
TUGboat, Volume 30 (2009), No. 2 191

ProofCheck: Writing and checking complete
proofs in LATEX

Bob Neveln and Bob Alps

Abstract

ProofCheck is a system for writing and checking
mathematical proofs. Theorems and proofs are con-
tained in a plain TEX or LATEX document. Parsing
and proof checking are accomplished through Python
programs which read the source file. A general ex-
planation of the use and structure of the system and
programs is provided and a sample proof is shown
in detail. The work done by the authors has been
based on standard sentence logic, a non-standard
predicate logic and set theory with proper classes.
Theorems and proofs based on other foundations
may be checked if external data files are modified.
Four such data files and their possible modifications
are described. In addition, the extent to which the
formal language can be shaped to accommodate an
author’s preferences is discussed.

1 Introduction

The purpose of ProofCheck is to enable mathemati-
cians to write readable proofs that are computer
checkable. Such readable, computer-checkable proofs
could also be of value in the refereeing process. In a
previous article [4] the system now called ProofCheck
was described. Since then the system has been ex-
tended in several ways. The number of inference rules
and common notions has been increased. A web site
at www.proofcheck.org has been developed. Fur-
ther, the system now works with LATEX in addition
to plain TEX.

2 Other systems

Two well-known systems to which ProofCheck might
be compared are HOL [2] and Mizar [5].

HOL (Higher Order Logic) is a computer-assisted
theorem proving system operating within the OCAML

environment. OCAML (Objective CAML) is an object-
oriented programming language which can be run
interactively. Mathematical objects are treated as
OCAML objects and mathematical theorems are
stated in OCAML. Thus both ontology and syn-
tax are subsumed by OCAML type theory. Theorems
are proved by entering commands at the OCAML

prompt or by running a script. Thus a proof consists
of a record of OCAML commands.

Mizar is also a language for stating proofs in-
tended to be human-readable as well as computer-
checkable. Proofs are entered in ASCII text in the
Mizar language. The language is extensive and

based on a particular axiomatization of mathematics,
Tarski-Grothendieck set theory. The system can also
produce LATEX output.

These systems also tend to form closed math-
ematical systems. Proving a theorem using these
systems means showing that the given theorem is
provable within that system.

3 Features and goals

TEX and LATEX convert an author’s .tex source files
into DVI or PDF output. ProofCheck works with
these same .tex source files. When using ProofCheck
the work cycle is typically to run the parser and the
checker after a successful run of TEX or LATEX. Errors
encountered in each case throw the author back into
the text editor.

ProofCheck is intended to be open with respect
to mathematical foundations. When ProofCheck
checks the proof of a theorem it shows that the the-
orem follows from definitions and other theorems
which have been stated and parsed but not necessar-
ily checked. An author does not need to commit to
a particular axiom system.

In their own mathematical work the authors use
standard sentence logic, a non-standard predicate
logic, and a set theory which admits proper classes —
but none of these choices is required. Of course
checkable-proofs are easier to write when there is
an accumulated body of accepted propositions avail-
able for referral. This does constitute an implicit
pressure to use the specific development already on
the ProofCheck web-site. But nothing prevents an
author from creating another one. We will post any
such developments we receive.

4 Mathematical language

For almost a century there has been general agree-
ment that there is no obstacle in principle to writing
mathematics in a formal language and therefore to
checking proofs mechanically. One of the main obsta-
cles in practice to stating definitions and theorems
in a formal language is that the required sacrifice of
syntactical freedom may be more than a mathemati-
cal author is willing to tolerate. In devising a usable
proof-checking system therefore it is important to
maximize syntactic freedom.

ProofCheck is not built on any specific mathe-
matical language. Instead, a context-free grammar is
generated on the basis of whatever definitions have
been made. The rules of grammar are based on
syntactical ideas of A.P. Morse [3], and include a
variation on Morse’s handling of second-order vari-
ables. Definitions are presumed to take the form
(p↔ q) for formulas and (x ≡ y) for terms. The set

ProofCheck: Writing and checking complete proofs in LATEX

192 TUGboat, Volume 30 (2009), No. 2

of definitions is taken to include a standard default
set of infix operators as well as quantifiers. The de-
fault symbols may be easily replaced and with a little
additional effort, default forms can be replaced. The
resulting language is unambiguous and possesses the
property that no term or formula can begin another.

ProofCheck minimizes the loss of syntactical
freedom by striving to keep the syntactical restric-
tions as close as possible to the absolute requirements
of logic and consistency.

5 Proof language

The following TEX macros suffice to mark up a proof
for checking. We are grateful to Karl Berry for his
help in streamlining the first two of these. The gen-
eral proof structure which these macros implement
is very similar to that defined in [1].

\prop Any proposition, whether a theorem, a defi-
nition or an axiom, must be introduced by this
macro. Its use requires ProofCheck to look for
a proof. Its syntax is \prop, followed by the
enumeration, followed by the proposition. For
example:

\prop 14.7 $(1 < 2)$

The \prop macro must be at the beginning
of a line. The enumeration is of the form n.m
where n and m are positive integers with n rep-
resenting the section or chapter number. The
proposition must be enclosed within TEX dollar
signs. References in a proof to other theorems
use the same n.m style and not LATEX labels.
When re-arrangement of theorems necessitates
renumbering, this is handled by a ProofCheck
program called renum. This program recognizes
LATEX section macros so that unless the sec-
tion counter is reset manually, consistency with
LATEX sectioning is maintained.

\note This macro is used to introduce an assertion
within the proof which can be referred to later
in the proof. The assertion may be the result of
telescoping multiple lines of proof, each having
an optional justification. The ProofCheck syn-
tax is \note, followed by the note enumeration,
followed by the (possibly multi-line) assertion.
Here the enumeration consists of a positive inte-
ger.

\By This macro is used at the end of a line to intro-
duce justification for the step. A note with a
single line of assertion may be justified by one
of the following:

\By G (Given) signals an assertion which is to
be accepted locally as a hypothesis. It

initiates a block of the proof within which
this hypothesis is in effect.

\By S (Set) indicates that the note is used to
locally define a variable for use in the proof.

\By .n H .m (Hence) where n is the number
of a note established using note m as a
Given, ends the block initiated by note
m. Such blocks are called Given-Hence
blocks. A Hence justification is typically
used to establish an assertion such as (p→
q) where p is note m and q is note n.

Notes with either a single line or more than
one line of assertion may be justified using other
notes and a .m enumeration or other proposi-
tions and n.m enumeration with punctuation as
shown in the sample proof. More discussion on
this syntax may be found in [4].

\Bye in addition to introducing a justification, sig-
nals the end of a proof and prints “Q.E.D.”.

\linea, \lineb, ... These begin a new line with
increasing degrees of indentation. They are not
proof macros per se but are used for any mathe-
matical expressions that need to go beyond one
line and need indentation. At present the parser
allows only these.

In section 7 the use of these macros in a sample
proof is shown.

6 Sample proof: Reader view

The simple proof in figure 1 is taken from a devel-
opment of the von Neumann model of the natural
numbers, ω, in which each natural number is the
set of the preceding natural numbers. The theorem
asserts that if y is an element of a natural number x
then y is a subset of x.

The first line of the proof defines a set A. This
note should be easy to read except for possibly the
quantifier notation and the classifier notation. No-
tational changes are discussed in section 9. The
second note translates the definition in note 1 into
a bi-conditional which is much more useful deduc-
tively. We often refer to steps that turn a definition
into one or more implications as “unwrapping” steps.
Explicit inclusion of such unwrapping steps is often
key in getting a proof to check. The stage is set for
an induction proof.

The theorem 4.7 referred to is just the standard
induction theorem:

(∅ ∈ A ∧
∧

x ∈ A(x ∈ A→ scsrx ∈ A)→ ω ⊂ A)

where “scsr x” denotes the successor of x. Its two
hypotheses are the base case which in this proof is
established in note 3 and the universalization of the

Bob Neveln and Bob Alps

TUGboat, Volume 30 (2009), No. 2 193

Theorem
4.8 (y ∈ x ∈ ω→ y ⊂ x)

Proof: To prove this by induction we begin
by letting A be the set of all x such that each element
y of x is a subset of x. We set
.1 (A ≡ Ex

∧
y ∈ x(y ⊂ x)) ‡S

It will follow from 4.7 that ω is a subset of A.
First we unwrap .1.
.2 (x ∈ A↔

∧
y ∈ x(y ⊂ x) ^ x ∈ U) ‡08.3;.1

Base Case (∅ ∈ A) .
.3 (∅ ∈ A) ‡.2;09.19,09.12

Induction Step (x ∈ A→ scsrx ∈ A) .

Given
.4 (x ∈ A) ‡G

We note first that
.5 (x ∈ U) ‡09.20;.4
.6

∧
y ∈ x(y ⊂ x) ‡.2;.4

Then we have
.7 (y ∈ scsrx→ y ∈ x _ y = x ‡3.7

→ y ⊂ x _ y = x ‡.6
→ y ⊂ x ‡011.14

→ y ⊂ scsrx) ‡011.10;(
3.5;(09.20;.4))

So we can conclude that
.8 (scsrx ∈ A) ‡.2;(3.3;.5),(.7 U)

Hence
.9 (x ∈ A→ scsrx ∈ A) ‡.8 H .4

This completes the proof that
.10 (ω ⊂ A) ‡4.7;.3,(.9 U)

The conclusion now follows quickly.
.11 (y ∈ x ^ x ∈ ω→ y ∈ x ^ x ∈ A ‡011.7;.10

→ y ∈ x ^
∧
y ∈ x(y ⊂ x) ‡.2

→ y ⊂ x)

Q.E.D. .11

Figure 1: Sample proof: DVI output

induction step established in note 9. This theorem is
invoked in the justification of note 10. In the proof of
the induction step, note 7 shows that any member y
of scsr x is a subset of scsr x. In note 8, we conclude
that scsr x is in A. In note 9 we join the hypothesis
from note 4 to the conclusion obtained in note 8.

Note 11 details the step from note 10 to the
theorem which is short but cannot be skipped. The
“Q.E.D. .11” at the end asserts that the theorem itself
follows from note 11.

7 Sample proof: Author view

In Figure 2 we have the LATEX source code for the
sample proof.

The first couple of lines of the sample proof
begin explaining the proof. Since they are not noted

they do not contribute to the check. But neither
do they get in the way of the check. Unchecked
text of any sort is admissible so long as it does not
interrupt mathematical expressions or interfere with
proof specification.

The reader will note that all the macros and
note justifications described in section 5 are used in
this sample proof. There is a Set statement in note 1,
a Given-Hence block in notes 4 through 9, and the
proof terminates with a \Bye macro.

Note 4 opens a Given-Hence block and estab-
lishes (x ∈ A) as a working hypothesis. Note 4 may
be referred to only within this Given-Hence block. A
Hence justification may close more than one Given
note, but each Given note must be explicitly closed
by a Hence justification. This Given-Hence block is
closed by note 9.

Note 7 is a multi-line note each line of which
has a justification. A reference to note 7 accesses the
telescoped result of the note which is

(y ∈ scsrx→ y ⊂ scsrx)

The \Bye line is justified by note 11. The tele-
scoped note 11 and the statement of the theorem
differ only notationally on the left side of the impli-
cation. A supplemental parser produces a canonical
version of each of the two left sides. These two ver-
sions turn out to be identical. Consequently the rule
of inference used here merely allows one to infer p
from p.

8 Proof checking

Each assertion within a note is checked individually
using end-of-line references to theorems and/or notes.
Each of these checks is done by submitting a formula
and the formulas referred to in its justification to a
rule matcher which conducts a simple linear search
of the list of inference rules. The search must find
a rule which unifies with the submitted formulas in
order for the check of the assertion to succeed.

In Figure 3 the rectangular boxes represent TEX
files whereas the unifier and the rule matcher are
Python scripts.

9 Working with ProofCheck files

The files rules.tex and common.tex contain the
rules of inference and common notions used as the
defaults for optional command line parameters of
the checking script. In adapting the common notions
to suit a particular mathematical interest, the file
common.tex may be modified or another file alto-
gether may be written. The same applies to the
file rules.tex should the use of another logic be
required. Both of these files require the inclusion
of many redundant forms of whatever principles are

ProofCheck: Writing and checking complete proofs in LATEX

194 TUGboat, Volume 30 (2009), No. 2

\noindent{}Theorem

\prop 4.8 $(y \in x \in \omega \c y \subset x)$

\lineb Proof: To prove this by induction we begin by

letting A be the set of all x such that each element y of x

is a subset of x. We set

\note 1 $(A \ident \setof x \Each y\in x(y\subset x))$ \By S

\linea It will follow from 4.7 that ω is a subset of A. First we unwrap .1.

\note 2 $(x \in A \Iff \Each y \in x (y \subset x) \And x \in \U)$ \By 08.3;.1

\lineb Base Case $(\e \in A)$~.

\note 3 $(\e \in A)$ \By .2;09.19,09.12

\lineb Induction Step $(x \in A \c \scsr x \in A)$~.

\linea Given

\note 4 $(x \in A)$ \By G

\linea We note first that

\note 5 $(x \in \U)$ \By 09.20;.4

\note 6 $\Each y \in x(y \subset x)$\By .2;.4

\linea Then we have

\note 7 $(y \in \scsr x \c y \in x \Or y = x$ \By 3.7

\lined $\c y \subset x \Or y = x$ \By .6

\lined $\c y \subset x $ \By 011.14

\lined $\c y \subset \scsr x)$ \By 011.10;(3.5;(09.20;.4))

\linea So we can conclude that

\note 8 $(\scsr x \in A)$ \By .2;(3.3;.5),(.7 U)

\linea Hence

\note 9 $(x \in A \c \scsr x \in A)$ \By .8 H .4

\linea This completes the proof that

\Note 10 $(\omega \subset A)$ \By 4.7;.3,(.9 U)

\linea The conclusion now follows quickly.

\Note 11 $(y \in x \And x \in \omega\c y \in x \And x \in A$ \By 011.7;.10

\lined $\c y \in x \And \Each y \in x(y \subset x)$ \By .2

\lined $\c y \subset x)$

\lineb \Bye .11

Figure 2: Sample proof: LATEX input

Inference
Rules

Common
Notions

Operator
Properties

TEX or LATEX
document

Unifier"!
�� �Rule Matcher

Figure 3: Main proof checking files

included, because in application many difference vari-
ations present themselves for unification. Additions
contrived with a single application in mind should
of course be avoided — making this distinction some-

times requires a non-trivial judgment. Building up
these files is time consuming.

On the other hand, changes consisting simply
of substituting one symbol for another are easily
accommodated.

Common notions Common notions comprise all
the definitions and theorems outside of the cur-
rent working document that are needed to prove
the theorems in the document. Two files common.
tex and common.ldf are used to store informa-
tion about common notions. The file common.

ldf stores TEX macros to represent various con-
stant symbols used to state the common notions,
whereas common.tex stores the definitions and
theorems themselves. If for example an author
wished to use the quantifier ‘∀’ instead of ‘

∧
’ the

definition of \Each in this file could be changed

Bob Neveln and Bob Alps

TUGboat, Volume 30 (2009), No. 2 195

as follows:

\def\Each{\mathop{\forall}}

This would change the output but still require
the use of the \Each macro in the source file.

Rules of inference Rules of inference include ba-
sic rules such as modus ponens and universal-
ization. The role played by rules of substitution
is subsumed by the unifier. The present au-
thors have supplemented the basic rules with
over 1000 additional rules. All the additional
rules are consequences of the logic we use. In
all but the most elementary settings, such an
expansion of the rule set is essential to keeping
proofs under a reasonable length. This file may
be populated according to the author’s accepted
logic. Each entry of the rules of inference file be-
gins with the formula to be proved, followed by
<=, followed by the formulas needed to prove it.
The entry for modus ponens has the following
form:

q <= (p→ q) ; p

Math and Logic Symbols The file equivmacros.
trf consists of a list of macro replacements made
prior to sending a term or formula from the au-
thor’s document to the parser. For example an
author who wanted to use \forall as the uni-
versal quantifier in the source file could include
a line in equivmacros.trf such as

forall Each

We will be happy to post any modifications of
files as described above on the ProofCheck website.

10 Conclusion

ProofCheck is a very simple system. As shown in
figure 3 it consists mainly of rules of inference, a

store of assumed elementary propositions, a slightly
enhanced unifier and a rule matching script. The
size of a download of the complete system from www.

proofcheck.org is less than one megabyte. The dis-
cussion of the proof language in section 5 approaches
a complete tutorial. We believe that the fact that
proofs can be checked with such a simple system
confirms the basic ideas on which it is based.

At the conclusion of [4] we asserted that com-
plete proofs done using ProofCheck required approx-
imately one order of magnitude more time to write
than a conventional proof, and about two or three
times as much space. Experience since then does
not lead us to revise these estimates significantly,
although the length of proofs has diminished slightly
due to the growth in the number of rules of inference.
We anticipate further progress.

References

[1] W. W. Bledsoe and E.J. Gilbert. Automatic
theorem proof-checking in set theory. Technical
Report SC-RR-67-525, Sandia Laboratories, July
1967.

[2] M. J. C. Gordon and T. F. Melham. Introduction
to HOL: A Theorem Proving Environment for
Higher Order Logic. Cambridge University Press,
Cambridge, 1993.

[3] A. P. Morse. A Theory of Sets. Academic Press,
second edition, 1986.

[4] Bob Neveln and Bob Alps. Writing and checking
complete proofs in TEX. TUGboat 28(1), 80–83,
2007.

[5] Piotr Rudnicki and Andrzej Trybulec. A collec-
tion of TEXed mizar abstracts. Technical Re-
port TR 89-18, University of Alberta, June 1989.
www.mizar.org/project/bibliography.html.

ProofCheck: Writing and checking complete proofs in LATEX

