TUGDboat, Volume 39 (2018), No. 3

HINT: Reflowing TEX output
Martin Ruckert

Introduction

Current implementations of TEX produce .pdf (por-
table document format) or .dvi (device indepen-
dent) files. These formats are designed for printing
output on physical paper where the paper size and
perhaps even the output resolution is known in ad-
vance. If these conditions are met, TEX, in spite of
its age, still produces results of unsurpassed quality.

Due to improvements in display size, resolution,
and technology over the past decades, it has become
common practice to read TEX output on screen not
only before printing but also instead of printing. For
viewing TEX output before printing, excellent pro-
grams [4, 5] for “pre-viewing” are available. The
prefix “pre” indicates that these programs intend to
provide the user with a view that matches, as close
as possible, the “final” appearance on paper. If,
however, there is no intention of printing, for exam-
ple if we read during a train ride on a mobile device,
then matching the appearance on paper is of no im-
portance, and we would rather prefer that the TEX
output instead adapt to the size and resolution of
our mobile device. Anyone who has been forced to
read a PDF file designed for output on letter paper
on a 5" smartphone screen knows the problem.

For this reason, web browsers or ebooks use a
reflowable text format. The HTML format, however,
was never designed as a format for book printing,
and epub, the ebook file format based on it, has in-
herited its deficiencies. Microsoft’s PDF reflow solu-
tion — converting PDF files to Word documents —is
an indication of the need for reflowable file formats
but is a proprietary surrogate at best.

Considering that the TEX engine is able to re-
flow whole documents just by assigning new values
to hsize and vsize, it seems long overdue to put
this engine to use for that purpose.

The HINT project does just that. It defines a file
format and provides two utilities: HiTEX, a special
version of TEX to produce such files, and HINT, a
standalone viewer to display them.

What is HINT?

Adopting the usual free software naming convention,
HINT is a recursive acronym for “HINT is not TEX".
But then, what is it? One answer could be: It‘s 90%
TEX and the rest is a mixture of good and bad luck.
So let me start explaining the details.

217

A first overview can be obtained by looking at
Figures 1-3. The first figure is a simplified depic-
tion of TEX’s structure: A complex input process-
ing part translates TEX input files into lists of 16-
bit integers, called tokens, which form the machine
language of TEX. The main loop of TEX is an inter-
preter that executes these programs, which eventu-
ally produce lots of boxes—most of them character
boxes—and glue (and a few other items) that end
up on the so-called contribution list. Every now and
then, the page builder will inspect the contribution
list and moves items to the current page. As soon
as it is satisfied with the current page, it will invoke
the (user-defined) output routine, again a token list,
which can inspect the proposed page, change it at
will, add insertions like footnotes, floating images,
page headers and footers, even store it for later use,
and eventually “ship out” the page to a .dvi file.

HINT splits this whole machinery into two sep-
arate parts: frontend and backend. The backend
is the HINT viewer. The design goal is to reduce
the processing in the backend as much as possi-
ble because we expect the viewer to run on small
mobile devices where reduced processing implies re-
duced energy consumption and thus longer battery
life. The frontend is the HITEX version of TEX which
is prevented from doing the full job of TEX because
it does not know the values of hsize and vsize. As
a first approximation of this split, HiITEX can write
the contribution list to a file and HINT can read this
file and feed it to the page builder as shown in Fig-
ures 2 and 3.

As an overall design goal, the HITEX and HINT
combination should produce exactly the same ren-
dering as TEX for a given hsize and vsize.

A closer look at Figure 3 reveals that the “Out-
put” arrow, representing the user’s output routine,
has disappeared; instead a new arrow, labeled “Tem-
plates”, has taken its place. Keeping the full power
of TEX’s output routines would imply keeping the
full TEX interpreter, all the token lists generated
from the TEX input file, and possibly even the files
that such an output routine might read or write in
the viewer. This seemed to be too high a price and
therefore output routines have been replaced by the
template mechanism described below. This was the
single most important design decision guided by the
desire to allow lightweight viewers to run efficiently
with a minimum amount of resources.

Several iterations were necessary to arrive at a
suitable file format that was compact, easy to digest,
and sufficiently expressive to provide the necessary
information to the viewer. Finally, many smaller

HINT: Reflowing TEX output

218

TUGDboat, Volume 39 (2018), No. 3

TEX s £ i £
Interpreter = & 3 T
o 7 =
S
=
Input Tokens Contributions Page DVI
Figure 1: The structure of TEX
- Z
TeEX § Q 2
o o o
Interpreter = 0 -
i)]
o
=]
=
Input Tokens Contributions HINT file
Figure 2: The structure of HiTEX
) Ry 3 o
c 3 o 3
— =
03 = =
o =
= ?
HINT file Page Screen

Figure 3: The structure of HINT

components of TEX needed to be moved back and
forth between front- and backend before a satisfac-
tory separation was accomplished.

Before I begin to describe these in more detail,
I want to emphasize that the current state of the
file format and the two utilities is not the end-point
of development but a starting point. While I hope
that the current specification provides enough func-

Martin Ruckert

tionality to attract a first small community of users,
I see it more as a test-bed for experimentation with
reflowable TEX output leading to better concepts,
better formats, and better implementations.

Further, I consider the HINT viewer and its file
format, while derived from TgEX, as TEX indepen-
dent. Why should not, for example, OpenOffice
have a plug-in producing HINT output files?

TUGDboat, Volume 39 (2018), No. 3

HINT 1.0
<directory 4 (lists resources)
<section 3 ’TeXfonts/cmr10.tfm’>
<section 4 ’TeXfonts/cmr10.600pk’>
>
<definitions (lists definitions)
<max > (using just font 0)
<font *0 ’cmri10’ 3 4
<glue *13 (space skip)>
<hyphen "-" 0 (default hyphen)>>
>
<content (a paragraph showing a kern)
<par *0 "Hello w<kern -0x0.471D pt>orld!">
>
Figure 4: Example HINT file in long format

File formats

There are two file formats: a short form that rep-
resents HINT files as a compact byte stream for the
viewer and a long form that represents HINT files in
a readable form for editing and debugging. Figure 4
gives an example of the latter. Note the hexadeci-
mal floating point notation in the kern node which
is an exact representation of TEX’s “scaled points”.

After reading a HINT file, we have a byte stream
in memory. This stream contains the directory, the
definitions, the content stream, and finally resources.
In the definition part, we define fonts and associate
them with font-numbers for compact reference and
do similar things for glues and other units that are
used frequently. We supplement the definitions by
setting suitable defaults. Then follows a content
stream of at most 4GB. The latter restriction en-
sures that positions inside the content stream can
be stored in 32 bits. The content stream consists of
a list of nodes; each node representing a glue, a kern,
a ligature, a discretionary hyphen, ..., or a box. Of
course the content of boxes is again a list of nodes.
After the content stream, we store file resources, for
example image and font files.

If we want the viewer to support changing the
page size while moving around in the stream — going
to the next or previous page, following a link or using
an index —practically any position in the stream
can be the start of a page. This makes precomputing
page starts impossible.

As a consequence, we need to be able to parse
the content stream forward and backward. A node
in the content stream therefore has a start byte, from
which the parser can infer the structure and size
of the node, and the same byte again as an end
byte. Given an arbitrary position in the stream, it
is possible to check if the current byte is a start byte
or an end byte by computing the node-length from
it and check the stream at the computed position

219

for a matching byte. To be sure that the match is
not a coincidence, the process can be repeated for a
sequence of several nodes.

Start and end bytes contain a 5-bit “kind” and
a 3-bit “info” field. This allows for 32 different kinds
of nodes. The info bits can be used for small param-
eters or flags, or indicate the absence of certain fields
in the node.

Lists. A special case is nodes describing lists of
nodes. The method described above to distinguish
start and end bytes is not feasible for a list of nodes
because it is not possible to compute the size of the
list from the start or end byte. Therefore, we store
the size of the list content after the start byte and
before the end byte. The three info bits are used to
indicate whether the size is stored as 0, 1, 2, 3, or
4 bytes. This scheme enables a parser to find the
corresponding start or end byte. Specifying 0 bytes
for the size implies an empty list.

Texts. Because many lists consist mostly of char-
acters, there is a special list format optimized for
storing character nodes. We call such a list a “text”.
The start and end bytes of a text are like those of
ordinary lists, but they are of kind “text”. Only for-
ward parsing is supported for a text node. Using the
size information, we can skip easily to the beginning
of a text.

A text can be thought of as a list of integers.
Small integers in the range 0 to 127 are stored as sin-
gle bytes; for larger integers the multi-byte encod-
ing from UTF-8 is used. The integers from 0 to 32
are considered control codes, and all other integers
are considered character codes—or rather glyph-
numbers, to be more precise. The control codes are
used for a variety of purposes. For example, a glyph-
number in the range 0 to 32 can be specified by using
the control code 0x1D followed by the glyph-number;
or arbitrary nodes can be inserted in the text after
the control code 0x1E.

A glyph-number references a specific glyph in
the current font; the current font in a text is given
implicitly. The control codes 0x00 to 0x07 can be
used to select the 8 most common fonts; other fonts
can be selected by using the control code 0x08 fol-
lowed by the font number.

hsize and vsize

TEX treats hsize and vsize like any other dimen-
sion register; you can set them to any value and do
all kinds of computations with them. HiTEX is more
restrictive. At the global level, you cannot change
hsize and vsize at all, because they denote the

HINT: Reflowing TEX output

220

dimensions given in the viewer. TEX, however, al-
lows local modifications of dimension registers; for
instance you can say \vbox{\hsize = 0.5\hsize
\advance \hsize by -8pt ...} to obtain a verti-
cal box, and inside this box, the value of hsize is
just a bit smaller than half its global size. Hence,
paragraphs inside this box are broken into lines that
are almost half a page wide. The value of hsize will
return to its old value once the box is completed. To
make this possible, HiITEX treats dimensions as lin-
ear functions a+(-hsize+~y-vsize, where «, 3, and
~ are constants. Computations are allowed as long
as they stay inside the set of linear functions. For
example \multiply \hsize by \hsize would not
work. For lack of a better name, such a linear func-
tion is called an “extended dimension”. The good
news is that the viewer can convert an “extended di-
mension” immediately to a normal dimension since
in the viewer hsize and vsize are always known.

Paragraphs

Breaking paragraphs into lines is TEX’s most sophis-
ticated and complex function. Fortunately the im-
plementation is very efficient (it used to run fairly
smoothly on my 8MHz 80286). It needs to be present
in the frontend and in the backend. If hsize = «
is a known constant (with 5 =~ = 0), the frontend
can perform the line breaking; if § # 0 or v # 0,
line breaking must be performed in the backend.

On the other hand, we do not want the back-
end to perform hyphenation. Hyphenation is an
expensive operation; it requires hyphenation tables
to be present; and then it would be impossible for
an author or editor to check the correctness of hy-
phenations. Therefore HiITEX will always insert all
the discretionary hyphens that TEX would compute
normally in the second pass of its line breaking al-
gorithm. To reproduce the exact behavior of TEX’s
line breaking algorithm, the discretionary hyphens
found in this way are marked and are used only dur-
ing the second pass in the viewer. This gives pref-
erence to line breaks that do not use hyphenation
(or only user specified discretionary hyphens) in the
same way as TEX.

The paragraph shape is controlled by the vari-
ables hangindent, hangafter, and parshape which
can be used to specify an individual indentation
and length for any line in the paragraph. Obvi-
ously, these computations must be performed in the
viewer. A complication arises if the viewer needs to
start a page in the middle of a paragraph: the line
number of the first line on the new page, and with
it its indentation and length, then depends on how

Martin Ruckert

TUGDboat, Volume 39 (2018), No. 3

the previous page was formatted. This might not be
known, for example if paging backward or if the page
size has changed since the viewer had formatted the
previous page. It remains an open question what
gives the best user experience in such a situation.

Packing boxes and alignment

TEX knows two kinds of boxes: horizontal boxes,
where the reference points of the content are aligned
along the baseline; and vertical boxes, where the
content is stacked vertically. Let’s look at horizontal
boxes; vertical boxes are handled similarly.

TEX produces horizontal boxes with the func-
tion hpack. The function traverses the content list
and determines its total natural height, depth, and
width. Furthermore, it computes the total stretcha-
bility and shrinkability. From these numbers it com-
putes a glue ratio such that stretching or shrinking
the glue inside the box by this ratio will make the
box reach a given target width. HiTEX faces two
problems: It might not be possible to determine the
natural dimensions of the content, because, for ex-
ample, the depth of a box can depend on how the
line breaking algorithm forms the last line of a para-
graph. In this case packing the box with hpack must
be done in the viewer. But even if the natural di-
mensions of the content can be determined, a target
width that depends on hsize will prevent HiTEX
from computing a glue ratio. Therefore the HINT
format knows three kinds of horizontal boxes: those
that are completely packed, those that just need the
computation of a glue ratio, and those that need a
complete traversal of the box content.

Handling TEX’s alignments introduces a little
extra complexity. When TEX encounters a horizon-
tal alignment, it packs the rows into unset boxes
adding material from the alignment template and
the appropriate tabskip glue. After all rows are
processed, TEX packs the rows using the hpack func-
tion. At that point HiTEX can use the mechanisms
just described for ordinary calls of hpack.

Baseline skips

When TEX builds vertical stacks of boxes, typically
lines of text, it tries to keep the distances between
the baselines constant, that is: independent of the
actual depth of descenders or height of ascenders.
Three parameters govern the insertion of glue be-
tween two boxes in vertical mode: TEX will insert
glue to make the distance between baselines equal
to baselineskip unless this would make the glue
smaller than 1ineskiplimit; in the latter case, the

TUGDboat, Volume 39 (2018), No. 3

glue is set to lineskip. Additional white space be-
tween boxes, for instance a \vskip 2pt, does not
interfere with this computation. Instead, TEX uses
the variable prev_depth, containing the depth of
the last box added to the list, for the computa-
tion. This offers a convenient lever for authors and
macro designers to manipulate TEX’s baseline cal-
culations. For example setting prev_depth to the
value ignore_depth will suppress the generation of
a baselineskip for the next box on the list. This is
of course a fact that the viewer should know about.

The HINT format is designed to be “stateless”,
that is: given the position of a page break in the
stream, it is possible to read, understand, and for-
mat the page starting at that position or the page
ending at that position. This turns the insertion of
baseline skips into an interesting problem: In sim-
ple cases, when all relevant information is at hand,
HiTEX can insert the correct glue directly. If some
information is missing, a baseline node is generated.
To process such a baseline node, the current val-
ues of the parameters mentioned before are required,
and these parameters do change occasionally.

Storing the current values in every baseline node
would require up to 54 bytes per node. HINT uses
a more space-efficient approach: It defines default
values that are constant for the entire stream. A
baseline node using the defaults does not need to
specify parameters. Further, the definition part of
the stream can specify up to 256 baseline definitions,
each defining the full set of parameters; such a pa-
rameter set can be used by specifying its number
in a single byte. Only in the rare case that these
two mechanisms are not sufficient must the base-
line node contain the necessary values directly. The
same approach is used for glues, extended dimen-
sions, paragraphs, and displays. It can be general-
ized to arbitrary parameter sets.

Displayed equations

The positioning of displayed equations in TEX is
no simple task. Usually the formula is centered on
the line, but if hsize is so small that the formula
would come too close to the equation number, it is
centered in the remaining space between equation
number and margin; if hsize is even smaller, the
equation number will be moved to a separate line.
Vertical spacing around the formula depends on the
length of the last line preceding the display, which
in turn depends on the outcome of the line break-
ing algorithm. If the line is short enough, TEX will
use the abovedisplayshortskip glue, otherwise it
uses abovedisplayskip. Of course there is also

221

belowdisplayshortskip and belowdisplayskip to
go with them. In addition, the variables control-
ling the paragraph shape influence the positioning
of the displayed equation. The required computa-
tions must be done in the viewer; they are not very
expensive but the code is complicated. HINT uses
display nodes to describe displayed formulas. For-
tunately, none of the math mode processing need be
done in the viewer.

Images

Native TEX does not define a mechanism for includ-
ing images, instead providing a generic extension
mechanism. For the HINT viewer to be able to open
and display any correct HINT file, we need to specify
the image types that a viewer is required to support
and the exact format of the image nodes. Image
files are included in the resource part of the HINT
file and are referenced by defining an image number,
its position, and its size in the definition part.

For simplicity, the HINT viewer will not do any
image manipulation except scaling. Scaling will be
necessary to display the same HINT file on a wide
variety of devices in a user friendly way. Various
designs for the syntax and semantics of image nodes
are possible and only the experience of real users
will tell what is good or useless.

At present, images are treated like two dimen-
sional glue: you can specify a width or a height, a
stretchability, and a shrinkability. If neither width
nor height are given, the natural width and height
will be taken from the image file. When an image is
part of the content of a box, it will stretch or shrink
together with other glue to achieve the target size of
the box. This mechanism works surprisingly well in
practice; the image and the white space surrounding
it scale in a consistent way to fill the space that is
assigned to it by the enclosing box.

Page building

TEX’s page builder starts at the top of a new page
and collects vertical material, keeping track of its
natural height, stretchability, and shrinkability until
the page is so full that possible page breaks can only
get worse. Then it uses the best page break found
so far and moves remaining material back to the
contribution list. Of course it also accounts for the
size of inserts, and it uses the penalties found to
estimate the goodness of a page break. HINT uses
the same algorithm, complementing it with a reverse
version that starts at the bottom of a new page. The
reverse version is used when paging backward.

HINT: Reflowing TEX output

222

At the point where TEX calls the output rou-
tine, a new mechanism is needed, because (as men-
tioned above) we want the viewer to be simple, thus
precluding the use of the TEX interpreter that would
be necessary to execute a general output routine.
HINT replaces output routines by page templates,
but before we can describe this mechanism, it is nec-
essary to see how HINT handles insertions.

Insertions. The TEX page builder identifies differ-
ent insertions by their insertion number. It accounts
for the contribution of inserted material to the to-
tal page height by weighting the insertion’s natural
height by the insertion scaling factor. There is also
a constant overhead that needs to be added if the in-
sertion is nonempty, for example the space occupied
by a footnote rule and the space surrounding it.

HINT uses the concept of content streams for
this. Stream number zero is used for the main page
content; other stream numbers are defined in the
definition part of the HINT file along with stream
parameters such as the insertion scaling factor and
the maximum vertical extent e that the stream con-
tent is allowed to occupy on the page. HiITEX maps
insertion numbers to stream numbers and appends
the insertion nodes to the content stream.

Streams have some more parameters: a list b of
boxes that is used before and a list a that is used
after the inserted material if it is not empty; the
topskip glue g that is inserted between b and the
first box of inserted material reduced by the height
of this box; a stream number p, where the mate-
rial from this stream should go if there is still space
available for stream p; a stream number n, where
the material from this stream should go if there is
no more space available for the stream but still space
available for stream n; a split ratio r that, if posi-
tive, specifies how to split the material of the stream
between streams p and n.

The latter stream parameters are new and offer
a mechanism to organize the flow of insertions on
the page. For example, when plain TEX encounters
a floating insertion, it decides whether there is still
enough space on the current page and if so makes
a mid-insert; otherwise a top-insert. HiTEX needs
to postpone this decision. It will channel such an
insertion to a stream with e = 0, p = 0, and n equal
to the stream of top-inserts. When such an inser-
tion arrives at the HINT page builder, it will check
whether there is still space on stream 0, the main
page, and if so moves the insertion there. Other-
wise, setting the maximum extent e to zero forces
the page builder to move the insertion to the stream
n of top-inserts.

Martin Ruckert

TUGDboat, Volume 39 (2018), No. 3

If the split ratio r is nonzero, the splitting of the
stream will be postponed even further: The page
builder will collect all contributions for the given
stream and will split it in the given ratio between
streams p and n just before assembling the final
page. For example it is possible to put all the foot-
notes in one stream with an insertion scaling factor
of 0.5 and split the collected footnotes into two col-
umns using a split ratio of 0.5; with a cascade of
splits, three or more columns are also possible.

Marks. TEX implements marks as token lists, and
the output routine has access to the top, first, and
bottom mark of the page. Sophisticated code can be
written to execute these token lists producing very
flexible headers or footers. In HINT we cannot use
token lists but only boxes. Consequently, HINT uses
the stream concept, developed for insertions, and
extends it slightly. A flag can be added to a stream
designating it as a “first” or "last” stream. Such a
stream will retain at most one insertion per page.
Now a package designer can open a stream for first
marks and a stream for bottom marks, put TEX’s
marks into boxes, and add them into both streams.
The implementation of top marks is difficult because
it requires processing the preceding page. Top marks
are not part of the present implementation.

Templates. Once the main page and all insertions
are in place, HINT needs to compose the page. For
this purpose it is possible in HiTEX to specify one or
more page templates. A page template is just a vbox
with arbitrary content: boxes, glue, rules, align-
ments, ..., and, most importantly, inserts. HiTEX
will store the output template in the definition part
together with its valid range of stream positions.
When HINT needs to compose the page, it will search
for an output template that includes the stream po-
sition of the current page in its range. It makes a
copy of the template replacing each insert node by
the material accumulated for it —insert node 0 will
be replaced by the content of the main page. Mate-
rial given as parameters a and b of an insert stream
will be copied as necessary. After repacking the re-
sulting vbox and all its subboxes, the vbox will be
rendered on the display.

Implementation

For the work described above, I needed to make sub-
stantial changes to the TEX source code. The com-
mon tool chain from TEX Live uses tangle to con-
vert tex.web into Pascal code (tex.pas) which is
then translated by web2c [6] into C code. Already
the translation to Pascal code expands all macros

TUGDboat, Volume 39 (2018), No. 3

and evaluates constant expressions, because neither
is supported by Pascal. As a result, the generated
Pascal code, let alone the further translation to C,
becomes highly unreadable and cannot be used as
a basis for any further work. So I wrote a transla-
tor converting the original WEB source code of TEX
into cweb source code [2, 3]. This cweb source is the
basis of the development of HiTEX and HINT.

For the implementation of HiTEX and HINT, I
had only limited time at my disposal: my sabbatical
during the fall semester of 2017/2018. As a conse-
quence, I often moved on as soon as the current re-
search problem had changed —in my view —into an
engineering problem. This allowed me to make fast
progress but left lots of “loose ends” in the code.

The current prototype has the functionality of
Knuth’s TEX with the adaptations described above,
and without added features like search paths for in-
put files or PDF specials. It is capable of generating
format files for plain TEX or IATEX and it can handle
even large files. The code for paging backwards is
buggy because I occasionally implemented new fea-
tures in the forward page builder and neglected to
update the backwards page builder accordingly.

Open questions and future work

Conditionals. It seems reasonable to implement
different output templates depending on screen size
and aspect ratio. Also conditional content, for ex-
ample a choice between a small and a wide table lay-
out, might be useful. For a whole list of ideas, see [1].

Macros for IATEX support. Since the input part
of HiTEX is taken directly from TEX, basic IATEX
is supported. But since IATEX uses complex output
procedures, many macros might need changes with
variable page sizes now in mind. Templates are still
an experimental feature of HINT that might need
changes to better support IATEX.

Usage of control codes. Three control codes used
in texts are indispensable: based on the bytes that
follow, one control code switches to any of 256 pos-
sible fonts, one specifies an arbitrary character code,
and one specifies an arbitrary node. The remaining
30 control codes provide plenty of room for exper-
iments. Currently 8 of them are dedicated to font
selection, 8 to reference globally predefined nodes,
and 14 to reference font-specific predefined nodes.
This should allow a convenient and compact encod-
ing that can accomplish the most common opera-
tions with a single byte and use two or more bytes
for less common operations. To decide whether the
current dedication is optimal in this respect is an

223

open question. A statistical analysis using a large
collection of TEX documents should give an answer.

Images. The implementation of glue-like images is
experimental. Another obvious ideas is the speci-
fication of background (and foreground) properties
of boxes. The background could be a color (making
rules a special case of boxes), a shading, or an image
that can be stretched, or tiled, or positioned to fill
the box. Certainly this would extend the capabili-
ties of HINT beyond the necessities for TEX. Is this
a direction worth considering?

Because it was easy to implement, currently
only Windows bitmaps are supported. A full imple-
mentation should certainly support also JPEG and
PNG files, and some form of vector graphic, probably
SVG. I think it is better to have a small collection of
formats that is well supported across all implemen-
tations than a long list of formats that enjoy only
limited support. But how about sound and video?
Should there be support? How could an extension
mechanism look that keeps the HINT format open
for future development?

Platforms. Currently the HINT viewer is written
for the Windows platform just because this was con-
venient for me. Since HINT targets mobile devices,
a HINT viewer for Android would be a next logical
step. T also think that ebook readers deserve a better
rendering engine and HINT would be a candidate.

References

[1] H. Hagen. Beyond the bounds of paper and
within the bounds of screens; the perfect match
of TEX and Acrobat. In Proceedings of the Ninth
European TgX Conference, vol. 15a of MAPS,
pp- 181-196. Elsevier Science, September 1995.
ntg.nl/maps/15a/09.pdf

[2] M. Ruckert. Converting TEX from WEB to cweb.
TUGDboat 38(3):353-358, 2017. tug.org/TUGboat/
tb38-3/tb120ruckert.pdf

[3] M. Ruckert. web2w: Converting TEX from WEB
to cweb, 2017. ctan.org/pkg/web2w

[4] C. Schenk. Yap: Yet another previewer.
miktex.org

[5] P. Vojta. Xdvi.
math.berkeley.edu/~vojta/xdvi.html

[6] Web2C: A TEX implementation. tug.org/web2c

o Martin Ruckert
Hochschule Miinchen
Lothstrasse 64
80336 Miinchen, Germany
ruckert (at) cs dot hm dot edu

HINT: Reflowing TEX output

