
TUGboat, Volume 40 (2019), No. 1 69

Real number calculations in LATEX: Packages

Joseph Wright

1 Background

TEX does not include any “native” support for float-
ing point calculations, but that has not stopped lots
of (LA)TEX users from wanting to do sums (and more
complicated things) in their document. As TEX is
Turing complete, it’s not a surprise that there are
several ways to implement calculations. For end
users, the differences between these methods are not
important: what is key is what to use. Here, I’ll give
a bit of background, look at the various possibilities,
then move on to give a recommendation.

2 History

When Knuth wrote TEX, he had one aim in mind:
high-quality typesetting. He also wanted to have
sources which were truly portable between different
systems. At the time, there was no standard for
specifying how floating point operations should be
handled at the hardware level: as such, no floating
point operations were system-independent.

Thus, Knuth decided that TEX would provide
no user access to anything dependent on platform-
specific floating-point operations, and not rely on
them within algorithms that produce typeset output.
That means that the TEX variables and operations
that look like numeric floats (in particular dimen-
sions) actually use integer arithmetic and convert
“at the last minute”.

3 Technical considerations

There are two basic approaches to setting up floating
point systems in TEX: either using dimensions or
doing everything in integer arithmetic.

Using dimensions, the input range is limited and
the output has restricted accuracy. But on the other
hand, many calculations are quite short and they are
fast. On the other hand, if everything is coded in
integer arithmetic, the programmer can control the
accuracy completely, at the cost of speed.

Although it’s not an absolute requirement, ε-TEX
does make doing things a bit easier: rather than
having to shuffle everything a piece at a time, it is
possible to use in-line expressions for quite a lot of
the work.

Another key technical aspect is expandability.
This is useful for some aspects of TEX work, partic-
ularly anywhere that it “expects a number”: only
expansion is allowed in such places.

Another thing to consider is handling of TEX reg-
isters as numbers. Converting for example a length

into something that can be used in a floating point
calculation is handy, and it matches what ε-TEX does
for example in \numexpr. But in macro code it has
to be programmed in.

The other thing to think about here is function-
ality: what is and isn’t needed in terms of mathe-
matics. Doing straightforward arithmetic is clearly
easier than working out trigonometry, logarithms,
etc. What exactly you need will depend on the use
case, but in principle, more functionality is always
better.

4 (Package) options

For simple work using the dimen approach is conve-
nient and fast: it takes only a small amount of work
to set up stripping off the pt part. I’m writing here
for people who don’t want to delve into TEX innards,
so let’s assume a pre-packaged solution is what is
required.

There are lots of possible solutions on CTAN

which cover some or all of the above. I don’t want
to get into a “big list”, so I’ll simply note here that
the following are available on CTAN:

• apnum
• calculator
• fltpoint
• pst-fp
• minifp
• realcalc
• xint

Some of these have variable or arbitrary precision,
while others work to a pre-determined level. They
also vary in terms of functions covered, expandability
and so on.

I want to focus in on three possible “contenders”:
fp, pgf and the LATEX3 FPU (part of expl3). All of
these are well-known and widely-used, offer a full set
of functions, and a form of expressions.

The fp package formally uses fixed not floating
point code, but the key for us here is that it allows
a wide range of high-precision calculations. It’s also
been around for a long time. However, it’s quite slow
and doesn’t have convenient expression parsing — it
requires reverse Polish.

On the flip side, the arithmetic engine in pgf
uses dimens internally, so it is (relatively) fast but
is limited in accuracy. The range limits also show
up in some unexpected places, as a lot of range
reduction is needed to make everything work. On
the other hand, \pgfmathparse does read “normal”
arithmetic expressions, so it’s pretty easy to use.
I’ll also come to another aspect below: there is a
“swappable” floating point unit to replace the faster
dimen-based code.

Real number calculations in LATEX: Packages



70 TUGboat, Volume 40 (2019), No. 1

The LATEX3 FPU is part of expl3, but is avail-
able nowadays as a document-level package xfp. In
contrast to both fp and the pgf approach, the LATEX3
FPU is expandable. Like pgf, using the FPU means
we can use expressions, and we also get reasonable
performance (Bruno Le Floch worked hard on this
aspect). The other thing to note is that the FPU is
intended to match behaviour specified in the decimal
IEEE 754 standard, and that the team have a set of
tests to try to make sure things work as expected.

There’s one other option that one must consider:
Lua. If you can accept using only LuaTEX, you can
happily break out into Lua and use its ability to use
the “real” floating point capabilities of a modern PC.
The one wrinkle is that without a bit of work, the Lua
code doesn’t know about TEX material: registers and
so on need to be pre-processed. It also goes without
saying that using Lua means being tied to LuaTEX!

5 Performance

To test the performance of these options, I’m going to
use the LATEX3 benchmarking package l3benchmark.
I’m using a basic set up:

\usepackage{l3benchmark}

\ExplSyntaxOn

\cs_new_eq:NN

\benchmark

\benchmark:n

\ExplSyntaxOff

\newsavebox{\testbox}

\newcommand{\fputest}[1]{%

\benchmark{\sbox{\testbox}{#1}}%

}

(The benchmarking runs perform the same step mul-
tiple times, so keeping material in a box helps avoid
any overhead for the typesetting step.)

The command \fputest{...} was then used
with the appropriate input, such as the \fpeval

command below, to calculate a test expression using
a range of packages.

As a test, I’m using the expression
√

2 sin

(
40

180
π

)
or the equivalent. Using that, it’s immediately appar-
ent that the fp package is by far the slowest approach
(Table 1). Unsurprisingly, using Lua is the fastest by
an order of magnitude at least. In the middle ground,
the standard approach in pgf is fastest, but not by a
great deal over using the LATEX3 or pgf FPUs.

Table 1: Benchmarking results (LuaTEX v1.07,
TEX Live 2018, Windows 10, Intel i5-7200)

Package Time/10−4 s

fp 99.4
pgf 2.95
pgf/fpu 5.51
LATEX3 FPU 6.42
LuaTEX 0.57

6 Recommendation

As you can see above, there are several options. How-
ever, for end users wanting to do calculations in docu-
ments I think there is a clear best choice: the LATEX3
FPU.

\documentclass{article}

\usepackage{xfp}

\begin{document}

\fpeval{round(sqrt(2) * sind(40),2)}

\end{document}

(The test calculation uses angles in degrees, so where
provided, a version of the sine function taking degrees
as input was used: this is expressed in the LATEX3
FPU as sind. The second argument to round, 2, is
the number of places to which to round the result.)

You’d probably expect me to recommend the
LATEX3 package: I am on the LATEX team. But that’s
not the reason. Instead, it’s that the FPU is almost
as fast as using dimens (see pgf benchmarking), but
offers the same accuracy as a typical GUI application
for maths. It also integrates into normal LATEX con-
ventions with no user effort. So it offers by far the
best balance of features, integration and performance
for “typical” users.

� Joseph Wright
Northampton, United Kingdom
joseph dot wright (at)

morningstar2.co.uk

Joseph Wright


