
TUGboat, Volume 32 (2011), No. 1 43

Handling math: A retrospective

Hans Hagen

In this article I will reflect on how the plain TEX
approach to math fonts influenced the way math has
been dealt with in ConTEXt MkII and why (and how)
we diverge from it in MkIV, now that LuaTEX and
OpenType math have come around.

When you start using TEX, you cannot help
but notice that math plays an important role in this
system. As soon as you dive into the code you will
see that there is a concept of families that is closely
related to math typesetting. A family is a set of
three sizes: text, script and scriptscript.

ab
c

=
d

e

The smaller sizes are used in superscripts and
subscripts and in more complex formulas where in-
formation is put on top of each other.

It is no secret that the latest math font tech-
nology is not driven by the TEX community but by
Microsoft. They have taken a good look at TEX and
extended the OpenType font model with the informa-
tion that is needed to do things similar to TEX and
beyond. It is a firm proof of TEX’s abilities that after
some 30 years it is still seen as the benchmark for
math typesetting. One can only speculate what Don
Knuth would have come up with if today’s desktop
hardware and printing technology had been available
in those days.

As a reference implementation of a font, Mi-
crosoft provides Cambria Math. In the specification
the three sizes are there too: a font can provide
specifically designed script and scriptscript variants
for text glyphs where that is relevant. Control is
exercised with the ssty feature.

Another inheritance from TEX and its fonts is
the fact that larger symbols can be made out of
snippets and these snippets are available as glyphs
in the font, so no special additional (extension) fonts
are needed to get for instance really large parentheses.
The information of when to move up one step in size
(given that there is a larger shape available) or when
and how to construct larger symbols out of snippets
is there as well. Placement of accents is made easy
by information in the font and there are a whole lot
of parameters that control the typesetting process.
Of course you still need machinery comparable to
TEX’s math subsystem but Microsoft Word has such
capabilities.

I’m not going to discuss the nasty details of
providing math support in TEX, but rather pay some
attention to an (at least for me) interesting side effect

of TEX’s math machinery. There are excellent arti-
cles by Bogus law Jackowski and Ulrik Vieth about
how TEX constructs math and of course Knuth’s
publications are the ultimate source of information
as well.

Even if you only glance at the implementation
of traditional TEX font support, the previously men-
tioned families are quite evident. You can have 16 of
them but 4 already have a special role: the upright
roman font, math italic, math symbol and math ex-
tension. These give us access to some 1000 glyphs
in theory, but when TEX showed up it was mostly a
7-bit engine and input of text was often also 7-bit
based, so in practice many fewer shapes are available,
and subtracting the snippets that make up the large
symbols brings down the number again.

Now, say that in a formula you want to have a
bold character. This character is definitely not in
the 4 mentioned families. Instead you enable another
one, one that is linked to a bold font. And, of course
there is also a family for bold italic, slanted, bold
slanted, monospaced, maybe smallcaps, sans serif,
etc. To complicate things even more, there are quite
a few symbols that are not covered in the foursome
so we need another 2 or 3 families just for those.
And yes, bold math symbols will demand even more
families.

a + b + c = d + e + F

Try to imagine what this means for implement-
ing a font system. When (in for instance ConTEXt)
you choose a specific body font at a certain size,
you not only switch the regular text fonts, you also
initialize math. When dealing with text and a font
switch there, it is no big deal to delay font loading
and initialization till you really need the font. But
for math it is different. In order to set up the math
subsystem, the families need to be known and set
up and as each one can have three members you
can imagine that you easily initialize some 30 to 40
fonts. And, when you use several math setups in a
document, switching between them involves at least
some re-initialization of those families.

When Taco Hoekwater and I were discussing
LuaTEX and especially what was needed for math, it
was sort of natural to extend the number of families
to 256. After all, years of traditional usage had
demonstrated that it was pretty hard to come up
with math font support where you could freely mix
a whole regular and a whole bold set of characters
simply because you ran out of families. This is a
side effect of math processing happening in several
passes: you can change a family definition within
a formula, but as TEX remembers only the family

Handling math: A retrospective

44 TUGboat, Volume 32 (2011), No. 1

number, a later definition overloads a previous one.
The previous example in a traditional TEX approach
can result in:

a + \fam7 b + \fam8 c = \fam9 d + \fam10 e

+ \fam11 F

Here the a comes from the family that reflects
math italic (most likely family 1) and + and = can
come from whatever family is told to provide them
(this is driven by their math code properties). As
family numbers are stored in the identification pass,
and in the typesetting pass resolve to real fonts you
can imagine that overloading a family in the middle
of a definition is not an option: it’s the number that
gets stored and not what it is bound to. As it is
unlikely that we actually use more than 16 families
we could have come up with a pool approach where
families are initialized on demand but that does not
work too well with grouping (or at least it complicates
matters).

So, when I started thinking of rewriting the
math font support for ConTEXt MkIV, I still had this
nicely increased upper limit in mind, if only because
I was still thinking of support for the traditional
TEX fonts. However, I soon realized that it made
no sense at all to stick to that approach: Open-
Type math was on its way and in the meantime we
had started the math font project. But given that
this would easily take some five years to finish, an
intermediate solution was needed. As we can make
virtual fonts in LuaTEX, I decided to go that route
and for several years already it has worked quite
well. For the moment the traditional TEX math
fonts (Computer Modern, px, tx, Lucida, etc) are
virtualized into a pseudo-OpenType font that follows
the Unicode math standard. So instead of needing
more families, in ConTEXt we could do with less.
In fact, we can do with only two: one for regular
and one for bold, although, thinking of it, there is
nothing that prevents us from mixing different font
designs (or preferences) in one formula but even then
a mere four families would still be fine.

To summarize this, in ConTEXt MkIV the previ-
ous example now becomes:

U+1D44E + U+1D41B + 0x1D484 = U+1D68D + U+1D5BE

+ U+02131

For a long time I have been puzzled by the
fact that one needs so many fonts for a traditional
setup. It was only after implementing the ConTEXt
MkIV math subsystem that I realized that all of
this was only needed in order to support alphabets,
i.e. just a small subset of a font. In Unicode we
have quite a few math alphabets and in ConTEXt we
have ways to map a regular keyed-in (say) ‘a’ onto

a bold or monospaced one. When writing that code
I hadn’t even linked the Unicode math alphabets
to the family approach for traditional TEX. Not
being a mathematician myself I had no real concept
of systematic usage of alternative alphabets (apart
from the occasional different shape for an occasional
physics entity).

Just to give an idea of what Unicode defines:
there are alphabets in regular (upright), bold, italic,
bold italic, script, bold script, fraktur, bold fraktur,
double-struck, sans-serif, sans-serif bold, sans-serif
italic, sans-serif bold italic and monospace. These are
regular alphabets with upper- and lowercase charac-
ters complemented by digits and occasionally Greek.

It was a few years later (somewhere near the end
of 2010) that I realized that a lot of the complications
in (and load on) a traditional font system were simply
due to the fact that in order to get one bold character,
a whole font had to be loaded in order for families to
express themselves. And that in order to have several
fonts being rendered, one needed lots of initialization
for just a few cases. Instead of wasting one font
and family for an alphabet, one could as well have
combined 9 (upper and lowercase) alphabets into one
font and use an offset to access them (in practice we
have to handle the digits too). Of course that would
have meant extending the TEX math machinery with
some offset or alternative to some extensive mathcode
juggling but that also has some overhead.

If you look at the plain TEX definitions for the
family related matters, you can learn a few things.
First of all, there are the regular four families defined:

\textfont0=\tenrm \scriptfont0=\sevenrm

\scriptscriptfont0=\fiverm

\textfont1=\teni \scriptfont1=\seveni

\scriptscriptfont1=\fivei

\textfont2=\tensy \scriptfont2=\sevensy

\scriptscriptfont2=\fivesy

\textfont3=\tenex \scriptfont3=\tenex

\scriptscriptfont3=\tenex

Each family has three members. There are some
related definitions as well:

\def\rm {\fam0\tenrm}

\def\mit {\fam1}

\def\oldstyle{\fam1\teni}

\def\cal {\fam2}

So, with \rm you not only switch to a family (in
math mode) but you also enable a font. The same
is true for \oldstyle and this actually brings us to
another interesting side effect. The fact that oldstyle
numerals come from a math font has implications
for the way this rendering is supported in macro
packages. As naturally all development started when
TEX came around, package design decisions were

Hans Hagen

TUGboat, Volume 32 (2011), No. 1 45

driven by the basic fact that there was only one math
font available. And, as a consequence most users
used the Computer Modern fonts and therefore there
was never a real problem in getting those oldstyle
characters in your document.

However, oldstyle figures are a property of a font
design (like table digits) and as such not specially
related to math. And, why should one tag each
number then? Of course it’s good practice to tag
extensively (and tagging makes switching fonts easy)
but to tag each number is somewhat over the top.
When more fonts (usable in TEX) became available
it became more natural to use a proper oldstyle font
for text and the \oldstyle more definitely ended
up as a math command. This was not always easy
to understand for users who primarily used TEX for
anything but math.

Another interesting aspect is that with Open-
Type fonts oldstyle figures are again an optional
feature, but now at a different level. There are a
few more such traditional issues: bullets often come
from a math font as well (which works out ok as
they have nice, not so tiny bullets). But the same
is true for triangles, squares, small circles and other
symbols. And, to make things worse, some come
from the regular TEX math fonts, and others from
additional ones, like the American Mathematical
Society symbols. Again, OpenType and Unicode will
change this as now these symbols are quite likely to
be found in fonts as they have a larger repertoire of
shapes.

From the perspective of going from MkII to
MkIV it boils down to changing old mechanisms that
need to handle all this (dependent on the availability
of fonts) to cleaner setups. Of course, as fonts are
never completely consistent, or complete for that
matter, and features can be implemented incorrectly
or incompletely we still end up with issues, but (at
least in ConTEXt) dealing with that has been moved
to runtime manipulation of the fonts themselves (as
part of the so-called font goodies).

Back to the plain definitions, we now arrive at
some new families:

\newfam\itfam \def\it{\fam\itfam\tenit}

\newfam\slfam \def\sl{\fam\slfam\tensl}

\newfam\bffam \def\bf{\fam\bffam\tenbf}

\newfam\ttfam \def\tt{\fam\ttfam\tentt}

The plain TEX format was never meant as a
generic solution but instead was an example of a
macro set and serves as a basis for styles used by
Don Knuth for his books. Nevertheless, in spite of
the fact that TEX was made to be extended, pretty
soon it became frozen and the macros and font defini-
tions that came with it became the benchmark. This

might be the reason why Unicode now has a mono-
spaced alphabet. Once you’ve added monospaced
you might as well add more alphabets as for sure in
some countries they have their own preferences.1

As with \rm, the related commands are meant
to be used in text as well. More interesting is to see
what follows now:

\textfont \itfam=\tenit

\textfont \slfam=\tensl

\textfont \bffam=\tenbf

\scriptfont \bffam=\sevenbf

\scriptscriptfont\bffam=\fivebf

\textfont \ttfam=\tentt

Only the bold definition has all members. This
means that (regular) italic, slanted, and monospaced
are not actually that much math at all. You will
probably only see them in text inside a math formula.
From this you can deduce that contrary to what I
said before, these variants were not really meant
for alphabets, but for text in which case we need
complete fonts. So why do I still conclude that we
don’t need all these families? In practice text inside
math is not always done this way but with a special
set of text commands. This is a consequence of the
fact that when we add text, we want to be able to
do so in each language with even language-specific
properties supported. And, although a family switch
like the above might do well for English, as soon
as you want Polish (extended Latin), Cyrillic or
Greek you definitely need more than a family switch,
if only because encodings come into play. In that
respect it is interesting that we do have a family for
monospaced, but that \Im and \Re have symbolic
names, although a more extensive setup can have a
blackboard family switch.

By the way, the fact that TEX came with italic
alongside slanted also has some implications. Nor-
mally a font design has either italic or something
slanted (then called oblique). But, Computer Mod-
ern came with both, which is no surprise as there is a
metadesign behind it. And therefore macro packages
provide ways to deal with those variants alongside.
I wonder what would have happened if this had not
been the case. Nowadays there is always this regular,
italic (or oblique), bold and bold italic set to deal
with, and the whole set can become lighter or bolder.

In ConTEXt MkII, however, the set is larger
as we also have slanted and bold slanted and even

1 At the Dante 2011 meeting we had interesting discussions
during dinner about the advantages of using Sütterlinschrift
for vector algebra and the possibilities for providing it in the
upcoming TEX Gyre math fonts.

Handling math: A retrospective

46 TUGboat, Volume 32 (2011), No. 1

smallcaps, so most definition sets have 7 definitions
instead of 4. By the way, smallcaps is also special. if
Computer Modern had had smallcaps for all variants,
support for them in ConTEXt undoubtedly would
have been kept out of the mentioned 7 but always
been a new typeface definition (i.e. another fontclass
for insiders). So, when something would have to be
smallcaps, one would simply switch the whole lot to
smallcaps (bold smallcaps, etc.). Of course this is
what normally happens, at least in my setups, but
nevertheless one can still find traces of this original
Computer Modern-driven approach. And now we are
at it: the whole font system still has the ability to
use design sizes and combine different ones in sets, if
only because in Computer Modern you don’t have all
sizes. The above definitions use ten, seven and five,
but for instance for an eleven point set up you need
to creatively choose the proper originals and scale
them to the right family size. Nowadays only a few
fonts ship with multiple design sizes, and although
some can be compensated with clever hinting it is a
pity that we can apply this mechanism only to the
traditional TEX fonts.

Concerning the slanting we can remark that
TEXies are so fond of this that they even extended
the TEX engines to support slanting in the core ma-
chinery (or more precisely in the backend while the
frontend then uses adapted metrics). So, slanting is
available for all fonts.

This brings me to another complication in writ-
ing a math font subsystem: bold. During the de-
velopment of ConTEXt MkII I was puzzled by the
fact that user demands with respect to bold were
so inconsistent. This is again related to the way a
somewhat simple setup looks: explicitly switching
to bold characters or symbols using a \bf (alike)
switch. This works quite well in most cases, but
what if you use math in a section title? Then the
whole lot should be in bold and an embedded bold
symbol should be heavy (i.e. more bold than bold).
As a consequence (and due to limited availability of
complete bold math fonts) in MkII there are several
bold strategies implemented.

However, in a Unicode universe things become
surprisingly easy as Unicode defines those symbols
that have bold companions (whatever you want to

call them, mostly math alphanumerics) so a proper
math font has them already. This limited subset is
often available in a font collection and font designers
can stick to that subset. So, eventually we get one
regular font (with some bold glyphs according to the
Unicode specification) and a bold companion that
has heavy variants for those regular bold shapes.

The simple fact that Unicode distinguishes reg-
ular and bold simplifies an implementation as it’s
easier to take that as a starting point than users who
for all their goodwill see only their small domain of
boldness.

It might sound like Unicode solves all our prob-
lems but this is not entirely true. For instance, the
Unicode principle that no character should be there
more than once has resulted in holes in the Unicode
alphabets, especially Greek, blackboard, fraktur and
script. As exceptions were made for non-math I see
no reason why the few math characters that now
put holes in an alphabet could not have been there.
As with more standards, following some principles
too strictly eventually results in all applications that
follow the standard having to implement the same
ugly exceptions explicitly. As some standards aim
for longevity I wonder how many programming hours
will be wasted this way.

This brings me to the conclusion that in practice
16 families are more than enough in a Unicode-aware
TEX engine especially when you consider that for a
specific document one can define a nice set of families,
just as in plain TEX. It’s simply the fact that we
want to make a macro package that does it all and
therefore has to provide all possible math demands
into one mechanism that complicates life. And the
fact that Unicode clearly demonstrates that we’re
only talking about alphabets has brought (at least)
ConTEXt back to its basics: a relatively simple, few-
family approach combined with a dedicated alphabet
selection system. Of course eventually users may
come up with new demands and we might again end
up with a mess. After all, it’s the fact that TEX gives
us control that makes it so much fun.

� Hans Hagen
http://pragma-ade.com

Hans Hagen

