
Putting the Cork back in the bottle— Improving Unicode support in TEX

Mojca Miklavec
Faculty of Mathematics and Physics, University of Ljubljana

Arthur Reutenauer
GUTenberg, France
http://tug.org/tex-hyphen

Abstract

Until recently, all of the hyphenation patterns available for different languages in
TEX were using 8-bit font encodings, and were therefore not directly usable with
UTF-8 TEX engines such as X ETEX and LuaTEX. When the former was included
in TEX Live in 2007, Jonathan Kew, its author, devised a temporary way to use
them with X ETEX as well as the “old” TEX engines. Last spring, we undertook to
convert them to UTF-8, and make them usable with both sorts of TEX engines,
thus staying backwardly compatible. The process uncovered a lot of idiosyncrasies
in the pattern-loading mechanism for different languages, and we had to invent
solutions to work around each of them.

1 Introduction

Hyphenation is one of the most prominent features
of TEX, and since it is possible to adapt it to many
languages and writing systems, it should come as no
surprise that there were so many patterns created
so quickly for so many languages in the relatively
early days of TEX development. As a result, the files
that are available often use old and dirty tricks, in
order to be usable with very old versions of TEX. In
particular, all of them used either 8-bit encodings or
accent macros (\’e, \v{z}, etc.); Unicode did not
yet exist when most of these files were written.

This was a problem when X ETEX was included
in TEX Live in 2007, since it expects UTF-8 input by
default. Jonathan Kew, the X ETEX author, devised
a way of using the historical hyphenation patterns
with both X ETEX and the older extensions of TEX:
for each pattern file 〈hyph〉.tex, he wrote a file called
xu-〈hyph〉.tex that detects if it is run with X ETEX
or not; in the latter case, it simply inputs 〈hyph〉.tex
directly, and otherwise, it takes actions to convert all
the non-ASCII characters to UTF-8, and then inputs
the pattern file.

To sum up, in TEX Live 2007, X ETEX used the
original patterns as the basis, and converted them
to UTF-8 on the fly.

In the ConTEXt world, on the other hand, the
patterns had been converted to UTF-8 for a couple of
years, and were converted back to 8-bit encodings by
the macro package, depending on the font encoding.

In an attempt to go beyond that and to unify
those approaches, we then decided to take over con-
versions for all the pattern files present in TEX Live
at that time (May 2008), for inclusion in the 2008
TEX Live release.

2 The new architecture

The core idea is that after converting the patterns
to UTF-8, the patterns are embedded in a structure
that can make them loadable with both sorts of TEX
engines, the ones with native UTF-8 support (X ETEX,
LuaTEX) as well as the ones that support only 8-bit
input.1

The strategy for doing so was the following: for
each language 〈lang〉, the patterns are stored in a file
called hyph-〈lang〉.tex. These files contain only the
raw patterns, hyphenation exceptions, and comments.
They are input by files called loadhyph-〈lang〉.tex.
This is where engine detection happens, such as this
code for Slovenian:
% Test whether we received one or two arguments
\def\testengine#1#2!{\def\secondarg{#2}}
% We are passed Tau (as in Taco or TEX,
% Tau-Epsilon-Chi), a 2-byte UTF-8 character
\testengine T!\relax
% Unicode-aware engines (such as XeTeX or LuaTeX)
% only see a single (2-byte) argument
\ifx\secondarg\empty
\message{UTF-8 Slovenian Hyphenation Patterns}
\else
\message{EC Slovenian Hyphenation Patterns}
\input conv-utf8-ec.tex
\fi
\input hyph-sl.tex

The only trick is to make TEX look at the Uni-
code character for the Greek capital Tau, in UTF-8
encoding: it uses two bytes, which are therefore read
by 8-bit TEX engines as two different characters; thus

1 A note on vocabulary: in this article, we use the word
“engine” or “TEX engine” for extensions to the program TEX,
in contrast to macro packages. We then refer to (TEX) en-
gines with native UTF-8 support as “UTF-8 engines”, and to
the others as “8-bit engines”, or sometimes “legacy engines”,
borrowing from Unicode lingo.

454 TUGboat, Volume 29 (2008), No. 3—Proceedings of the 2008 Annual Meeting



Putting the Cork back in the bottle— Improving Unicode support in TEX

the macro \testengine sees two arguments. UTF-8
engines, on the other hand, see a single character
(Greek capital Tau), thus a single argument before
the exclamation mark, and \secondarg is \empty.

If we’re running a UTF-8 TEX engine, there is
nothing to do but to input the file with the UTF-8
patterns; but if we’re running an 8-bit engine, we
have to convert the UTF-8 byte sequences to a single
byte in the appropriate encoding. For Slovenian, as
for most European languages written in the Latin
alphabet, it happens to be T1. This conversion is
taken care of by a file named conv-utf8-ec.tex in
our scheme. Let’s show how it works with these three
characters:2

• ‘č’ (UTF-8 〈0xc4, 0x8d〉, T1 0xa3),
• ‘š’ (UTF-8 〈0xc5, 0xa1〉, T1 0xb2),
• ‘ž’ (UTF-8 〈0xc5, 0xbe〉, T1 0xba).

In order to convert the sequence 〈0xc4, 0x8d〉
to 0xa3, we make the byte 0xc4 active, and define it
to output 0xa3 if its argument is 0x8d.3 The other
sequences work in the same way, and the extracted
content of conv-utf8-ec.tex is thus:4

\catcode"C4=\active
\catcode"C5=\active
%
\def^^c4#1{%
\ifx#1^^8d^^a3\else % U+010D
\fi}
%
\def^^c5#1{%
\ifx#1^^a1^^b2\else % U+0161
\ifx#1^^be^^ba\else % U+017E
\fi\fi}
% ensure all the chars above have valid lccode’s:
\lccode"A3="A3 % U+010D
\lccode"B2="B2 % U+0161
\lccode"BA="BA % U+017E

As the last comment says, we also need to set
non-zero \lccodes for the characters appearing in
the pattern files, a task formerly carried out in the
pattern file itself.

The information for converting from UTF-8 to
the different font encodings has been retrieved from
the encoding definition files for LATEX and ConTEXt,
and gathered in files called 〈enc〉.dat. The converter
files are automatically generated with a Ruby script
from that data.

2 The only non-ASCII characters in Slovenian.
3 The same method would work flawlessly if the sequence

contained three or more bytes—although this case doesn’t
arise in our patterns— since the number of bytes in a UTF-8
sequence depends only on the value of the first byte.

4 Problems would happen if a T1 byte had been made
active in that process, but for reasons inherent to the history
of TEX font encodings, as well as Unicode, this is never the
case for the characters used in the patterns, a fact the authors
consider a small miracle. The proof of this is much too long
to be given in this footnote, and is left to the reader.

Here is a table of the encodings we support:
ConTEXt LATEX Comments
ec T1 “Cork” encoding
il2 latin2 ISO 8859-2
il3 latin3 ISO 8859-3
lmc lmc montex (Mongolian)
qx qx Polish
t2a t2a Cyrillic

2.1 Language tags: BCP 47 / RFC 4646

A word needs to be said about the language tags we
used. As a corollary to the completely new naming
scheme for the pattern files and the files surround-
ing them, we wanted to adopt a consistent naming
policy for the languages, abandoning the original
names completely, because they were problematic
in some places. Indeed, they used ad hoc names
which had been chosen by very different people over
many years, without any attempt to be systematic;
this has led to awkward situations; for example, the
name ukhyphen.tex for the British English patterns:
while “UK” is easily recognized as the abbreviation
for “United Kingdom”, it could also be the abbrevi-
ation for “Ukrainian”, and unless one knows all the
names of the pattern files by heart, it is not possible
to determine what language is covered by that file
from the name alone.

It was therefore clear that in order to name files
that had to do with different languages, we had to
use language codes, not country codes. But this was
not sufficient either, as can be seen from the example
of British English, since it’s not a different language
from English.

Upon investigation, it turned out that the only
standard able to distinguish all the patterns we had
was the IETF “Best Current Practice” recommenda-
tion 47 (BCP 47), which is published as RFC docu-
ments; currently, it’s RFC 4646.5 This addresses all
the language variants we needed to tag:
• Languages with variants across countries or re-

gions, like English.
• Languages written in different scripts, like Ser-

bian (Latin and Cyrillic).
• Languages with different spelling conventions,
like Modern Greek (which underwent a reform
known as monotonic in 1982), and German (for
which a reform is currently happening, started
in 1996).

5 In the past, it has been RFC 1766, then RFC 3066,
and is currently being rewritten, with the working title RFC
4646bis. RFC 4646 is available at ftp://ftp.rfc-editor.
org/in-notes/rfc4646.txt, and the current working ver-
sion of RFC 4646bis (draft 17) at http://www.ietf.org/
internet-drafts/draft-ietf-ltru-4646bis-17.txt.

TUGboat, Volume 29 (2008), No. 3—Proceedings of the 2008 Annual Meeting 455



Mojca Miklavec and Arthur Reutenauer

A list of all the languages with their tags can
be found in appendix A.

3 Dealing with the special cases

There were so many special cases that one might say
that the generic case was the special one!

3.1 Pattern files designed for
multiple encodings

The first problem we encountered was with patterns
that tried to accommodate both the OT1 and the T1
encoding in the same file.

The first language for which this had been done
was, historically, German, and the same scheme was
subsequently adopted for French, Danish, and Latin.
The idea is the following: in each of these languages,
there are characters that are encoded at different
positions in OT1 and in T1; for German, it is the
sharp s ‘ß’; for French, it is the character ‘œ’, etc. In
order to deal with that, each pattern that happened
to contain one of these characters was duplicated
in the file, with intricate macros to ignore them
selectively, depending on the font encoding used.

This would have been very awkward to repro-
duce in our architecture, if at all possible: it would
have meant that each word such as, say, “cœur” in
French would need to yield two different byte strings
in 8-bit mode, for OT1 and T1 (cˆˆ1bur and cˆˆf7ur,
respectively). We therefore decided to put the du-
plicate patterns in a separate file called spechyph
-〈lang〉-ot1.tex that is input only in legacy mode,
after the main file hyph-〈lang〉.tex.

The patterns packaged in this fashion should
therefore behave in the same way as the historical
files, enabling a few breakpoints with non-ASCII
characters in OT1 encoding. We would like to stress,
though, that OT1 is definitely not the way to go for
these languages. We only supported this behaviour
for the sake of compatibility, but we doubt it is very
useful: if one uses OT1 for German or French, one
would indeed have a few patterns with ‘ß’ or ‘œ’,
respectively, but many more patterns, with accented
characters, would be missed. In order to take full
advantage of the hyphenation patterns, one needs to
use T1 fonts.

It has to be noted that in addition, we ended
up not using the aforementioned approach in the
case of German, because we wanted to account for
the ongoing work to improve the German patterns;
thus, we decided to use the new patterns with the
UTF-8 engines, but not with the 8-bit engines, for
compatibility reasons. In the latter case, we simply
include the original pattern file in T1 directly, with
no conversion whatsoever. For the three other lan-

guages, though (French, Danish and Latin), we used
a spechyph-〈lang〉-ot1.tex file.

3.2 Multiple pattern sets for the
same language

Another interesting issue was with Ukrainian and
Russian, where different complications arose.

First, the pattern files were also devised for mul-
tiple encodings, but in a different manner: here, the
encoding is selected by setting the control sequence
\Encoding before the pattern file is loaded. De-
pending on the value of that macro, the appropriate
conversion file is then input, that works in the same
way as our conv-utf8-〈enc〉.tex files. There is of
course a default value for \Encoding, which for both
languages is T2A,6 the most widespread font encod-
ing for Russian and Ukrainian, and the one used in
the pattern files; thus, no conversion is necessary if
\Encoding is kept to its default value.

Then, both Russian and Ukrainian had several
pattern files, with different authors and/or hyphen-
ation rules (phonetic, etymological, etc.). Those were
selected with a control sequence called \Pattern, by
default as for Russian (by Aleksandr Lebedev), and
mp for Ukrainian (by Maksym Polyakov).

Both those choices could, of course, be overrid-
den only at format-building time, since the patterns
are frozen at that moment.

Finally, they used a special trick, implemented
in file hypht2.tex, to enable hyphenation inside
words containing hyphens, similar to Bernd Raichle’s
hypht1.tex for T1 fonts.

Those three features had to be addressed in very
different ways in our structure: while the first one
was irrelevant in UTF-8 mode, it would have implied
fundamental changes in our loadhyph-〈lang〉.tex
files for 8-bit engines, since the implicit assumption
that any language uses exactly one 8-bit encoding
would no longer be met. The second feature was eas-
ier to handle, but still demanded additional features
in our loadhyph-〈lang〉.tex files. Finally, the third
feature, although certainly very interesting, seemed
more fragile than what we felt was acceptable.

Upon deliberation, we then decided to not in-
clude those features in the UTF-8 patterns before
TEX Live 2008 was out, but to still enable them in
legacy mode, in order to ensure backward compat-
ibility. And thanks to subsequent discussions with
Vladimir Volovich, who devised the way the Russian
patterns were packaged, and inspired the Ukrainian
ones, we could include a list of hyphenated compound
words which we put in files called exhyph-ru.tex

6 Actually t2a, lowercase.

456 TUGboat, Volume 29 (2008), No. 3—Proceedings of the 2008 Annual Meeting



Putting the Cork back in the bottle— Improving Unicode support in TEX

and exhyph-uk.tex, respectively. The strategy we
used is thus:

• In UTF-8 mode, input the UTF-8 patterns, then
the ex- file.
• In legacy mode, simply input the original pat-

tern file directly.

Therefore, the only feature missing, overall, in
TEX Live 2008, is the ability to choose one’s favorite
patterns in UTF-8 mode: for each language, we only
converted the default set of patterns to UTF-8. Set-
ting \Pattern will thus have no effect in this case,
but it will behave as before in 8-bit mode. Now that
TEX Live 2008 has been released we intend to change
that behaviour soon, and to enable the full range of
features that the original pattern files had.

It should also be noted that in TEX Live 2007,
Bulgarian used the same pattern-loading mechanism,
but that there was actually only one possible encod-
ing, and only one pattern file, so there was no real
choice, and it was therefore straightforward to adapt
the Bulgarian patterns to our new architecture.

4 TEX Live 2008

The result of our work has been put on CTAN under
the package name hyph-utf8, and is the basis for
hyphenation support in TEX Live 2008. We don’t
consider our work to be finished (see next section),
and we welcome any discussion on our mailing-list
(tex-hyphen@tug.org). We also have a home page
at http://tug.org/tex-hyphen, to which readers
are referred for more information.

The package has been released in the TDS layout,
with the TEX files in tex/generic/hyph-utf8 and
subdirectories. The encoding data and Ruby scripts
are available in source/generic/hyph-utf8. Some
language-specific documentation has been put in
doc/generic/hyph-utf8.

5 And now . . .

There still are tasks we would like to carry out: the
hypht1.tex / hypht2.tex behaviour has already
been mentioned, and one of the authors has lots of
ideas on how to improve Unicode support yet more
in UTF-8 TEX engines.

We appeal to pattern authors to make contact
with us in order to improve and enhance our package;
many of them have already communicated with us,
to our greatest pleasure, and we’re confident that
our effort will be understood by all the developers
dealing with language-related problems.7

7 The acknowledgement section, had it been as long as the
authors would have wished it to be, would have more than
doubled the size of this article.

Among the immediate and practical problems
is, in particular:

5.1 . . . for something completely different

Babel would need to be enhanced in order to enable
different “variants” for at least two languages. One is
Norwegian, for which two written forms exist, known
as “bokm al” and “nynorsk” (ISO 639-1 nb and nn,
respectively).8 At the moment, Babel has only one
“Norwegian” language. The second is Serbian, which
can be written in both the Latin and the Cyrillic
alphabets; these possible variants which are not yet
taken into account in Babel.

6 Acknowledgements

First and foremost, we wish to thank wholeheartedly
Karl Berry, who supported the project from the
beginning and guided us with advice, as well as
Hans Hagen, Taco Hoekwater and Jonathan Kew,
for their technical help, and, finally, Norbert Preining,
who went through the trouble of integrating the new
package into TEX Live.

Appendix A List of supported languages
ar Arabic la Latin
fa Farsi mn-cyrl Mongolian
eu Basque mn-cyrl-x-2a Mongolian (new

patterns)
bg Bulgarian no Norwegian

cop Coptic nb Norwegian
Bokm al

hr Croatian nn Norwegian
Nynorsk

cs Czech zh-latn Chinese Pinyin
da Danish pl Polish
nl Dutch pt Portuguese
eo Esperanto ro Romanian
et Estonian ru Russian
fi Finnish sr-latn Serbian, Latin

script
fr French sr-cyrl Serbian, Cyrillic

script
de-1901 German, “old”

spelling
sh-latn Serbo-Croatian,

Latin script
de-1996 German, “new”

spelling
sh-cyrl Serbo-Croatian,

Cyrillic script
el-monoton Monotonic Greek sl Slovene
el-polyton Polytonic Greek es Spanish

grc Ancient Greek sv Swedish
grc-x-ibycus Ancient Greek,

Ibycus
encoding

tr Turkish

hu Hungarian en-gb British English
is Icelandic en-us American

English
id Indonesian uk Ukrainian
ia Interlingua hsb Upper Sorbian
ga Irish cy Welsh
it Italian

8 The ISO standard also includes a code for “Norwegian”,
no, although this name is formally ambiguous.

TUGboat, Volume 29 (2008), No. 3—Proceedings of the 2008 Annual Meeting 457


