[11] W. Robertson. The fontspec package: Font selection
for X ELATEX and LuaLATEX, 2.7c edition, 2019.

[12] F. G. E. Ross. The Evolution of the Printed
Bengali Character from 1778 to 1978. PhD thesis,
School of Oriental and African Studies, University
of London, 1988. https://eprints.soas.ac.uk/

29311/1/10731406.pdf

[13] R. Tagore. The complete works of Rabindranath
Tagore: Stories. Retrieved: 2 August 2019.
http://tiny.cc/tagore-postmaster

[14] R. Tagore. The complete works of Rabindranath
Tagore: Verses. Retrieved: 15 July 2019.
http://tiny.cc/tagore

[15] The Unicode Consortium. The Unicode Standard,
Version 12.1.0. The Unicode Consortium,
Mountain View, CA, 2019.
https://unicode.org/versions/Unicode12.1.0/

⋄ Md Qutub Uddin Sajib
China University of Geosciences, Wuhan
388 Lumo Road, Wuhan 430074, China
qsajib71 (at) gmail dot com

ORCID 0000-0002-7090-7981

Typesetting the Bangla script in Unicode TEX engines—experiences and insights

http://www.saha.ac.in/theory/palashbaran.pal/bangtex/bangtex.html
http://www.saha.ac.in/theory/palashbaran.pal/bangtex/bangtex.html
https://tug.org/TUGboat/tb20-2/tb63pand.pdf
https://eprints.soas.ac.uk/29311/1/10731406.pdf
https://eprints.soas.ac.uk/29311/1/10731406.pdf
http://tiny.cc/tagore-postmaster
http://tiny.cc/tagore
https://unicode.org/versions/Unicode12.1.0/

270 TUGboat, Volume 40 (2019), No. 3

Typographers’ Inn

Peter Flynn

CV/Résumé layouts

If you use LATEX for your writing, it’s pretty much
a no-brainer to use it for other classes of document:
presentations (slides), business cards, leaflets. . . and
your CV or résumé.

The CV topic on CTAN has over 30 related pack-
ages, including several from the Koma bundle, and
the europasscv package which implements a format
which is becoming increasingly important in the EU1

(see Figure 1).

JaneEyre
B. Ed.

Ferndean House

Ferndean Village

H 009-87654321

T 001-23456789

u 001-23456788

B jeyre@ferndean.me.uk

www.jeyre.me.uk

g facebook.com/
jane.eyre

Some extra info

Personal Information

Date of birth February 15, 1828

Nationality British

Civil Status Married, two children

Education

1835–1838 Homeschooling, Gateshead, grades 1–3.

Teacher: Mr. NN, under supervision of my aunt Ms. Reed.

1838–1844 Lowood School, Lowood, grades 3–8.

A charitable institution under the guidance of Mr. Brocklehurst.

Work

Teaching

1844–1846 Teacher, Lowood School, Lowood.

Teaching all grades.

1846–1847 Governess, Thornfield Hall, Thornfield near Millcote.

Governess of Mr. Rochester’s ward Adèle, 10 years old.

1847 Village teacher, girl’s school, Moore village.

Teaching all village girls, mostly farmer’s daughters, all grades.

1849–1867 Home schooling, Ferndean.

Educating and teaching my children, a son and a daughter.

CV Jane Eyre 1/3

Curriculum vitae

PERSONAL INFORMATION Betty Smith

32 Reading rd, Birmingham B26 3QJ United Kingdom

+44 7123456789 +44 20123456789

smith@kotmail.com

www.myhomepage.com

AOL Messenger betty.smith Google Talk bsmith

Gender Female | Date of birth 1 March 1975 | Nationality English

JOB APPLIED FOR European project manager

WORK EXPERIENCE

August 2002 – Present Independent consultant

British Council

123, Bd Ney, 75023 Paris (France)

Evaluation of European Commission youth training support measures for youth national agen-

cies and young people

March 2002 – July 2002 Internship

European Commission, Youth Unit, DG Education and Culture

200, Rue de la Loi, 1049 Brussels (Belgium)

– evaluating youth training programmes for SALTO UK and the partnership between the Coun-

cil of Europe and European Commission

– organizing and running a 2 day workshop on non-formal education for Action 5 large scale

projects focusing on quality, assessment and recognition

– contributing to the steering sroup on training and developing action plans on training for the

next 3 years. Working on the Users Guide for training and the support measures

Business or sector European institution

Oct 2001 – Feb 2002 Researcher / Independent Consultant

Council of Europe, Budapest (Hungary)

Working in a research team carrying out in-depth qualitative evaluation of the 2 year Advanced

Training of Trainers in Europe using participant observations, in-depth interviews and focus

groups. Work carried out in training courses in Strasbourg, Slovenia and Budapest.

EDUCATION AND TRAINING

1997–2001 PhD - Thesis Title: ’Young People in the Construction of
the Virtual University’, Empirical research on e-learning

ISCED 6

Brunel University, London United Kingdom

1993–1997 Bachelor of Science in Sociology and Psychology

Brunel University, London United Kingdom

– sociology of risk

– sociology of scientific knowledge / information society

– anthropology

– E-learning and Psychology

– research methods

December 22, 2015 © European Union, 2002-2015 | http://europass.cedefop.europa.eu Page 1 / 2

Figure 1: One of the Koma CVs (L) and the EuroPass
CV (R) layouts

Sometimes you might need the classical format
with label/value pairs, as in the moderncv package;
but you might prefer the limecv package, for example,
which uses icons, buttons, and bar-graph indicators
to brighten up your image (see Figure 2).

John Doe

Resumé title

Some quote

Education

year–year Degree, Institution, City, Grade.
Description

year–year Degree, Institution, City, Grade.
Description

Master thesis

title Title

supervisors Supervisors

description Short thesis abstract

Experience

Vocational

year–year Job title, Employer, City.
General description no longer than 1–2 lines.
Detailed achievements:
␣ Achievement 1;
␣ Achievement 2, with sub-achievements:

- Sub-achievement (a);
- Sub-achievement (b), with sub-sub-achievements (don’t do this!);

· Sub-sub-achievement i;
· Sub-sub-achievement ii;
· Sub-sub-achievement iii;

- Sub-achievement (c);
␣ Achievement 3.

year–year Job title, Employer, City.
Description line 1
Description line 2

Miscellaneous

street and number – postcode city – country

 +1 (234) 567 890 •  +2 (345) 678 901 •  +3 (456) 789 012
 john@doe.org •  www.johndoe.com •  john.doe •  jdoe

 jdoe • additional information 1/4

John Doe
position

Profile
Lorem ipsum dolor sit amet,
consectetur adipiscing elit.

Phasellus ullamcorper euismod
lorem nec eleifend. Suspendisse
ac varius quam. Etiam laoreet
nunc orci, vestibulum imperdiet
enim elementum at. Duis dictum
metus sapien, eu blandit quam

malesuada et. Ut viverra
maximus eros.

Contact


Some Street 78
B-9000 Ghent

 john@doe.tld
 +1 781 555 1212
 doe.tld
 johndoe
 @johndoe
 AAAA 5555 BBBB FFFF

Languages
English (native)

German (B2)
Spanish

Interests
—  Personal —
 model trains
 gaming
 travelling

— Professional —
 film
 photography

Projects

limecv
A LATEX CV document class.

Education

Evening class: Chinese
Some School, City. September 2015 – June 2016
Achieved A2 language skill in Chinese (Mandarin).

Bachelor of Science in Biochemistry and Biotechnology
University, City. September 2009 – June 2012
General training in the basic sciences and the molecular life science.

Master of Science in Biochemistry and Biotechnology
University, City. September 2012 – June 2015
Acquisition of insight into and knowledge of possibilities for appli-
cation in the area of biochemistry and biotechnology, specific with
applications in biomedical application and due problem-solving rea-
soning skills.

Experience

Student Job
Company X, Location X. Summer 2010
Integer tincidunt dapibus consectetur. Nullam tristique aliquam luc-
tus. Sed ut ante velit. Nulla pharetra maximus lacus at elementum.
Suspendisse sodales consectetur metus, sit amet ultricies ipsum ul-
trices ut.

Internship
Company Y, Location Y. June 2012 – August 2012
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi dic-
tum cursus sapien, id eleifend mi pellentesque id. Etiam lobortis eu
odio a sodales. Phasellus ut dolor feugiat, lacinia lectus in, blandit
metus. Fusce lacinia dolor et metus gravida pulvinar sit amet et ex.

Internship
Company Z, Location Z. August 2014 – September 2014
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi dic-
tum cursus sapien, id eleifend mi pellentesque id. Etiam lobortis eu
odio a sodales. Phasellus ut dolor feugiat, lacinia lectus in, blandit
metus. Fusce lacinia dolor et metus gravida pulvinar sit amet et ex.
Suspendisse vestibulum, leo malesuada molestie maximus, sem risus
ornare elit, vitae sodales felis elit in ipsum.

Skills⋆

○○○○○ MATLAB ○○○○○ LATEX
○○○○○ Python ○○○○○ VHDL
○○○○○ Microsoft Office ○○○○○ macOS
○○○○○ C, C++ ○○○○○ Javascript
○○○○○ HTML5/CSS ○○○○○ Bash

References

Jane Smith
Company ABC Co. Ltd.
Job title
Street lane 2
B-1150 Brussels
+1 781 555 1212

Figure 2: The Modern CV (L) and the Lime CV (R)
layouts

1 europass.cedefop.europa.eu/documents/curriculum-

vitae

The two main choices the authors provide are
the choice of layout and the choice of typeface. It’s
largely an aesthetic decision—assuming the actual
content of your résumé is attractive—but you do
need to consider your target audience: what may be
required to encourage a City bank to employ you
may be very different from what would help a hot
design agency to take you on.

Off CTAN, there’s also Jan Küster’s jankapunkt
package2 which has several variant layouts, including
a full-on ‘infographics’ format, and the wonderful
Hipster CV3 from the LATEX Ninja4 (see Figure 3).

JAN KÜSTER
CONSULTANT DEVELOPER

½ Bremen, Germany

Æ +49 176 *** *** **

> info@jankuester.com

� www.jankuester.com

� github.com/jankapunkt

7 @Kuester_Jan

I am a digital media

graduate with working

experience in research

projects as well as in

the private sector.

M.Sc.
Digital Media

as latest degree from

University of Bremen

And I am always look-

ing for new exciting

and interdisciplinary

projects worldwide.

SKILLS AND TECHNOLOGIES

The biggest part I con-

tribute to my work is in the

area of software develop-

ment.

LANGUAGES

^ German (native)

^ English (c1)

Design

Consulting
Research

Projects

Development

Bootstrap

Javascript

Metor

MongoDB

HTML/CSS

LaTex

Currently, I develop re-

altime apps with Me-

teor and react.

Formerly I worked with

Java and XPages.

I am using Git and

Webwstorm reg-

ularly for my dev

projects.

Webstorm Git Sourcetree Office Inkscape

ACTVITIES

7
years

of participation at

Global Game Jam

In my freetime I read lots

of news and help others

on Stackoverflow. Due to

bodyweight training I can

keep my body and mind in

balance.
Game Dev

Fitness

News

Stackoverflow

EXPERIENCE AND EDUCATION

Experience Events Education

2009

2018

1/2009 Bachelor Studies

5/2009 Semester Abroad

6/2010 Student Assistant

9/2011 PM Simulation
11/2011 Master Studies Digital Media
1/2012 Scientific Employee

11/2012 Master Project - PrIMA

9/2013 Poster Presentation

11/2014 IT Consultant

7/2015 M.Sc. Graduation

5/2016 Startup Weekend

9/2016 Software Engineer

START

JACK SPARROW
Captain

Pirate

FACTS
personal

♂ Jack Sparrow
� nationality: English

] 1690
½ on a ship

Areas of specialization

Privateering • Bucaneering • Parler

SKILLS
Languages

English C2 mother tongue
French C2 ○ ○ ○ ○

Interests

a pirate’s
life

the sea

pillaging

plundering

ships

stealing
hijacking

The Black
Pearl

OS: q ±

IT & programming

html, css

LATEX

xslt

python

R

javascript

�

Q

Ó/

SHORT RESUMé

2018–2021 Captain of the Black Pearl
LEAD · East Indies ½
Finally got the goddamn ship back.

2019 Freelance Pirate
BUCANEERING · Tortuga ½
This and that. The usual, aye?

2016–2017 Captain of the Black Pearl
LEAD · Tortuga ½
Found a secret treasure, lost the ship.

DEGREES

1710 Captain
CERTIFIED · Tortuga Uni �

1715 Bucaneering
M.A. · London �

1720 Bucaneering
B.A. · London �

HOBBIES

�
Rhum

�
The Code

7
Parler

�
Beer

CERTIFICATES & GRANTS

1708 Captain’s Certificates

1710 Travel grant

1715–1716 Grant from the Pirate’s
Company

STRENGHTS

honest thieving handsome

REFERENCES

Will Turner Barbossa

possibly Mr. Swan

PUBLICATIONS

1729 How I almost got killed by Lady
Swan, Tortuga Printing Press.

1720 “Privateering for Beginners”, in:
The Pragmatic Pirate (1/1720).

TALKS

Nov. 1726 “How I lost my ship (& and
how to get it back)”, at: An-
nual Pirate’s Conference in
Tortuga, Nov. 1726.

Jack Sparrow Q The Black Pearl ½ Tortuga Ó 0099/333 5647380

[jack@sparrow.com

Figure 3: The ‘infographics’ layout from the
jankapunkt package and the Hipster CV from the LATEX
Ninja

The typographic requirements of a résumé en-
tirely depend on who is going to see it and how they
will read it. In a traditional environment which fol-
lows common HR procedures there may be a triage
panel who will merely check that you have fulfilled
the basic requirements, and throw out any which
clearly fail to meet them. Human Resources may
then comb through them and weed out borderline
cases. Someone then creates a shortlist of the top
few, and if you’re in them, you get an interview.

But increasingly, employers faced with hundreds
or thousands of applications for a single job will
fail to do even this, and they certainly won’t write
to acknowledge your CV or say how sorry they are
that you didn’t make the cut. Online submission
and automated analysis simply makes it easier to
reject the 99.99% en masse, reading the text from a
PDF file using an AI system, matching what is there
against the posted requirements.5

2 github.com/jankapunkt/latexcv
3 github.com/latex-ninja/hipster-cv
4 latex-ninja.com/
5 See examples at http://www.resumehacking.com/ready-

for-automated-resume-screening and https://www.vettd.

ai/landing/resume-processing.

Peter Flynn

TUGboat, Volume 40 (2019), No. 3 271

Before this, large employers with a bulk appli-
cant problem would have to type in the baseline data
from each CV, and then use a specially-written HR

filter in a statistics or database system to report on
the likely candidates.

All this means you really have to stand out
from the crowd and make it easier for the employer
to see you and then pick you. Like so much else
in typesetting, there are some simple rules for the
continuous text parts:

• readability: no long lines, keep the type size
above 11pt, and don’t use fancy fonts;

• consistency: if you do something one way once,
do all occurrences of the same thing the same
way every time;

• logic: follow a pattern or sequence so that one
thing leads naturally to the next.

You are trying to construct a train of thought in the
reviewers’ heads which will lead them to pick you.
For a position in a design field, it’s likely that the
appearance of a résumé will be taken into account,
but if the job is computer or office related, it’s prob-
ably much less likely. At this stage, making it hard
to read for the sake of looking cute is probably best
avoided.

Good luck with the job!6

Reversed apostrophes (III)

Way back in 1999, I wrote a short note about re-
sponses to a query I had raised on TYPO-L about
the ’reversed quotation mark’ [1, p. 344]. This is an
open-quote character that has been reflected hori-
zontally so that it is a mirror-image of the regular
close-quote character, like

’
and

’
.

It wasn’t clear then, and still isn’t now, what this
is done for, except perhaps as a misguided attempt
at symmetry, and I have mentioned it again on and
off, but had to eat my own dogfood when it turned
out to be much older than I thought [2, p. 136].

Figure 4: Reversed apostrophe in neon sign (red
intensified for clarity)

The disease is still there, though, and it has
spread like a virus, and consequently mutated. It’s

6 My thanks to Barbara Beeton for her excellent sugges-

tions in review.

now infecting the apostrophe, and inverting it instead
of reflecting it (actually, just using an open-quote
where a close-quote should be): I spotted the example
in Figure 4 in Budapest this summer.

Afterthought

On Twitter, Julie O’Leary (@julieoleary90) posted
an interesting photograph on 15th June with the
comment:

More Very interesting mugs at the Ballyanly
community centre tonight post 4 mile run.
Anyone ever heard of the TeX Users Group
meeting in Europe held in @UCC in Sept 1990
where they gave out custom mugs with wolves
dressed as leprechauns?

Figure 5: A stray TEX90 mug sighted in the wild

Journalist and historian of the Irish Revolution
Niall Murray (@niallmurray1) was quick off the
mark:

Read all about it: here’s a @tonyleen report
in the @irishexaminer [September 11, 1990].7

If ya wanna join @TeXUsersGroup, their
2019 conference is in Palo Alto, California in
August.

Thank you both for the eagle eyes and the comments.

References

[1] P. Flynn. Typographers’ Inn — Reversed quotes.
TUGboat 20(4), Dec 1999.
tug.org/TUGboat/tb20-4/tb65flyn.pdf

[2] P. Flynn. Typographers’ Inn—Comeuppance.
TUGboat 25(2), Dec 2004.
tug.org/TUGboat/tb25-2/tb81inn.pdf

⋄ Peter Flynn
Textual Therapy Division,

Silmaril Consultants
Cork, Ireland
Phone: +353 86 824 5333
peter (at) silmaril dot ie

blogs.silmaril.ie/peter

7 https://pbs.twimg.com/media/D9D1IWJWkAAMPmI.jpg

Typographers’ Inn

272 TUGboat, Volume 40 (2019), No. 3

Book review: Hermann Zapf

and the World He Designed: A Biography,

by Jerry Kelly

Barbara Beeton

Jerry Kelly, Hermann Zapf and the World He

Designed: A Biography. The Grolier Club,
New York, 2019, hardcover, 364 pp., US$48.00,
ISBN 978-1605830827.

This book, the first comprehensive biography of Her-
mann Zapf (1918–2015), was published to accom-
pany the Grolier Club exhibition “Alphabet Magic:
A Centennial Exhibition of the Work of Hermann &
Gudrun Zapf”, curated by Jerry Kelly and Steven
Galbraith. The exhibition (February 20 –April 27,
2019 [1]) celebrated the centenary of Zapf’s birth.

The volume is handsomely bound in blue cloth
stamped in gold. (A deluxe edition, obtained through
a Kickstarter campaign,1 is instead bound in red.)
Zapf’s signature appears on the front cover, with the
elegant swash Z that instantly identifies its creator.
The colophon identifies the typefaces used for the
text as Palatino nova and Optima nova, the versions
of those faces re-implemented by Zapf for electronic
technology.

Copious illustrations show not only the many
typefaces created by Zapf, but also preliminary de-
signs for some of them, calligraphy specimens (both
standalone pieces and book jackets), and some de-
lightful drawings, mostly of flowers and other natural
subjects. This is a veritable feast! The current loca-
tion of these exhibits is often identified in footnotes,
providing an itinerary if the reader wishes to inspect
the originals. (The deluxe edition includes letterpress
samples of some of the metal types, as reproduced
here.)

The main narrative is divided into three chrono-
logical sections. The first covers the period from

1 A web page describing a visit to Kelly’s house and vast
library [2] mentions the campaign. Both this and the Kick-
starter page [5] show many illustrations of Zapf’s work.

Zapf’s birth in 1918 through 1954, the years in which
his typefaces were rendered in metal. The period
1952–1975 was the era of phototype. Digital meth-
ods became available after that. These are not hard
boundaries, and Zapf’s other activities aren’t so eas-
ily subdivided, but the division does permit the table
of contents to fit on one page. More easily subdivided
are the many appendices, which provide important
details in a way that makes it easier to look them
up. The index is populated mainly by the names of
persons, places, typefaces, . . . , namely words that
inherently begin with an uppercase letter. It’s not
easy to look up a concept, unless one happens to
remember the name of a person associated with it.
For example, there is no entry for “calligraphy”.

Jerry Kelly first met Zapf as a student, enrolling
in a summer calligraphy class at the Rochester In-
stitute of Technology (RIT) in 1975, and repeating
this for seven more years. Kelly was already an ac-
complished letterpress printer, and in cooperation
with the RIT Cary Librarian, undertook to print
several tribute works. His friendship with Zapf is
not explicated, but is evident throughout the text.

Much of the story of Zapf’s artistic development
has been told before by Zapf, in his books including
Alphabet Stories [3], but this biography enlarges the
scope and includes some information that Zapf was
apparently unwilling to divulge in his own writing.

Barbara Beeton

TUGboat, Volume 40 (2019), No. 3 273

During the second period, 1952–1975, a great
deal of Zapf’s design work was commissioned by
the Stempel foundry. This period saw the creation
of many of his best known typefaces: extensions
to the Palatino family, Janson (a revival of a type
originally designed by Nicolas Kis, in titling sizes to
complement the original text types), Melior (which
introduced the shape of Piet Hein’s superellipse),
and Optima (a revolutionary sans serif with tapered
strokes more characteristic of serif types), among
others. The initial platform for which these types
were designed was the Linotype, which imposed very
stringent physical limitations, such as that the same
letter in parallel upright and italic fonts must have
the same metrics. The later freedom of phototype
would permit a rethinking of the consequences of
these limitations, and subsequent redesign.

During this period, Zapf also designed numerous
books. Although most were published by major Ger-
man trade publishers, some, in particular his works
on typographic subjects, were produced at Stempel’s
in-house printing office. Zapf developed many con-
tacts among the skilled craftsmen at Stempel, and
when several of these craftsmen went out on their
own, Zapf turned to his former colleagues to produce
work at the highest level of quality. Although the
production of the second volume of his Manuale Ty-

pographicum was an artistic masterpiece, it was not
a commercial success, and Zapf would come to regret
taking on the role of publisher. Later works on sub-
jects related to type and calligraphy were managed
by other publishers.

The third period, 1975–2015, deals with the post-
metal era, during which Zapf continued to design
books, revised his existing typefaces and developed
new ones for new technology, and got more involved
with teaching, for a time holding a professorship at
the Rochester Institute of Technology. During this
period he also, with Peter Karow, developed the hz -
program, which uses a per-paragraph justification
system and carefully modifies the shapes of letters
to achieve uniform interword spacing and optimize
the consistent appearance of text.

Of particular interest to the present audience
is the information regarding Zapf’s relation to the
TEX world. The principal focus here is on the Euler
font (pp. 236–239), illustrated by an early drawing
of the Latin and Greek alphabets. Several of the
letters are more angular in this drawing than in the
alphabets we see today, and the “u”-like shape of
the “y” is said to be a particular request of Knuth.
Kelly remarks,

Personally, I feel Euler would have looked bet-
ter if they would have stuck with Zapf’s original

sharper entry and exit strokes, but Zapf acqui-
esced to Knuth’s wishes in this matter. (p. 238)

This overlooks the fact that, in a mathematical con-
text, it is essential that each letter be unambiguously
recognizable. In the early showing, it is difficult to
distinguish the Latin “v” from the “ν” (nu); these
and other similar shapes have been adjusted in the
final version.

Also noted is the recognition by DANTE, at
their 1999 annual meeting in Heidelberg, when Zapf
was named an honorary member. At the 2000 an-
nual meeting Zapf responded with remarks published
in Die TEXnische Komödie [4]; these remarks were
translated for TUGboat with an addendum illustrat-
ing the proper traditional page layout for a book [6,7].
(The biography inexplicably lists this a second time
(p. 323) for 2010: “Honorary Member of the German
TeX Users Group (Heidelberg)”.)

References

[1] Zapf Centennial Symposium at The Grolier
Club, March 20, 2019, accessed 1 Sept. 2019,
www.tdc.org/event/zapf-centennial-symposium-

at-the-grolier-club/

[2] Pradeep Sebastian, “The master of beautiful
letters”, The Hindu, October 27, 2018, accessed
1 Sept. 2019, thehindu.com/books/the-master-
of-beautiful-letters/article25357866.ece

[3] Hermann Zapf, Alphabet Stories, Mergenthaler
Edition, Linotype GmbH, Bad Homburg
Germany / Cary Graphic Arts Press, RIT,
Rochester, NY, 2007.
Review by Hans Hagen and Taco Hoekwater,
TUGboat 28:2 (2007), 174–176,
tug.org/TUGboat/tb28-2/tb89hagen.pdf

[4] Frank Mittelbach, “Laudatio auf Professor
Hermann Zapf”; Hermann Zapf, “Meine
Zusammenarbeit mit Don Knuth und meine
Schriftentwürfe”, Die TEXnische Komödie 2000:1,
31–44, archiv.dante.de/DTK/PDF/komoedie_2000_
1.pdf

[5] “Hermann Zapf & the World He Designed”,
Kickstarter, accessed 1 Sept. 2019,
www.kickstarter.com/projects/1307403978/

hermann-zapf-and-the-world-he-designed

[6] Frank Mittelbach, “Laudatio for Professor
Hermann Zapf”, TUGboat 22:1/2 (2001), 24–26,
tug.org/TUGboat/tb22-1-2/tb70laud-

revised.pdf

[7] Hermann Zapf, “My collaboration with Don Knuth
and my font design work”, TUGboat 22:1/2
(2001), 26–30,
tug.org/TUGboat/tb22-1-2/tb70zapf.pdf

⋄ Barbara Beeton
Providence, RI
bnb (at) tug dot org

Book review: Hermann Zapf and the World He Designed: A Biography, by Jerry Kelly

www.tdc.org/event/zapf-centennial-symposium-at-the-grolier-club/
www.tdc.org/event/zapf-centennial-symposium-at-the-grolier-club/
thehindu.com/books/the-master-of-beautiful-letters/article25357866.ece
thehindu.com/books/the-master-of-beautiful-letters/article25357866.ece
tug.org/TUGboat/tb28-2/tb89hagen.pdf
archiv.dante.de/DTK/PDF/komoedie_2000_1.pdf
archiv.dante.de/DTK/PDF/komoedie_2000_1.pdf
www.kickstarter.com/projects/1307403978/hermann-zapf-and-the-world-he-designed
www.kickstarter.com/projects/1307403978/hermann-zapf-and-the-world-he-designed
tug.org/TUGboat/tb22-1-2/tb70laud-revised.pdf
tug.org/TUGboat/tb22-1-2/tb70laud-revised.pdf
tug.org/TUGboat/tb22-1-2/tb70zapf.pdf

274 TUGboat, Volume 40 (2019), No. 3

Book review: Carol Twombly: Her brief but

brilliant career in type design,

by Nancy Stock-Allen

Karl Berry

Nancy Stock-Allen,
Carol Twombly: Her brief

but brilliant career in type

design. Oak Knoll Press, 2016,
hardcover, 176pp., US$49.95,
ISBN 978-1584563464.
oakknoll.com/pages/books/

125344

The book begins with a welcome overview of women
type designers; although women were employed in
type production from at least the 19th century on-
ward, the book reports the earliest documented de-
sign by a woman was perhaps Belladonna Karten-
schrift in 1912, by Hildegard Henning for a Leipzig
foundry. The careers of Gudrun Zapf von Hesse,
Fiona Ross, Zuzana Licko, and many others, are
all discussed. But as the title indicates, the book’s
subject is Carol Twombly (1959–), an extended case
study of a designer’s career as digital typography
came of age.

Following the introduction, the book contains
two main parts: Twombly’s student years at the
Rhode Island School of Design (RISD) and Stanford;
and her career at Adobe. A third section presents
samples of her released typefaces, with commentary
from Twombly on each, written for the book.

In each section, Stock-Allen describes the rele-
vant designs at length, with attention to typographic
detail. Many illustrations are included, from screen-
shots of font design software to photographs, from
marked-up proofs of draft letterforms to samples of
the final type.

Of particular interest to the TEX world is the
extensive section on Twombly’s graduate studies at
Stanford, as one of the inaugural (and, as it turned
out, only) class in the Master’s program in digital
typography. The program was promulgated by Don-
ald Knuth and co-chaired by Charles Bigelow, who
had met Twombly as an undergraduate at RISD and
invited her to Stanford.

Her time there is covered in considerable detail,
including classes, conferences, the many visiting typo-
graphic luminaries, the computer science vs. artistic
challenges and collaborations, and culminating in im-
plementing Hermann Zapf’s Euler design, a project
widely known in the TEX world.

Following Stanford, Twombly worked at Adobe
for a decade, spanning the era from the beginnings
of commercial digital type to fonts becoming a com-
modity item. Stock-Allen concisely but informatively
describes both the changing typography milieu as
desktop publishing became common in the world,
and Adobe’s changes as a corporation.

Twombly’s first designs for Adobe were the dis-
play faces Lithos, Charlemagne, and Trajan, all of
which met with commercial success, followed by the
Adobe Caslon Pro revival. She was then involved
with the Multiple Master project at Adobe, for es-
sentially its entire duration. Her last project for
Adobe was the Chaparral Multiple Master family, a
humanistic slab serif which, unusually, had design
axes for changing serifs (wedge to slab), and optical
size, as well as the common weight and width axes.

Stock-Allen ends the main text with comments
from several noted typographers and historians on
the significance and legacy of Twombly’s work.

As a postlude, Twombly retired from type de-
sign (and city living) after leaving Adobe, and now
pursues other artistic interests in a small town near
the Sierras. As Stock-Allen observes, rhythm and
writing remain an innate part of her art.

The book is superbly designed by the author
and typeset in Twombly’s Adobe Caslon Pro and
Adobe Trajan.

⋄ Karl Berry

karl (at) freefriends dot org

tug.org/books

Some of the Chaparral Multiple Master design axes.

recent works: (left) woven and beaded Shekere gourds;
(right) detail from mixed media painting.

Karl Berry

oakknoll.com/pages/books/125344
oakknoll.com/pages/books/125344

TUGboat, Volume 40 (2019), No. 3 275

Die TEXnische Komödie 2–3/2019

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).
(Non-technical items are omitted.)

Die TEXnische Komödie 2/2019

Graham Douglas, Wie funktionieren TEX
Makros, 1 [How TEX macros work, 1]; pp. 30–33

This series has an ambitious goal: to explain
how TEX macros work at the lowest level. We do
not focus on simple examples but look deep into TEX
itself to explain how and why TEX macros work the
way they do.

Hartmud Koch, Geometrische Konstruktionen
mit METAPOST [Geometric constructions using
METAPOST]; pp. 34–44

In this article we look at geometrical primitives
in MetaPost and how we can use them to create
drawings.

Walter Entenmann, Spirale entlang eines
Pfades (Coil) [Drawing spirals along a path (coil)];
pp. 45–63

This article deals with the implementation of an
efficient way for graphics packages to draw a spiral
along a path, connecting two dots.

Lukas Bossert, Zur Nutzung von makefile-Dateien
[On the use of makefiles]; pp. 64–71

Managing larger LATEX projects with many files
is sometimes a bit difficult, as usually several steps
need to be executed. In this article we show how
GNU make and its friends can simplify the job.

Rolf Niepraschk, Nicht zu früh und nicht zu
spät: „everypar“ [Not too early and not too late:
“everypar”]; pp. 72–73

This article covers an issue during the creation
of an index and how it can be solved.

Rolf Niepraschk, LATEX und base64-kodierte
Grafiken [LATEX and base64-coded graphics];
pp. 74–76

Most graphics used in LATEX are binary formats,
containing bytes with arbitrary values between 0
and 255. To transfer these via http or smtp they are
encoded so that they consist of ASCII characters only.

Herbert Voß, Generieren von BibTEX-
kompatiblen Literaturdaten [Generating
BibTEX-compatible literature database entries];
pp. 77–83

Creating entries for literature databases can
take substantial effort. Especially for Die TEXnische

Komödie we often need bibliographical data on dif-
ferent packages. In this article we show how a Lua
script or Google can provide the necessary data.

Herbert Voß, Ausgeben der Definition von
LATEX-Makros [Outputting the definition of
specific LATEX macros]; pp. 84–86

latex.ltx is what we usually mean by saying
“LaTeX” as it contains the set of basic LATEX com-
mands. If one needs the definition of a certain com-
mand, this is the place to look.

Herbert Voß, Positionsbestimmung auf einer
Textseite [Getting the exact position on a page];
pp. 87–88

Normally one does not need to know the ex-
act current position on the current page. However,
there are scenarios — e.g., when one wants to put
objects relative to the current position — where the
knowledge of the exact location is helpful.

Die TEXnische Komödie 3/2019

Evelyn Sarna, LATEX als TEXnisches Werkzeug
für die Erstellung von Editionen [LATEX as a
TEXnical tool for the creation of critical editions];
pp. 11–28

With LATEX, a critical edition that meets modern
standards can be easily and professionally created.
Nevertheless, in the humanities and cultural stud-
ies, critical editions are typically made with Word
or Classical Text Editor. LATEX is usually not con-
sidered, although with it high-quality typographic
results are possible. This article presents a selection
of basics for setting up a critical edition’s text in
LATEX using reledmac and junicode.

Walter Entenmann, ISO-80000 konformer
Mathematiksatz mit LuaLATEX [ISO-80000-
conformant mathematical typesetting with
LuaLATEX]; pp. 28–42

The international standard ISO-80000, as of
20 May 2019, regulates the definition and usage of SI-
units and the correct writing of dimensions and units
especially in mathematics and other STEM subjects.
This article describes the practical implementation
of the ISO standard with LuaLATEX.

Wolfgang Beinert, Umbruch [Page makeup];
pp. 42–51

In the field of typography “break” means a) the
breaking of text lines, columns or pages with respect
to orthographical, typographical, aesthetic and topic-
related rules and points of view to typeset a book,
newspaper, flyer or web page; b) text that is broken
at the end of a line and continues on a new line or
page; c) the balancing of all linebreaks within a piece
of text.

[Received from Herbert Voß.]

276 TUGboat, Volume 40 (2019), No. 3

Eutypon 40–41, October 2018

Eutypon is the journal of the Greek TEX Friends
(http://www.eutypon.gr).

Regretfully, this was the last issue of Eutypon.
The following text is taken from the Editorial:
“Our journal persevered for more than twenty
years because we enjoyed TEXing. We also
enjoyed showing, albeit indirectly, to our readers
the principles of beautiful typesetting of Greek
documents. However, we decided to put an end
to this publication, because soliciting papers had
become really hard, and because our pockets went
dry. We thank you for being with us in the beautiful
journey of Eutypon and we salute you with a virtual
handshake.”

Although Eutypon will not be published
anymore, the Greek TEX Friends will use their
blog http://eutypon.gr/e-blog/ to post news
and articles about TEX and Greek typography.

Sergey Beatoff, Truetypewriter PolyglOTT:
Your multilingual typewriter assistant; pp. 1–10

This article is not meant to be a description
of any kind of scientific research. It is merely the
history of how I came to like font design, what diffi-
culties I encountered and how I found solutions. It is
about creating my font Truetypewriter PolyglOTT.
I describe my long way from the idea of creating the
font to its different implementations, with version
3.76 as of October 2018. In the beginning, I mis-
takenly thought there were several fonts simulating
true typewriter printing; however, after checking out,
I noticed that nearly all of them included only the
Latin part. Besides, they merely accentuated the
defects and inaccuracies of typewriters’ text, trying
to make the fonts look too realistic. In the article, I
also discuss the creation of computer fonts in general.
(Article in English.)

Linus Romer, Greek letters for the Fetamont
typeface; pp. 11–14

The glyph range of the Fetamont typeface has
been expanded in order to support polytonic Greek.
This article describes the problems and solutions
that arose during the creation process. (Article in

English.)

Tassos Dimou, Tables of function signs and
variations using tkz-tab; pp. 15–35

In this article, we present how one can use the
package tkz-tab to produce beautiful tables of func-
tion signs and variations. The package tkz-tab is an
extension of the drawing package TikZ, from which
several commands are taken. The use of tkz-tab

is explained by several introductory examples, thus

avoiding the complicated commands of TikZ. (Article
in Greek with English abstract.)

Dimitris Papazoglou, Giorgos

Triantafyllakos, Giorgos D. Matthiopoulos,

Axel Peemöller, Designing the visual brand of
the National Library of Greece; pp. 37–46

In the autumn of 2016, the National Library of
Greece announced a competition for “the design of a
visual identity” in view of the transfer of the Library’s
collection from the old Vallianeion and Votanikos
buildings in central Athens to its new facilities at
the Stavros Niarchos Foundation Cultural Centre in
Piraeus. In February 2017, it was announced that
the winner of the design contest was a team led
by Dimitris Papazoglou from Thessaloniki. In this
article, the winners explain the philosophy behind
the new brand of Greece’s main library. (Article in

Greek with English abstract.)

Apostolos Syropoulos, Giorgos D.

Matthiopoulos, Dialogue: On the GFS

Neohellenic Math font; pp. 47–50
The authors debate the æsthetics, the encoding

and the use of the new font GFS Neohellenic Math.
(Article in Greek.)

Apostolos Syropoulos, Dimitrios Filippou,
TEXniques: Fonts with a bit of chemistry;
pp. 51–54

In this regular column, we briefly present the
design of Greek characters for the font Sans Forgetica,
the new free font Cavafy Script, which is based on the
handwriting of Greek poet C.P. Cavafy, and Linus
Romer’s attempt to convert the Malvern font from
METAFONT to OpenType. The authors also present
a recent improvement in the chemfig package for the
creation of chemical formulæ for polymers. (Article
in Greek.)

Dimitrios Filippou, Book presentation;
pp. 55–56

The following books are presented:
(a) Dilip Datta, LATEX in 24 Hours: A Practical

Guide for Scientific Writing, Springer, Cham,
Switzerland 2017; and
(b) Vincent Lozano, Tout ce que vous avez toujours

voulu savoir sur LATEX sans jamais oser le demander,
2e édition, Framasoft, Lyon, France 2013.
(Article in Greek.)

[Received from Dimitrios Filippou
and Apostolos Syropoulos.]

TUGboat, Volume 40 (2019), No. 3 277

TheTreasure Chest

This is a selection of the new packages posted to
CTAN (ctan.org) from April–October 2019, with
descriptions based on the announcements and edited
for extreme brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package
can be found at ctan.org/pkg/pkgname. A few
entries which the editors subjectively believe to be
of especially wide interest or otherwise notable are
starred (*); of course, this is not intended to slight
the other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. See also ctan.org/topic. Com-
ments are welcome, as always.

⋄ Karl Berry
tugboat (at) tug dot org

fonts
almendra in fonts

Almendra is a new calligraphic typeface design.

bitter in fonts

Bitter is a new slab serif design.

forum in fonts

Forum is a new design with classic proportions
and multilingual support.

garamond-libre in fonts

Garamond Libre is based on Textfonts, with
multilingual and OpenType support.

librefranklin in fonts

Libre Franklin is a reinterpretation of the classic
1912 Franklin Gothic design.

imfellflowers in fonts

Two flower fonts by I.M. Fell, revided by Igino
Marini.

linguisticspro in fonts

Linguistics Pro is based on Utopia Nova, with two
Cyrillic designs.

logix in fonts

More than 3,000 symbols, especially logic-related,
complementing STIX2.

marcellus in fonts

Marcellus is a new flared-serif design, inspired by
Roman inscriptions.

poiretone in fonts

PoiretOne is a new decorative geometric grotesque.

step in fonts

STEP is a Times-like font family forked from STIX

and XITS.

theanodidot in fonts

TheanoDidot is a modern Greek design.

theanomodern in fonts

TheanoModern is also a modern Greek design.
theanooldstyle in fonts

TheanoOldStyle is an old-style Greek design.

graphics
codeanatomy in graphics

Support code anatomy as described in
https://introcs.cs.princeton.edu/java/13flow.

flowframtk in graphics/pgf/contrib

Java application to create vector graphics for PGF

and design frames for flowfram.
matrix-skeleton in graphics/pgf/contrib

Simplify working with multiple matrix nodes.
pgfmorepages in graphics/pgf/contrib

Assemble multiple pages on one physical page,
extending pgfpages.

pst-turtle in graphics/pstricks/contrib

“Turtle” graphics (left, right, etc.) in PSTricks.
simpleoptics in graphics/pgf/contrib

Drawing lenses and mirrors for optical diagrams.

info
apprendre-a-programmer-en-tex in info

Learning to program in TEX (written in French).

language/japanese
bxghost in language/japanese

Ghost insertion for proper xkanjiskip.

macros/generic
tokcycle in macros/generic

Build tools to process tokens one at a time.

macros/latex-dev
* latex-base-dev in macros/latex-dev/base

New format to simplify testing LATEX release
candidates: run pdflatex-dev (or similar for
other engines) to help test. For details, see the
LATEX news item in this issue of TUGboat and
latex-project.org/news.

latex-amsmath-dev

latex-graphics-dev

latex-tools-dev in macros/latex-dev/required

The core packages accompanying latex-base-dev.

macros/latex/contrib
amscdx in macros/latex/contrib

Enhanced commutative diagrams.
arraycols in macros/latex/contrib

New column types for array and tabular.
asmejour in macros/latex/contrib

Template for American Society of Mechanical
Engineers (ASME) journals.

bargraph-js in macros/latex/contrib

Bar graphs with Acrobat forms and JavaScript.

macros/latex/contrib/bargraph-js

278 TUGboat, Volume 40 (2019), No. 3

centeredline in macros/latex/contrib

Enhanced \centerline.
csvmerge in macros/latex/contrib

Merge TEX code with CSV data.
ddphonism in macros/latex/contrib

Twelve-tone music matrices, clock diagrams, etc.
derivative in macros/latex/contrib

Easy and customizable derivatives.
ehhline in macros/latex/contrib

Extend hhline by applying LATEX commands.
glosmathtools in macros/latex/contrib

Generate a list of mathematical symbols or notation.
glossaries-slovene in macros/latex/contrib

Slovene translation for glossaries.
hu-berlin-bundle in macros/latex/contrib

Classes for the Humboldt-Universität of Berlin.
inkpaper in macros/latex/contrib

Mathematical paper template for
github.com/inklatex-group/InkPaper.

mathcommand in macros/latex/contrib

Define macros with various math mode behaviors.
labels4easylist in macros/latex/contrib

Add reference labels to easylist items.
mlacls in macros/latex/contrib

Class for MLA (humanities) format.
numberpt in macros/latex/contrib

Typeset counters spelled out in Portuguese.
practicalreports in macros/latex/contrib

Macros to simplify report writing.
proof-at-the-end in macros/latex/contrib

Move proofs to an appendix, and more.
pseudo in macros/latex/contrib

Straightforward pseudo-code typesetting.
quantumarticle in macros/latex/contrib

Template for the Quantum journal.
quiz2socrative in macros/latex/contrib

Prepare questions for Socratic quizzes.
scontents in macros/latex/contrib

Store and reuse code sequences.
spacingtricks in macros/latex/contrib

New and updated macros for improved spacing.
subtext in macros/latex/contrib

Easy \text-style subscripts in math mode.
thuaslogos in macros/latex/contrib

Logos of The Hague University of Applied Sciences
(THUAS).

tuda-ci in macros/latex/contrib

Templates for the Technische Universität Darmstadt.
unam-thesis in macros/latex/contrib

Support for National Autonomous University of
Mexico (UNAM) dissertations.

* unicode-alphabets in macros/latex/contrib

Macros for characters from various Private Use
Area (PUA) character sets in LATEX (CYFI, MUFI,
SIL, TITUS, UNZ).

unifith in macros/latex/contrib

Theses at the University of Florence in Italy.
unizgklasa in macros/latex/contrib

Theses at the Faculty of Graphic Arts in Zagreb.
vtable in macros/latex/contrib

Vertical alignment of table cells.
yazd-thesis in macros/latex/contrib

Theses at Yazd University in Iran.

macros/luatex/latex
addliga in macros/luatex/latex

Access basic f-ligatures in TrueType fonts lacking
a liga table.

hmtrump in macros/luatex/latex

Typeset playing cards.
pdfarticle in macros/luatex/latex

Class for PDF publications with LuaLATEX.

macros/xetex/latex
nanicolle in macros/xetex/latex

Herbarium specimen labels in Chinese.
quran-ur in macros/xetex/latex

Urdu translations for the quran package.

support
zblbuild in support

Shell/GUI script to help select a BibLATEX style
and options.

systems
pdftex-djgpp in systems/msdos/djgpp-contrib

Binary for pdftex for the msdos-djgpp distribution.

web
clojure-pamphlet in web

Literate programming based on Clojure pamphlets.

Comic by Randall Munroe (https://xkcd.com).

macros/latex/contrib/tuda-ci

TUGboat, Volume 40 (2019), No. 3 279

TEX Development Fund 2014–2019 report

TEX Development Fund committee

These projects (listed by reference number) have been
supported in recent years by the TEX Development Fund.
For application and donation information, the complete
list of supported projects, and more, please see:
https://tug.org/tc/devfund

32. HarfTEX engine based on LuaTEX

Applicant: Khaled Hosny, Egypt.
https://github.com/khaledhosny/harftex

Amount: US$1000; acceptance date: 1 May 2019;
completed 9 September 2019.

HarfTEX is a TEX engine based on LuaTEX, extend-
ing it with HarfBuzz, ICU and possibly other libraries
for Unicode text layout and modern fonts support.

The engine will be extended to offer more libraries,
and to fix some of the limitations faced during the previ-
ous stage of development.

This project has been adapted into the LuaHBTEX
engine, now maintained as part of the LuaTEX sources
by Luigi Scarso.

31. HarfBuzz access from LuaTEX

Applicant: Khaled Hosny, Egypt.
Amount: US$2000; acceptance date: 1 November 2018;
completed 17 April 2019.

Provide a set of Lua modules that bridge LuaTEX
and HarfBuzz (possibly/eventually also ICU, FreeType,
and FontConfig), and bundle these modules with LuaTEX
to extend its functionality with the ability to typeset more
world languages and scripts. Also provide Lua code that
integrate these modules with LuaTEX callbacks.

30. Documentation in Persian of the core
TEX system

Applicant: Vafa Khalighi, Australia.
Amount: US$1000; acceptance date: 10 October 2018.

Comprehensive documentation in Persian of TEX,
Metafont, and Computer Modern, including WEB pro-
gramming, Pascal programming (as used in *.web), and
other material.

29. Light (LA)TEX Make

Applicant: Takuto Asakura, Japan.
https://github.com/github.com/wtsnjp/llmk

Amount: US$1000; acceptance date: 25 July 2018;
completed 30 August 2019.

The procedure of building is essential for LATEX doc-
uments to get the correct output, as the creator intends.
The procedure of building includes the information like
which TEX engine to use, which outer programs to use,
what options and arguments and/or which configuration
files should be given for each program, and the processing
order of the programs.

The proposed features of the llmk program are as
follows (all subject to change with more experience):

• Working solely with Lua on LuaTEX (texlua). Nei-
ther external programs nor any Lua libraries from
third parties are required.

• Using TOML to declare the settings. TOML (https:
//github.com/toml-lang/toml) is a minimal con-
figuration format similar to JSON and YAML. I
selected TOML because it is human readable and
its specification is relatively simple, making it easy
to write a parser from scratch.

• No complicated nesting of configuration. llmk al-
lows users to write configuration (in TOML format)
in the source of LATEX documents or the special file
(named llmk.toml). Since the procedure of building
is essential and independent for each project, llmk
does not load the configuration files recursively.

• Modern default settings. llmk will try to make a
modern de facto standard. For instance, if an user
doesn’t specify any TEX engine to use, llmk will use
LuaTEX to compile the source.

Current status and project goals:

• The most basic functionality of llmk is already im-
plemented (see the README at the project page
for the details). In the year, I’m going to enhance
the program including:

• full support for TOML specification (currently, only
partially supported)

• supporting some types of magic comments (e.g.,
those of TEXworks)

• full documentation (currently, only README)
• other convenient features (e.g., quiet mode and an

option to support specifying an output directory)

28. MetaPost updates

Applicant: Luigi Scarso, Italy.
Amount: US$1000; acceptance date: 28 December 2015;
completed 24 May 2017.

Bug fixes and maintenance for MetaPost path resolu-
tion, binary, decimal, and double number systems. Also,
more efficient integration with mplib by excluding the li-
braries needed only in LuaTEX. A report from May 2017
is available at https://tug.org/devfund/documents/

2017-05-scarso.pdf.

27. Libertine OpenType math fonts

Applicant: Khaled Hosny, Egypt.
https://github.com/khaledhosny/libertinus

Amount: US$2000; acceptance date: 24 December 2014;
completed 1 February 2016.

Building an OpenType math companion for Linux
Libertine and Linux Biolinum fonts (ultimately named
Libertinus), and fixing bugs in those fonts. Also coor-
dinating with the authors of Linux Libertine (LA)TEX
support files to adapt the new and fixed fonts (ulti-
mately they did not respond, so upstream Linux Lib-
ertine is unmaintained as far as we can tell). The pack-
age has been released to CTAN: https://ctan.org/pkg/
libertinus-otf. ⋄

280 TUGboat, Volume 40 (2019), No. 3

TUG 2019 Sponsor

Adobe.com/go/acrobat

Available on any device.

TUG 2019 sponsors

TUGboat, Volume 40 (2019), No. 3 281

Find out more at www.overleaf.com

A free online LaTeX and Rich Text

collaborative writing and publishing tool

Features include:

• Cloud-based platform: all you need is a web browser. No

software to install. Prefer to work offline? No problem - stay in
sync with Github or Dropbox

• Complementary Rich Text and LaTeX modes: prefer to see
less code when writing? Or love writing in LaTeX? Easy to
switch between modes

• Sharing and collaboration: easily share and invite colleagues
& co-authors to collaborate

• 1000’s of templates: journal articles, theses, grants, posters,
CVs, books and more – simply open and start to write

• Simplified submission: directly from Overleaf into many
repositories and journals

• Automated real-time preview: project compiles in the
background, so you can see the PDF output right away

• Reference Management Linking: multiple reference tool linking
options – fast, simple and correct in-document referencing

• Real-time Track Changes & Commenting: with real-time
commenting and integrated chat - there is no need to switch to
other tools like email, just work within Overleaf

• Institutional accounts available: with custom institutional

web portals

Overleaf makes the whole process of writing, editing and
publishing scientific documents much quicker and easier.

“If you think you’re a really
good programmer… read
[Knuth’s] Art of Computer
Programming… You should
definitely send me a résumé
if you can read the whole
thing.”

—Bill Gates

Learn more and shop at
informit.com/TUG

Computers &
Typesetting,
Volumes A-E

Boxed Set

The Art of
Computer
Programming
Volumes 1-4A
Boxed Set

TUG 2019 sponsors

282 TUGboat, Volume 40 (2019), No. 3

Science is what we understand well enough to explain to a
computer. Art is everything else we do.

— Donald E. Knuth

stmdocs
the confluence of art and science of text

processing in the cloud!

◦ empowering authors to self-publish

◦ assisted authoring

◦ TEXFolio — the complete journal
production in the cloud

◦ NEPTUNE — proofing framework for
TEX authors

S T M D O C U M E N T E N G I N E E R I N G P V T LT D
Trivandrum • India 695571 • www.stmdocs.in • info@stmdocs.in

Congratulations to the TeX Users Group

on the occasion of its 40th annual conference

TUG 2019 sponsors

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
tug.org/consultants.html. If you’d like to be listed,
please see there.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our
web site.

Dangerous Curve

+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. We take special care to typeset
mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Dominici, Massimiliano

Email: info (at) typotexnica.it

Web: http://www.typotexnica.it

Our skills: layout of books, journals, articles; creation
of LATEX classes and packages; graphic design;
conversion between different formats of documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for documents
in Italian, English, or French. Let us know the work
plan and details; we will find a customized solution.
Please check our website and/or send us email for
further details.

TUGboat, Volume 40 (2019), No. 3 283

TEXConsultants

Latchman, David

2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com

LATEX consultant specializing in the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized LATEX
packages and classes to meet your needs. Contact us
to discuss your project or visit the website for further
details.

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Personalized, professional TEX and LATEX consulting
and programming services.

I offer 30 years of experience in programming, macro
writing, and typesetting books, articles, newsletters,
and theses in TEX and LATEX: Automated document
conversion; Programming in Perl, C, C++ and other
languages; Writing and customizing macro packages in
TEX or LATEX, knitr.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

Veytsman, Boris

132 Warbler Ln.
Brisbane, CA 94005
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training, typesetting and
seminars. Integration with databases, automated
document preparation, custom LATEX packages,
conversions (Word, OpenOffice etc.) and much more.

I have about two decades of experience in TEX and
three decades of experience in teaching & training. I
have authored more than forty packages on CTAN as
well as Perl packages on CPAN and R packages on
CRAN, published papers in TEX-related journals, and
conducted several workshops on TEX and related
subjects. Among my customers have been Google,
US Treasury, FAO UN, Israel Journal of Mathematics,
Annals of Mathematics, Res Philosophica,
Philosophers’ Imprint, No Starch Press, US Army
Corps of Engineers, ACM, and many others.

(continued)

Veytsman, Boris (cont’d)

We recently expanded our staff and operations to
provide copy-editing, cleaning and troubleshooting of
TEX manuscripts as well as typesetting of books,
papers & journals, including multilingual copy with
non-Latin scripts, and more.

Warde, Jake

Forest Knolls, CA, 94933, USA
6504681393
Email: jwarde (at) wardepub.com

Web: http://myprojectnotebook.com

I have been in academic publishing for 30+ years. I
was a Linguistics major at Stanford in the mid-1970s,

284 TUGboat, Volume 40 (2019), No. 3

then started a publishing career. I knew about TEX
from Computer Science editors at Addison-Wesley who
were using it to publish products. Beautiful, I
loved the look. Not until I had immersed myself in
the production side of academic publishing did I
understand the contribution TEX brings to the reader
experience.

Long story short, I started using TEX for
exploratory projects (see the website referenced) and
want to contribute to the community. Having spent a
career evaluating manuscripts from many perspectives,
I am here to help anyone who seeks feedback on their
package documentation. It’s a start while I expand my
TEX skills.

2019

Oct 19 DANTE 2019 Herbsttagung

and 61st meeting,

Kirchheim unter Teck, Germany.

www.dante.de/veranstaltungen/

herbst2019

Oct 25 Award Ceremony: The Updike Prize

for Student Type Design,

Providence Public Library,

Providence, Rhode Island.

www.provlib.org/updikeprize

Oct 26 GuIT Meeting 2019,

XVI Annual Conference, Turin, Italy.

www.guitex.org/home/en/meeting

2020

Feb 28 –

Mar 1

Typography Day 2020,

“Typographic Dialogues: Local-Global”.

Beirut, Lebanon. www.typoday.in

Mar 25 – 27 DANTE 2020 Frühjahrstagung and

62nd meeting, Lübeck, Germany.

www.dante.de/veranstaltungen

Apr 24 – 25 Before & Beyond Typography: Text

in Global & Multimodal Perspective,

Stanford University, Stanford, California.

www.eventbrite.com/e/before-beyond-

typography-text-in-global-multimodal-

perspective-tickets-69068930029

Calendar

Apr 29 –

May 3

BachoTEX2020, 28th BachoTEX

Conference, Bachotek, Poland.

www.gust.org.pl/bachotex

Jun 4 – 6 Markup UK 2020. A conference about

XML and other markup technologies,

King’s College, London.

markupuk.org

Jul 1 – 3 Eighteenth International Conference

on New Directions in the Humanities,

“Transcultural Humanities in

a Global World”, Ca’ Foscari

University of Venice, Venice, Italy.

thehumanities.com/2020-conference

Jul 19 – 23 SIGGRAPH 2020, “Think beyond”,

Washington, DC.

s2020.siggraph.org

Jul 22 – 24 Digital Humanities 2020, Alliance of

Digital Humanities Organizations,

Carleton University and the University

of Ottawa, Ottawa, Canada.

adho.org/conference

TUG 2020 Rochester Institute of Technology,

Rochester, New York

Jul The 41st annual meeting of the

TEX Users Group.

tug.org/tug2020

Sep 6 – 12 14th International ConTEXt Meeting,

Prague-Sibřina, Czech Republic.

meeting.contextgarden.net/2019

Status as of 15 October 2019

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 40 (2019), No. 3

Introductory

212 Barbara Beeton / Editorial comments
• typography and TUGboat news

270 Peter Flynn / Typographers’ Inn
• CV/Résumé layouts; Reversed apostrophes (II); Afterthought

229 Norbert Preining / TEX services at texlive.info
• historic, TEX Live, and CTAN repositories, some unique

211 Boris Veytsman / From the president
• TEX exhibition at The Book Club of California; typography as a conservative art

215 David Walden / An experience of trying to submit a paper in LATEX in an XML-first world
• a report on a LATEX submission to IEEE Annals, and consequent expectations

Intermediate

277 Karl Berry / The treasure chest
• new CTAN packages, April–October 2019

232 Hans Hagen / TEX on the Raspberry Pi
• report of TEX processing on all models of the RPi

234 Taco Hoekwater / MuPDF tools
• summary of mutool commands to manipulate PDF files: dump, extract, convert, create, . . .

251 LATEX Project Team / LATEX news, issue 30, October 2019

236 Piet van Oostrum / LATEX on the road
• LATEX and Git possibilities on mobile devices

217 David Walden / Studying the histories of computerizing publishing and desktop publishing, 2017–19
• transition to digital production in newspapers, trade publishing, and the creation of desktop publishing

Intermediate Plus

247 Estevão Vińıcius Candia / A Brazilian Portuguese work on MetaPost, and how mathematics is embedded in it
• summary of thesis on the mathematics of MetaPost, with graphical examples

263 Md Qutub Uddin Sajib / Typesetting the Bangla script in Unicode TEX engines—experiences and insights
• review of Bangla support and issues with achieving the finest quality typography

Advanced

257 Hans Hagen / Modern Type 3 fonts
• OpenType extensions with color, SVG, PNG, implemented as Type 3 fonts

231 Island of TEX / Providing Docker images for TEX Live and ConTEXt
• supporting continuous integration with a variety of Docker images

255 Takuto Asakura / Understanding scientific documents with synthetic analysis on mathematical expressions
and natural language

• steps toward automated understanding of STEM documents

Reports and notices

210 Institutional members

213 Yevhen Strakhov / Ukraine at BachoTEX 2019: Thoughts and impressions

272 Barbara Beeton / Book review: Hermann Zapf and the World He Designed: A Biography by Jerry Kelly
• review of this first full-length biography of the great designer

274 Karl Berry / Book review: Carol Twombly: Her brief but brilliant career in type design by Nancy Stock-Allen
• review of this short but intensive study of a noted type designer’s work

275 From other TEX journals: Die TEXnische Komödie 2–3/2019; Eutypon 40–41 (October 2018)

278 Randall Munroe / Comic: The history of Unicode

279 TEX Development Fund committee / TEX Development Fund 2014–2019 report

280 TUG 2019 sponsors: Google; Adobe; Overleaf; Pearson; STM Document Engineering Pvt Ltd

283 TEX consulting and production services

284 Calendar

