
OpenType fonts in LuaTEX

Taco Hoekwater
http://luatex.org

Abstract

Since the start of February 2007, LuaTEX has supported the use of OpenType
fonts directly, without the need for separate metrics and font map files. This talk
will explain and demonstrate how this works in practice.

1 Introduction

This is an updated version of the paper that was in
the preprint. There has been considerable progress
in the time between the preprint (early April) and
now (early August). The current paper documents
the state of affairs in LuaTEX 0.10, the first public
beta.

2 OpenType fonts in LuaTEX

If you want to do typesetting with TEX, you have to
get the required font metric information from some-
where. METAFONT- or fontinst-based fonts typi-
cally come as a set of TFM and VF files, and for
those, LuaTEX behaves in a way that is backward
compatible with any other traditional version of TEX.

But loading metrics for OpenType (.otf) and
TrueType (.ttf and .ttc) fonts can also be done
through a Lua extension interface, in which case
there is no need for TFM, VF, ENC, and MAP files.
Instead, you (or more precisely, a macro package
writer) has to write a bit of Lua code.

There are two separate parts to this process,
that will be explained in turn in the next para-
graphs:

1. You have to make LuaTEX use the Lua exten-
sion interface instead of the compatibility mode
metrics loading, by setting up a Lua callback.

2. You have to write the necessary Lua code to
make it possible for LuaTEX to use the Open-
Type fonts you have installed.

3 Font definitions through Lua callbacks

Installing ‘callbacks’ is one of the most important
concepts in LuaTEX. A callback is what we call
the situation whereby LuaTEX is instructed to run
a user-supplied Lua function instead of a bit of in-
ternal compiled code. A few dozen of these intercep-
tion points are defined at this time, and they have
all been given names.

You install a callback by connecting a Lua func-
tion to one of these names. For this purpose, there
is a predefined ‘register’ Lua function provided. The

most relevant callback for font definitions is named
‘define font’, and it could be set up like so:
\directlua0 {

function read_font (name, size, fontid)

local file = kpse.find_file (name, ’tfm’)

local metrics = font.read_tfm (file, size)

return metrics

end

callback.register(’define_font’, read_font)

}

This example first defines a function to do the work
(read_font), and then registers that function as a
callback. The function does essentially the same
as what TEX would have done without any call-
back. It uses the functions kpse.find_file and
font.read_tfm, which are predefined helper func-
tions.

When LuaTEX next runs into a \font com-
mand, it will gather the user-supplied font name
and size specification, and pass those values on to
the Lua function read_font as the first two argu-
ments. The task of read_font is to create a data
structure (in Lua this is called a ‘table’) that con-
tains the metric information needed for typesetting
in the font name loaded at size size.

The internal structure of the Lua table that is
to be returned by read_font is explained in detail
in the LuaTEX manual. Fortunately for the length
of the example, that structure is a super-set of the
structure returned by font.read_tfm, so it can just
be passed along without further manipulation.

In the example you can see that there is a third
argument to read_font, ignored in this case. Lua-
TEX also passes the internal id number of the font
that is going to be defined. This is because, in macro
packages, it is not abnormal for the same font to be
defined more than once using the same name and
size specification, so instead of returning a Lua ta-
ble defining the metrics for a font, it is also legal to
return just a number, referencing the fontid of an
already defined font. That way, you could set up a
lookup table of already defined fonts.

34 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007



OpenType fonts in LuaTEX

4 Handling OpenType fonts

There is a Lua module included in LuaTEX that can
be used to read a font’s metrics from the disk, using
the font reading code from the open source program
FontForge.

The contents of this module are available in the
Lua table named fontforge. Using it, the basic way
to get the metric information is like this:
function load_font (filename)
local metrics = nil
local font = fontforge.open(filename)
if font then

metrics = fontforge.to_table(font)
end
return metrics

end

This code first loads the font into program mem-
ory with fontforge.open, and then converts it to
a Lua table by calling fontforge.to_table.

The font file is parsed and partially interpreted
by the font loading routines from FontForge. The
file format can actually be any one of OpenType,
TrueType, TrueType Collection, CFF, or Type 1.

There are a few important advantages to using
this approach with a dedicated Lua module, com-
pared to having a single dedicated helper function
to read an OpenType font file:

• The internal font encoding is automatically pro-
cessed, so that the returned metrics table also
contains the Unicode encoding information for
all the included glyphs.

• Many OpenType features are pre-processed into
a format that is easier to handle than just the
bare feature tables would be.

• And looking at it from the other side: it is
still possible to completely alter any feature you
want to change, as nothing at all is hardwired
in the executable.

• PostScript-based fonts do not store the charac-
ter height and depth in the font file (in Type 1
fonts, this information is in the AFM file, in
CFF fonts it is not present at all). For CFF

fonts, this means that the character bounding
box has to be properly calculated, a task that
is handled internally by FontForge.

• In the future, it may be interesting to allow
Lua scripts access to the actual font program,
perhaps even creating or changing a font file
itself.
However, there is also a downside: the data

structure of the table returned by the OpenType
reading routines is very low-level and very close to
the internal format used by FontForge itself.

This means that it is not compatible with the
table structure required by the font definition call-
back, so some modifications to the structure are
needed before the table can be passed on to Lua-
TEX proper. This area is still under development.
We plan to provide a set of helper functions for this
task eventually but for the moment, this has to be
done by Lua code you write yourself.

To finish off this introduction, here is a small
peek into the table returned by fontforge.open.
What follows is a human-readable representation of
the ligature glyph for ‘fi’ in the font lmroman10-
regular.otf:
{
["boundingbox"]={ 27, 0, 527, 705 },
["lookups"]={
["ls_l_10_s"]={
{
["specification"]={
["char"]="f_i",
["components"]="f i",
},
["type"]="ligature",
},

},
},
["name"]="f_i",
["unicodeenc"]=64257,
["width"]=556,
}

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 35


