
Ongoing efforts to generate “tagged PDF”
using pdfTEX

Ross Moore

Mathematics Department, Macquarie University, Sydney, Australia
ross@maths.mq.edu.au

Abstract. Recently PDF has been accepted as a standard for produc-
tion of electronic documents, as ISO 32000-1:2008, with an acronym of
PDF/UA (for “Universal Accessibility”). The second draft ISO 32000-
2:2009 is to include specifications for including MathML tagging of math-
ematical environments and expressions. This talk presents a report on
work-in-progress, aimed at:
(a) developing the primitive commands for pdfTEX needed to support

the production of fully tagged PDF documents;
(b) writing appropriate TEX and LATEX macros to make effective use of

the new primitives;
(c) authoring changes to internal LATEX structures to use these macros

automatically at appropriate places within the existing code-base for
LATEX.

This is work that is being undertaken together with Hàn Thé̂ Thành,
author of pdfTEX [2], who has added some new primitive commands to
an experimental version of this software tool.

1 Background

In July 2008, Adobe’s PDF Reference 1.7 [1] became ISO 32000 [4]. Since 2005,
the PDF Reference 1.4 has served as the basis for ISO 19005 [3], as an archival
format for technical documents. Both of these standards rely heavily on “Tagged
PDF”, so that not only is the content displayed at the highest quality, but also
its structure is provided, allowing for selective extraction of content and “reflow”
on small-screen devices (such as a PDA or modern mobile-phone), and screen-
reading perhaps in alternate languages. Work is under way on revision of ISO

19005, called PDF/A-2, to accommodate extra features introduced with PDF

1.5, 1.6 and 1.7. Furthermore, in November 2008 it was agreed that a revised
ISO 32000-2 should include tagging of the structure of mathematical expressions
and formulae, using MathML tags. It may take as long as 2–3 years before these
updated standards are released in their final form.

TEX and LATEX remain de facto standards for technical documents, par-
ticularly those having a large amount of mathematical content, though other
methods are starting to gain significant usage. Whilst PDF is the main output

Reprinted with permission from Ross Moore: Ongoing Efforts to Generate “Tagged
PDF” using pdfTEX. In: Petr Sojka (ed.): DML 2009, Towards a Digital Mathematics
Library, Masaryk University Press, pages 125–131, ISBN 978-80-210-4781-5.

170 TUGboat, Volume 30 (2009), No. 2

Ross Moore

Catalog 1

Pages

Page 101

Contents

Page 102

Contents

Contents 201

Contents 202

Pages 100

Kids [...]

StructTreeRoot

StructTreeRoot 300

K [...]

ClassMap

RoleMap

StructElem 301

P

K [...]

StructElem 302

P

Pg

K 0

StructElem 303

P

Pg

K [...]

StructElem 304

P

Pg

K [...]

Chap Head1 Para Para

Head 1 <<MCID 0>>

Para <<MCID 1>>

Para <<MCID 0>>

Para <<MCID 1>>

Para <<MCID 2>>

StructParents 0

StructParents 1

ParentTree

Parent tree 400

Nums [...] 401

 [...]

402

 [...]

ParentTreeNextKey

IDTree

403

Kids [...]

Fig. 1. Interleaving of structure and content tagging within a 2-page PDF doc-
ument, structured as a heading and two paragraphs. (based on an example in [1])

format for LATEX, there have been no automated methods to include the structure
and content tagging that the above standards require. Work being undertaken
here is aimed at providing this missing support when pdfTEX [2] is used as the
PDF-producing software. As well as requiring new primitive commands to mark
content and build the structure trees that are needed for this tagging, a large
amount of the LATEX codebase will need to be revised to take advantage of the
new features. In this paper and associated talk, examples are shown of work
done so far, towards this aim.

Section 2 gives an idea of how tagging in PDF works, indicating the com-
plexity of the extra structures that PDF-producing software needs to provide;
Figure 1 gives a schematic view of these structures, within a document having a
quite simple structure. On the other hand, MathML tagging generally requires a
much deeper structure tree. In Section 3 an example (see Figure 2) is presented,
showing how the MathML tagging is represented, using new TEX primitives and
within the PDF, such that it can then be faithfully exported to XML.

TUGboat, Volume 30 (2009), No. 2 171

Ongoing efforts to generate “tagged PDF” using pdfTEX

2 Tagging PDF documents

Figure 1 indicates the extra structures that need to be created when producing
“Tagged PDF”. The upper half of the image shows the kinds of object that are
needed to display a PDF file as a series of pages. These kinds of objects include:

(i) page content streams, which consist of the low-level commands to select
fonts and place text on the page — the blue boxes headed as ‘Contents . . . ’;

(ii) an indexing object for each page — the blue boxes headed as ‘Page . . . ’;
(iii) an indexing object, headed ‘Pages’ that acts as a parent for the collection

of ‘Page . . . ’ objects;
(iv) the previous object is a child of the ‘Catalog’, which is the root node for

the complete document structure.

With tagged PDF there is also a Structure Tree whose root node ‘StructTree-
Root’ is another child of the ‘Catalog’. This is itself the root node for a tree of
objects headed as ‘StructElem . . . ’, which describe the abstract structure of the
textual content of the document. Each ‘StructElem’ node has both references to
its children, and a back-pointer to its parent node within the Structure Tree.

To define the content that is encompassed within the structure, there need
to be references from the nodes of the Structure Tree to specific locations within
the ‘Contents’ streams. The locations are indicated by the (round) rectangles,
with arrows indicating how the structure relates to these. Extra arrows point
from structure nodes to ‘Page’ nodes, which help identify where the content can
be seen; that is, on which page does it (mostly) occur.

A second tree is linked-to from the ‘StructTreeRoot’; this is called the ‘Parent-
Tree’, containing a node for each physical page. These nodes are each an array of
references to all the ‘StructElem’ nodes that have content on the corresponding
page. There is a link from each ‘Page . . . ’ object to the ‘ParentTree’, which allows
the corresponding node to be easily located.

Finally a third ‘IDTree’ is an optional feature. Each ‘StructElem’ node can be
given a unique name. The ‘IDTree’ acts as the root node for a tree built up to
include arrays of these names, each paired with a pointer to the corresponding
‘StructElem’ node. This possibility of associating names to structure is for the
benefit of Application software that produces or manipulates PDF files. It can
use whatever naming scheme it likes to facilitate access to the kinds of structured
objects that it needs to work with.

Figure 1 is based on an example in the PDF Reference document [1]. The
structure it represents consists of a document section (chapter) having a heading
and a paragraph stretching across two pages, together with another paragraph.

3 MathML tagging within a PDF document

Figure 2 shows the effect of having a piece of mathematics tagged (using MathML

syntax) within a PDF document. The middle part of the image shows how the
page would appear within an Adobe Reader, or (in this case) Acrobat, browser.

172 TUGboat, Volume 30 (2009), No. 2

Ross Moore

This view is partly obscured by Acrobat’s ‘Order Panel’, which displays the tag-
ging of a mathematical expression, with an <mrow> selected. The corresponding
content is highlighted with rectangles back in the browser view. On the left side
we see the result of an ‘Export to XML 1.0’ action, writing the tagged contents
out into a text file. This export has included the mathematical symbols using
UTF8 format, so the correct Unicode Plane 1 “Mathematical Alphanumerics”
are shown within a text editor that supports the full Unicode range.

This example was produced using an experimental version of pdfTEX. The
fonts being used are from the Computer Modern family, which are the stan-
dard fonts that have traditionally been used with TEX and LATEX. Mappings
to Unicode Plane 1 characters are achieved using the LATEX package mmap.sty,
described within a recent TUGboat article [5].

Fig. 2. MathML tagging within a PDF document

The LATEX coding below shows part of what was used to produce the tagging
of mathematics shown in Figure 2. It shows how to use new primitive commands
\pdfstructelem, \pdfstartmarkedcontent and \pdfendmarkedcontent.

TUGboat, Volume 30 (2009), No. 2 173

Ongoing efforts to generate “tagged PDF” using pdfTEX

\pdfstructelem attr{/S /Formula} 3 27

\pdfstructelem attr{/S /math} 27 28

\pdfstructelem attr{/S /mrow} 28 29

\pdfstructelem attr{/S /msup} 29 30

\pdfstructelem attr{/S /mrow} 30 31

\pdfstructelem attr{/S /mo} 31 32

\pdfstartmarkedcontent attr{/ActualText(\050)

/Alt(, open bracket,)} 32 {mo}\biggl(\pdfendmarkedcontent

\pdfstructelem attr{/S /mi} 31 33

\pdfstartmarkedcontent attr{/Alt(alpha)}noendtext

33 {mi}\alpha \pdfendmarkedcontent

\pdfstructelem attr{/S /mo} 31 34

\pdfstartmarkedcontent attr{/Alt(plus)}noendtext

34 {mo}+ \pdfendmarkedcontent

...

The primitive \pdfstructelem requires two numbers specifying a unique
identifier for the structure node being created, preceded by the identifier of its
parent node, and attributes including the type of tag. Leaf nodes, constructed
with \pdfstartmarkedcontent, require the identifier of the parent structure
node. Their attributes can include /Alt text to be read by a screen-reader,
and an /ActualText alternative for text-extraction. The kind of node for a
mathematical symbol agrees with its parent structure node, (e.g., /mi, /mo or
/mn). This is followed by the TEX coding to produce a visual representation,
terminated by \pdfendmarkedcontent. Part of the PDF content stream resulting
from this coding is given below, showing how the tagging is interspersed with
positioning and font-changing commands, and the font characters themselves.

1 0 0 1 70.69 -23.949 cm

/mo <</MCID 15 /ActualText(\050) /Alt(, open bracket,)>>BDC

1 0 0 1 0 17.036 cm BT

/F1 9.9626 Tf/F18 1 Tf()Tj/F1 9.9626 Tf [(\040)]TJ ET EMC

1 0 0 1 7.887 -17.036 cm

/mi <</MCID 16 /Alt(alpha)>>BDC BT

/F11 9.9626 Tf/F18 1 Tf()Tj/F11 9.9626 Tf [(\013)]TJ ET EMC

1 0 0 1 6.41 0 cm

/mo <</MCID 17 /Alt(plus)>>BDC

1 0 0 1 2.214 0 cm BT

/F8 9.9626 Tf/F18 1 Tf()Tj/F8 9.9626 Tf [(+)]TJ ET EMC

This kind of coding, directly in pdfTEX primitives, is really only useful for
testing and “proof of concept” examples, such as Figure 2. Any mistake in the
numerical identifiers can result in a broken PDF that may appear to render
properly, but nevertheless crashes Acrobat due to a malformed structure tree.

Handling those numerical identifiers and parent relationships is something
better done using an extra layer of LATEX macros, as in the coding example
below. A \taginlinemath macro sets up an enclosing /Formula structure tag.
Presentation MathML structure is specified using \tagmathbranch. MathML

content tags are associated with TEX source using \tagmathbleaf, which has

174 TUGboat, Volume 30 (2009), No. 2

Ross Moore

an optional argument for spoken text. A variant \tagmathaleaf accommodates
/ActualText replacements for large delimiters and extended constructions which
require more than one glyph to display a single symbol.

\taginlinemath{%

\tagmathbranch{msup}{\storePDFparentID

\tagmathbranch{mrow}{%

\tagmathaleaf[, open bracket,]{mo}{/stretchy /false

/minsize(1.2em) /maxsize(1.2em)}{\050}{\bigl(}%

\tagmathbleaf[alpha]{mi}{}{\alpha}%

\tagmathbleaf[plus]{mo}{}{+}%

\tagmathbleaf[beta]{mi}{}{\beta}%

\tagmathaleaf[, close bracket,]{mo}{/stretchy /false

/minsize(1.2em) /maxsize(1.2em)}{\051}{\bigr)^{%

\adjustendcontent \tagmathbleaf[all squared,]{mn}{}{2}%

}%end of ^

}% </mo>

}% </mrow>

}% </msup>

...

In the above examples, the MathML tagging has been coded by hand to
get working LATEX source. Ultimately such markup, that interweaves MathML

tagging with TEX code, needs to be generated automatically. This will require
new coding structures called from modified expansions for existing LATEX internal
commands and environments (as used with paragraphs, headings, etc.), as well
as with mathematical environments. For math the proposed strategy is to write
the LATEX source of a complete environment to disk, run a 3rd-party MathML

converter to generate the tagging, then read the result back into the running job,
merging the two coded views of the same piece of mathematics. Any external
MathML converter could be used, provided it can be run as a command-line
program using TEX’s \write18 facility. Alternatively, if a MathML version is
already available for a piece of LATEX source, then this could be used instead.

References
1. Adobe Systems Inc.; PDF Reference 1.7, November 2006.

http://www.adobe.com/devnet/pdf/pdf_reference.html

2. Hàn Thé̂ Thành; Thesis — pdfTEX, published as: TUGboat, 21:4, (2000).
http://www.tug.org/TUGboat/Contents/contents21-4.html

3. ISO 19005-1:2005; Document Management — Electronic document file format for
long term preservation — Part 1: Use of PDF 1.4 (PDF/A-1).
http://www.iso.org/iso/catalogue_detail?csnumber=38920

4. ISO/DIS 32000; Document management — Portable document format (PDF 1.7),
July 2008. http://www.iso.org/iso/catalogue_detail?csnumber=51502

5. Moore, Ross R.; Advanced features for publishing mathematics, in PDF and on the
Web. TUGboat, 29:3, (2008), pp. 464–473.
http://www.tug.org/TUGboat/Contents/contents29-3.html

6. PDF/UA Universal Accessibility; websites at http://pdf.editme.com/pdfua and
http://www.aiim.org/Standards/article.aspx?ID=27861.

TUGboat, Volume 30 (2009), No. 2 175

Ongoing efforts to generate “tagged PDF” using pdfTEX

