Writing the first \texttt{LATEX} book

Walter Gander

Abstract

In 1984 I wanted to write a German textbook called “Computermathematik” using the typesetting system \texttt{TEX} developed by Don Knuth, which I have always admired and which I have been aware of since my first sabbatical year in Stanford in 1977. Mark Kent, a graduate student at Stanford in 1984, pointed out to me that Leslie Lamport had just finished a new typesetting system called \texttt{LATEX} which I might want to use instead. I did and in fall 1984 I had finished the (at least I think) first book written in \texttt{LATEX}. In this historical talk I will present some reminiscences how the book was produced.

1 First encounter with \texttt{TEX}

In 1977/78 I spent a year at Stanford as a postdoc writing my Habilitation. It was still the time when technical typists were typing in papers or books for their professors. I was very lucky to have had my Stanford report typed by Phyllis Winkler, the technical typist of Don Knuth, probably the best at Stanford. I gave her my hand-written manuscript and she typed it very efficiently using an electric typewriter. An excerpt is shown in Figure 1.

![Figure 1: Mathematical typing: State of the art c. 1977 at Stanford](image)

Finally (POS) and (MFS) will be the corresponding problems with equality sign in the constraint.

The solution of (P) is a stationary point of the Lagrange function

\[L(x, \lambda) = \| y - Ax \|^2 + \lambda (\| y \|^2 - \sigma^2) \]

and therefore a solution of $\frac{\partial L}{\partial x} = 0$ and $\frac{\partial L}{\partial \lambda} = 0$, which are the "normal equations":

\[(Ax^* + \lambda y^* y^t) x = \frac{1}{\sigma} x \]
\[(Ax^* + \lambda y^* y^t) = \sigma I \]

If the matrix $Ax^* + \lambda y^* y^t$ is nonsingular, then we can define

\[f(x) = \| y - Ax \|^2 \]

Figure 1: Part of Nick Trefethen’s PhD thesis

2 Writing the book

A few years later I was due for a sabbatical and I decided to use it to write a German textbook with the title “Computermathematik” which would teach algorithms written in Pascal, mostly focused on topics in numerical analysis. Of course I was determined to learn \texttt{TEX} and write my book using this new text-processing system.

So I went with my two daughters of 9 and 11 years and a suitcase full of hand-written notes to Stanford. My wife Heidi had just started a new job and had to stay in Switzerland but would visit us during the vacations.

At the beginning I had to learn how to use the computer (a UNIX VAX) on which \texttt{TEX} was installed. Mark Kent, a graduate student in the Computer Science Department, working in Numerical Analysis with Gene Golub, helped me in many ways to get me going. I learned to use the Emacs editor to write \texttt{TEX} source files. When Mark realized that I was going to write a book he pointed out to me that just a few weeks earlier Leslie Lamport had published a manual in which he described his system \texttt{LATEX}, a collection of \texttt{TEX} macros which should help a book writer a lot since it would take him to a higher book-producing abstraction level. Simply write \verb|\chapter{}| and forget about the actual size of fonts, distance to text, numbering etc. It sounded good to me and since I...
had to learn anyway, either \TeX{} or \LaTeX, I decided
to go for \LaTeX{}.

The first chapter I started to write was Chapter 4 of
the book with the title “Polynome”. This was
already quite a challenge. Showing how to divide a
polynomial by some factor in the form that one
would write it up when doing it by hand is quite
demanding for a \LaTeX{} beginner. The first page of
this chapter is displayed in Figure 3.

\begin{figure}[htb]
\centering
\begin{center}
\begin{picture}(13,7)(0,0)
\put(0,3){\framebox(4,2){Rechenwerk}}
\put(4,2){\vector(2,-1){1.8}}
\put(4,2){\vector(-2,1){1.8}}
\put(6,0){\framebox(5,2){
\shortstack{Zahlenspeicher f"ur
Zwischenergebnisse}}}
\end{picture}
\end{center}
\caption{Erste Computer}
\end{figure}

And here is some of the corresponding source, which
will still look quite familiar to \LaTeX{} users today
(slightly reformatted for \textit{TUGboat}):

\begin{verbatim}
\chapter{Polynome}
\begin{equation}
\frac{P_n(x)}{x-z} = P_{n-1}(x) + \frac{r}{x-z}
\end{equation}
\begin{bsp}
$P_3(x)=3x^3+x^2-5x+1$, $z=2$
\begin{equation}
\begin{array}{rcrcrcrlc}
(3x^3 &+& x^2 &-& 5x &+& 1) & :(x-2) \\
-3x^3 &+& 6x^2 & & & & & & P_2(x) \\
\multicolumn{3}{c}\hrulefill&&&&&&\arraycolsep 2pt
\begin{array}{rcrcrcrlc}
7x^2 &-& 5x & & & & & & \vspace{-2\smallskipamount}
\end{array}
\end{array}\underbrace{3x^2+7x+9}
\end{equation}
\end{bsp}
\end{verbatim}

Writing the first \LaTeX{} book
Again today the situation has completely changed. We have tools to convert formats, e.g. from eps to pdf and tools for graphical construction, most notably MetaPost.

Another challenge was to typeset Pascal programs. Today most of us do not bother too much. We simply use \verb|verbatim| or \verb|verbatiminput| to include programs. I had the idea to write the reserved words like \texttt{begin}, \texttt{end}, \texttt{for}, etc., in boldface and to indent always by three spaces after a \texttt{begin} or when using for-loops or if-statements. Of course I did not want to retype the Pascal programs, this would be too likely a source of errors. So I finally asked Leslie Lamport by e-mail what he would recommend. He suggested using the tabbing environment. My Pascal programs were written with capitalized reserved words. As an example consider the Pascal function to compute a square root:

\begin{verbatim}
FUNCTION quadratwurzel(a:real):real;
VAR xneu, xalt : real ;
BEGIN
 xneu := (1+a)/2;
 REPEAT
 xalt := xneu; xneu := (xalt+a/xalt)/2
UNTIL xneu >= xalt;
quadratwurzel := xneu
END;
\end{verbatim}

A pragmatic way to proceed was to replace a capitalized reserved word like \texttt{BEGIN} by \texttt{\BEGIN}, where I had done \texttt{\newcommand{\BEGIN}{\bf begin \+}}. The characters \texttt{\+} would cause the next line to be indented in the tabbing environment. More changes like writing \$ to use math-mode and re-indenting I did by hand using Emacs. Defining the \LaTeX\ command

\begin{verbatim}
\newcommand{\SETTABS}{123\=456\=789\=123\=456\=789
 \=123\=456\=789\=123\=\kill
 \>|\>|\>|\>|\>|\>}
\end{verbatim}

and using Emacs I transformed it to

\begin{verbatim}
\FUNCTION quadratwurzel(a:real):real;
\VAR xneu, xalt : real ;
\BEGIN
 $ xneu := (1+a)/2;$ \\
 REPEAT \\
 $xalt:=xneu; xneu:=(xalt+a/xalt)/2$
\end{verbatim}

I typed the whole summer, the children were busy attending Escondido School on campus. During summer vacations Heidi came to visit us and look after our daughters. Finally in fall the book was finished. Voy and Gio Wiederhold invited us all to a party at their house to celebrate this event. Don Knuth was also with us and said: “Finally it is proved that \LaTeX\ is useful!”

\section{Book revision}

The book was written. But of course I still needed to proofread it carefully. Back in Switzerland I offered the book to publishers for German textbooks, among them Birkhäuser in Switzerland, Springer and Oldenburg in Germany. All the publishers were amazed about the quality of typing and all of them accepted the book and made me an offer. For patriotic reasons I then chose Birkhäuser.

When proofreading I found of course typos and other minor things which needed to be fixed. There was no way to process \LaTeX\ in Switzerland, I did not even know of a \TeX\ installation. So I decided to fly back in the winter break at beginning of January 1985 to do the changes at Stanford and print the final camera ready version of the book on the best available printer, the Alphatype machine in the basement. This rather expensive way of doing changes was the only possibility that I had at that time. Switzerland was not yet connected to the Internet. So I spent a week at Stanford, produced a new corrected version of the book and wanted to print the final copy for the publisher. However, I did not succeed because the Alphatype printer was down. I discussed with Mark Kent what to do and we decided that I would

\footnote{Observant readers will note that the font used for punctuation varies. The typography before \TeX\ was in such bad shape that such “minor flaws” in the otherwise wonderful output were simply overlooked and not taken care of.}

Walter Gander
return to Switzerland and that he would print the book when the printer was operating again and send me the manuscript by ordinary mail. Indeed this worked fine, two weeks later I received a beautifully typed manuscript.

Looking it through I was terrified: at some place the page break was different than what I had printed in Stanford before. One table was moved and there was a half page empty. Fix it and have Mark print it again using this expensive printer and paper? I finally decided for a pragmatic solution. I took a scissor and glue and copy pasted the few pages by hand as I expected them to look in my first output.

What was the reason for this new page break? Well, in my absence Leslie Lamport made some small changes to \LaTeX and installed a new version. We did not notice this and thus the different page break occurred.

4 Epilogue

I had to write a second volume of my book which included the solutions of all exercises, which are mostly programming assignment. I bought a desktop computer Olivetti M24 for some $6,000 with a 10 MB hard disk. There was a company called Micro-T\TeX who had ported \TeX to the IBM PC. I bought their floppy disk and installed \TeX on my Olivetti. It used up half of my disk-space! \LaTeX was not available. So I wrote in 1985 my solution book using plain \TeX on my own PC at home. Printing on the dot matrix printer did not look so nice as with Dover and furthermore was terribly slow. When the book was finished, I looked around to find a \TeX installation in Switzerland. I found one in the Institute of Astronomy at ETH. Professor Jan Olof Stenflo was one of the first to have \TeX and \LaTeX installed in Switzerland. So I processed the final version of the second book written in plain \TeX on his computer in Switzerland.

The first \LaTeX book is no longer in print; it had a second edition in 1992. The publisher Birkhäuser has returned the copyrights to me. So I decided to give the book for free distribution to Google. This seems to be a very long procedure. Therefore I also made it available on http://www.educ.ethz.ch/unt/um/inf/ad/cm (figure 5).

\vspace{0.5cm}

\begin{center}
\textbf{Figure 5}: Cover of the now freely-available book
\end{center}

I wanted to produce a pdf file of the book for the web page. Now the amazing result: without any major changes the book compiled using \texttt{pdflatex}! I do not know of any other typesetting system that is as stable over more than 25 years.

\begin{quote}
\hspace{1cm} \textcircled{\textbullet}\hspace{1cm} \textbf{Walter Gander}

ETH Zurich

http://www.inf.ethz.ch/personal/gander/
\end{quote}