
166 TUGboat, Volume 25 (2004), No. 2

Automatic typesetting of formulas using
computer algebra

Marcelo Castier and Vladimir F. Cabral

Abstract

This paper describes new procedures, written in the
MathematicaR© programming language, for quickly
typesetting mathematical formulas in LATEX syntax.
Two main procedures provide direct interface with
the user. The first of them obtains the LATEX repre-
sentation of a single formula. The second procedure
analyzes a set of formulas, searching for common
terms and symmetries, and breaks the original for-
mulas input by the user in a series of calculations of
intermediate terms. In either case, a list of symbols
used in the formulas is automatically generated in
LATEX format. The procedures may speed up the
writing of technical publications and eliminate com-
mon sources of error in their preparation.

Introduction

Several current tools can assist preparation of tech-
nical documents using computers. Voice recognition
software such as ViaVoice™ and Dragon Naturally-
SpeakingR© transform speech directly into typeset
text with good accuracy. Literature references can
be downloaded from databases, and software such
as Natbib, Reference ManagerR©, and ProCiteR© will
format them according to the rules of many scientific
journals. Cross-referencing of tables, equations, and
figures eliminates the need for their manual renum-
bering, if the manuscript has to be modified. How-
ever, authors usually typeset mathematical formulas
manually, which can be tedious and time-consuming
due to the need for careful reviews of complex ex-
pressions.

In fact, it may be more difficult to guarantee
the correctness of a formula typeset for publication
than its programmed version in a scientific language,
such as Fortran or C. In the latter case, numerical
tests can help locate programming errors. On the
other hand, the verification of formulas typeset for
publication is generally made by visual inspection.

An additional aspect related to typesetting for-
mulas for publication is the preparation of lists of
symbols. It is not unusual to find publications in
which some symbols are missing from these lists.

Modern computer algebra systems (CAS), such
as Maple™ and Mathematica, provide a user-friendly
environment for symbolic computations, allowing
the derivation of complex formulas. Moreover, both
Maple and Mathematica have commands for export-
ing formulas to other programs in different formats.

Therefore, they have the basic functionality needed
for the automatic implementation of formulas, which
has been used by some authors.

Motivated by the difficulty of manual sym-
bolic computations in the area of general relativity,
Klioner (1998) used Mathematica to develop a pro-
gram for operations with indexed objects that can
provide its results in TEX or LATEX. Piecuch (1993)
and Strange et al. (2001) used Maple to obtain LATEX
code in applications to problems in quantum chem-
istry. Maple was also used by Sharf (1996) for the
generation of LATEX code in the analysis of beam
elements for the simulation of multibody systems.
Weinzierl (2004) describes a new CAS, called gTy-
balt, which is freely available and has the possibility
of producing TEX output. However, some opera-
tions, such as integration, are not implemented yet,
which currently limits the applicability of the pro-
gram. Talole and Pradke (2003) developed a pro-
gram that exports text, numerical data, and plots
from a MatlabR© calculation to a LATEX document.
An important contribution in this area is the de-
velopment of Mathscape (Barnett, 1998), which is
a program in Mathematica for the automatic type-
setting of formulas in LATEX whose features are in
many ways complementary to those available in the
set of procedures presented here.

In this paper, we use Mathematica, and the
comments henceforth about the ability to export
formulas are limited to this CAS. Mathematica can
export formulas as images, or in MathML or TEX
formats. The use of images is inconvenient because
some final editing of the formulas is often required.
The MathML or TEX codes cannot be used as input
in the current versions of MicrosoftR© Equation Ed-
itor or MathType™, which are the most commonly
used equation editors for Microsoft Word. There-
fore, the exchange of formulas between Mathematica
and these editors that have graphical user interfaces
is less flexible than would be desirable.

Use of MathML will probably spread in the fu-
ture as a way of interchanging information about
physical properties and models for their evaluation
(Frenkel et al., 2004). However, we focus on the use
of TEX or LATEX directly, because the latter is the
de facto standard used internally by many technical
publishers. Mathematica has a command to gen-
erate the representation of a formula in TEX. Al-
though very useful, this command only takes one
formula at a time and does not generate the list of
symbols, among other limitations.

Here, we present two new procedures. The first
generates LATEX code for a single formula. The sec-
ond procedure performs a simultaneous analysis of

TUGboat, Volume 25 (2004), No. 2 167

several formulas, identifies their common and sym-
metrical terms, and obtains the LATEX representa-
tion as a sequence of intermediate formulas, thereby
breaking the original expressions input by the user
into a form that is more convenient for presenta-
tion. Both procedures automatically prepare a list
of symbols, also coded in LATEX, classifying them as
Roman or Greek letters, or indexes.

These new procedures extend the capabilities
of Thermath (Castier, 1999), a program whose cur-
rent version contains approximately 6000 lines of
code written in the Mathematica programming lan-
guage. The original purpose of Thermath was the
computer implementation of thermodynamic mod-
els for the calculation of physicochemical properties
of mixtures, by providing complete subroutines au-
tomatically written in a scientific programming lan-
guage. In a typical application, given a thermody-
namic model, several properties are derived using
computer algebra for operations such as derivation
and integration in a Mathematica session. It of-
ten happens that the derived properties have for-
mulas that are longer and more complex than the
thermodynamic model that originates them. Us-
ing its internal procedures, Thermath analyzes these
formulas and implements them automatically in a
complete subroutine, with a drastic reduction in the
need for manual coding.

Thermath has been extended to other applica-
tions such as the automatic implementation of ex-
pressions (Dominguez et al., 2002) in a format com-
patible with the INTBIS/INTLIB package for solv-
ing sets of nonlinear equations with interval analysis
(Kearfott and Novoa, 1990), and the preparation of
code for the simulation of separation equipment in
the chemical industry (Alfradique et al., 2002).

The new procedures presented in this paper add
the possibility of aiding in the preparation of techni-
cal documents, not only related to physicochemical
properties but in many areas that require the man-
ual typesetting of long formulas. These procedures
perform extensive and intricate symbol manipula-
tions in the expressions. Here, we present only a
general description, and refer to the code, which is
available from the authors on request, for all the
details.

Automatic generation of LATEX code for a
single formula

Mathematica has a function called TeXForm that
translates formulas into TEX syntax. Let us illus-
trate its usage with the typesetting of a simple for-
mula: the van der Waals equation of state. Given
that the emphasis here is not on the technical as-

pects of the equation of state, we refrain from dis-
cussing the meaning of its symbols. The TeXForm
function is used as follows:
TeXForm[P == R*T/(v - b) - a/v^2]

This command produces one line of output, bro-
ken here in additional lines only to fit the column
width of TUGboat, as also done in some of the other
examples of this paper.
P = -\left(\frac{a}{v^2} \right) +

\frac{R\,T}{-b + v}

This output, obtained in a Mathematica ses-
sion, can be cut and pasted into a document. Even
though this certainly reduces the need for manual
typesetting, several improvements are possible, such
as automatically assigning a label to the formula for
cross-referencing and generating a list of symbols.

Thermath contains a procedure, prinTeX, that
performs several actions: (1) prepares lines that load
the LATEX breqn package for the automatic break-
ing of long formulas in several lines; (2) prepares
an equation label containing six randomly generated
digits; (3) identifies all the symbols that appear in
the equation, classifying them as Roman or Greek
letters or indexes; (4) implements the formula using
the Mathematica function TeXForm. The verbatim
input in Mathematica is:
prinTeX[P == R*T/(v - b) - a/v^2]

The verbatim LATEX code obtained as output is:
%

%The following lines should be placed after the

%\documentclass {class} line

%in the LATEX file.

%

\usepackage[cmbase]{flexisym}

\usesymbols{msabm}

\usepackage[debug]{breqn}

\setkeys{breqn}{compact}

%

%The following lines should be placed where

%the formula should appear in the text.

%

\begin{dmath}\label{e:eqn485282}

P = -\left(\frac{a}{v^2} \right) +

\frac{R\,T}{-b + v}

\end{dmath}

%

%The following lines create the list of symbols.

%

\section*{List of Symbols}

%

%

\subsection*{Roman Letters}

%

168 TUGboat, Volume 25 (2004), No. 2

a \\

b \\

P \\

R \\

T \\

v \\

%

%The list of symbols was successfully created.

The parts of this output, i.e., the loading com-
mands for breqn, the formula, and the list of symbols
can then be cut and pasted at their proper positions
in a LATEX document. For example, the loading com-
mands for breqn were pasted at the beginning of the
LATEX document of this paper for TUGboat. The
formula and the list of symbols were pasted here.
Due to differences between the ltugboat document
class used by TUGboat and the elsart document
class from Elsevier, used for testing the software,
it was necessary to manually add a \newline com-
mand in the line after the subsection names to im-
prove formatting. Upon processing with the LATEX
compiler, the following text is obtained:

(1)P = −
(a

v2

)
+

R T

−b + v

List of Symbols

Roman Letters
a
b
P
R
T
v

If several formulas are prepared using prinTeX,
the loading commands for breqn need to be pasted
only once at the beginning of the LATEX document
and the lists of symbols of each formula have to be
manually combined to consolidate the list of symbols
of the document, which most commonly constitutes
one of the final sections of technical papers.

Even though Equation 1 is correct, this ex-
ample also illustrates one of the difficulties with
CAS. Comparing the input and output, we observe
that Mathematica interchanges the order of the two
terms in the right hand side of the equation and
does the same in the denominator (v−b). Therefore,
the formula is not printed as usually represented in
the literature. Unfortunately, there seems to be no
straightforward solution to this problem in Mathe-
matica. Barnett (1998) developed a function called
toEach, in the context of Mathscape, that can re-
verse the order of operations, but this function was
not tested here. Instead, we circumvented the prob-

lem by using the command HoldForm, which keeps
an expression unevaluated and therefore not subject
to the automatic reordering of terms performed by
Mathematica. The corresponding input is:
prinTeX[HoldForm[P == (R*T)/(v - b) - a/v^2]]

After processing this input with the LATEX com-
piler, the traditional representation of the van der
Waals equation of state is obtained:

(2)P =
R T

v − b
− a

v2

The list of symbols remains unchanged and, for
this reason, is not presented.

Let us consider a more complex example, which
requires integration of the van der Waals equation
of state at constant temperature. The Mathematica
input is:
P = (R*T)/(v - b) - a/v^2

prinTeX[W == HoldForm[Integrate[P,

{v,alpha, beta}]] ==

Simplify[Integrate[P, {v, alpha, beta}]]]

The output is:

(3)
W =

∫ β

α

P dv = a

(
−

(
1
α

)
+

1
β

)
+ R T ln

(
b− β

−α + b

)
List of Symbols

Roman Letters
a
b
R
T
W

Greek Letters
α
β

Note that the command HoldForm leaves the in-
tegral unevaluated between the two equal signs. The
list of symbols now contains a subsection where the
two Greek letters used as integration limits are iden-
tified. A current limitation of the pattern matching
procedure implemented in prinTeX is that it does
not identify dummy variables. For instance, v is a
dummy integration variable, and it is not included
in the list of symbols.

Automatic generation of LATEX code for
multiple formulas

In many cases, several formulas are derived using
computer algebra during a Mathematica session,
and instead of generating LATEX code for each for-
mula, it may be more convenient to generate code

TUGboat, Volume 25 (2004), No. 2 169

for all of them simultaneously. For this, we de-
veloped two procedures that are used sequentially:
ordeqTeX and createTeX.

Procedure ordeqTeX analyzes the expressions
to be represented in LATEX. During this analysis,
subexpressions that appear several times are recur-
sively identified and ordered, in such a way that a
meaningful calculation sequence of subexpressions is
obtained. The procedure also searches for subex-
pressions with symmetrical indexes. In addition,
ordeqTeX can sort the subexpressions according to
their dependence with respect to a list of variables
input by the user, which may be useful for authors
writing about the functional structure of their for-
mulas.

Procedure ordeqTeX is similar to a procedure
already present in the first version of Thermath,
ordeq, whose logical analysis of expressions is dis-
cussed by Castier (1999). An important difference
between them is the level of fragmentation into
subexpressions. Consider, for instance, that 1/x is a
subexpression that appears several times in a large
formula. For automatic programming in a numeri-
cal language, such as Fortran or C, it is convenient
to store the result of the subexpression in an in-
termediate variable, in order to avoid unnecessary
calculations. However, a large number of simple sub-
stitutions may obscure the presentation of a formula
in a text. For this purpose, the formulas should be
less fragmented than for numerical calculations —
but to what extent is a subjective decision.

In ordeqTeX, simple fractions such as the ex-
ample in the above discussion, powers in which the
exponent is a number, multiplications and sums of
only two terms are not replaced by intermediate
variables. However, the pattern matching algorithm
implemented in procedure ordeqTeX can be easily
changed to use other criteria.

Procedure ordeqTeX prepares detailed informa-
tion about the structure of the formulas and of the
subexpressions, which is then passed to procedure
createTeX. This procedure prepares a LATEX code
that presents all subexpressions and final expres-
sions in a feasible computation sequence.

Even though createTeX replaces long formulas
by sequences of subexpressions, it may happen that
some of these subexpressions are longer than one
line of LATEX output. In order to avoid the need for
manual intervention for breaking long lines, we used
the (freely available) LATEX package breqn, which
automatically chooses the breakpoints. For conve-
nience, the output of the prinTeX and createTeX
procedures includes commands for loading and us-
ing breqn, and each formula is given a unique la-

bel for cross-referencing. In the case of prinTeX, a
six-digit random number is used to generate the la-
bel. In the case of createTeX, the number results
from joining the name of the set of formulas being
implemented, specified by the user, with a unique
sequential number assigned to each subexpression.

For the preparation of the list of symbols, we
use the fact that expressions are internally stored
as trees in Mathematica. Using a recursive proce-
dure developed for Thermath, the trees are spanned,
searching for all the symbols they contain. From this
first list of symbols, those that represent intrinsic
Mathematica functions or operators, such as Plus,
Times, Log, Exp, etc., are discarded.

To distinguish between intrinsic Mathematica
functions and symbols entered by the user, we use
the Mathematica function Attributes to test each
symbol. Intrinsic Mathematica functions have non-
empty lists of attributes, whereas a symbol entered
by the user has an empty list of attributes, unless
a special attribute has been explicitly assigned to
the symbol. It is usually unnecessary to specify at-
tributes to symbols, but it may happen, for example,
that some matrices are intrinsically symmetrical. In
these cases, it is convenient to assign the Mathemat-
ica attribute Orderless to the symbols that repre-
sent these values. Therefore, the symbols entered by
users are located as those without attribute or only
with the Orderless attribute.

From the remaining list, the symbols that rep-
resent numerical values, either integer, real or com-
plex, are also discarded. At this point, the list will
only have the symbols entered by the user. It then
remains to verify which of the symbols are variables
and which are only indexes. The convention adopted
in the identification procedure is that a symbol is an
index when it is the argument of a symbol entered by
the user. For instance, in the expression Sin(x(i)),
x is the argument of an intrinsic Mathematica func-
tion, Sin, and therefore is not an index. On the
other hand, i is the argument of x, which is not
an intrinsic Mathematica function. Therefore, i is
assumed to be an index.

As an example, let us consider the simultaneous
analysis of two simple formulas, with some charac-
teristics that help illustrate the features of the pack-
age presented here. The input for this example is:

f = Sin[x[i]*x[j]] + Cos[y[k]*y[m]];

g = Cos[x[i]*x[j]] + Exp[Sin[x[i]*x[j]]];

formulas = {f, g};

analyzedformulas = ordeqTeX[formulas, {}];

createTeX[fg, analyzedformulas,

{HoldForm[f], HoldForm[g]}];

170 TUGboat, Volume 25 (2004), No. 2

In this input, the two formulas f and g, are
joined in a single list, formulas, which is passed to
ordeqTeX. The second argument of this call speci-
fies how subexpressions should be grouped accord-
ing to their functional dependence. In this example,
an empty list is specified, meaning that no specific
grouping is required.

In procedure createTeX, the first argument, fg,
represents a user-defined name for the set of formu-
las being implemented. createTeX uses this name to
prepare a unique label for each subexpression to be
used for cross-referencing. The second argument is
a list containing several pieces of information about
the formulas prepared by procedure ordeqTeX. The
last argument specifies that the left-hand side of the
equations should appear as f = and g =. The LATEX
output (slightly edited) is:

%

%Formulas for model: fg

%

%

% if (

% green(1) .or.

% green(2)

%) then

%

\smallskip

\begin{dmath}\label{e:fgeqn1}

w_{2}\left(i,j \right)=

\sin \left(x\left(i \right)\,

x\left(j \right) \right)

\end{dmath}

%

%Note symmetry: w$2(j,i)=w$2(i,j)

%=============

%

%

% end if

%

%

% if (

% green(1)

%) then

%

\smallskip

\begin{dmath}\label{e:fgeqn2}

f\left(i,j,k,m \right)=

\cos \left(y\left(k \right)\,

y\left(m \right) \right) +

w_{2}\left(i,j \right)

\end{dmath}

%

%Note symmetry: f(i,j,m,k)=f(i,j,k,m)

%=============

%

%

%Note symmetry: f(j,i,k,m)=f(i,j,k,m)

%=============

%

%

%Note symmetry: f(j,i,m,k)=f(i,j,k,m)

%=============

%

%

% end if

%

%

% if (

% green(2)

%) then

%

\smallskip

\begin{dmath}\label{e:fgeqn3}

g\left(i,j \right)=

e^{w_{2}\left(i,j \right)} +

\cos \left(x\left(i \right)\,

x\left(j \right) \right)

\end{dmath}

%

%Note symmetry: g(j,i)=g(i,j)

%=============

%

%

% end if

%

%

%The set of formulas was successfully created.

%

%The following lines create the list of symbols.

%

\section*{List of Symbols}

%

%

\subsection*{Roman Letters}

%

f \\

[...]

%

\subsection*{Indexes}

%

i \\

[...]

%

%The list of symbols was successfully created.

Note that the LATEX output contains a vari-
able of the form wn that is automatically generated
to represent an intermediate value. This output

TUGboat, Volume 25 (2004), No. 2 171

also contains several comments that aim at help-
ing authors to discuss the structure of their for-
mulas, should this be desired. The parts of the
output flagged with green(1) are relevant for the
calculation of the first output variable, f , whereas
green(2) provides a flag for the calculation of g.
The output also indicates the existence of symme-
try. For instance, it indicates that variables w2 and g
are symmetrical with respect to permutations of the
indexes i and j, and that variable f is symmetrical
with respect to some permutations of its indexes.

Compilation with LATEX produces the following
output:

(4)w2 (i, j) = sin (x (i) x (j))

(5)f (i, j, k,m) = cos (y (k) y (m)) + w2 (i, j)

(6)g (i, j) = ew2(i,j) + cos (x (i) x (j))

List of Symbols

Roman Letters
f
g
wn

x
y

Indexes
i
j
k
m

Note that each variable appearing on the left
hand side of Equations 4, 5, and 6 received the cor-
rect indexes automatically and that all the variables
used in the formulas were included in the list of sym-
bols. The exponential and cosine functions appear
in reverse positions in the output compared to the
input, as a result of the automatic reordering of ex-
pressions performed by Mathematica. Unlike the
prinTeX command that was designed handle a sin-
gle formula, the typical use of commands ordeqTeX
and createTeX is in Mathematica sessions where
several formulas are derived using computer alge-
bra. In this context, the user has less control of
the ordering used by Mathematica to present the
formulas. Therefore, even though the formulas are
correctly translated into LATEX, a current limitation
is that the formulas may need to be manually edited
if some specific order of terms is desired in the LATEX
document.

We successfully tested the procedures discussed
here with sets of formulas that are much more com-
plex than those used in these examples. In some

cases, especially when there are rather long formu-
las, a final manual editing step may be necessary
to improve layout; the [layout=RHS] option of the
breqn package proved particularly useful in these
cases.

Conclusions

This paper presented new procedures, written in the
Mathematica programming language, that automat-
ically generate a representation of formulas in LATEX
with the corresponding list of symbols. There is
the option of generating LATEX code for a single for-
mula or for a set of formulas. In the latter case,
a comprehensive analysis of the formula structures
allows the identification of common and symmetri-
cal terms. Therefore, if one uses Mathematica as
a computational environment for the symbolic and
numerical calculations in a given project, it is pos-
sible to quickly obtain an exact representation, in
LATEX, of the formulas used and the list of symbols.
The procedures may speed up the writing of tech-
nical publications and eliminate common sources of
error in their preparation.

Acknowledgments

The authors thank Profs. Veronica M.A. Calado and
Frederico W. Tavares (Universidade Federal do Rio
de Janeiro, Brazil) for their suggestions. The Brazil-
ian agencies CNPq and FAPERJ provided financial
support for this research.

Code availability

The procedures developed in this work are available
from the authors on request. The procedures were
developed and tested using Mathematica 4.1, ver-
sion 0.94 of the LATEX package breqn, and Elsevier
document classes.

References

Alfradique, M. F., R. O. Espósito, and M. Castier.
“Automatic generation of procedures for the
simulation of multistage separators using com-
puter algebra”. Chemical Engineering Commu-
nications 189(5), 657–674, 2002.

Barnett, M. P. “Mathscape — Combining Math-
ematica and TEX”. TUGboat 19(2), 147–156,
1998.

Castier, M. “Automatic implementation of thermo-
dynamic models using computer algebra”. Com-
puters and Chemical Engineering 23(9), 1229–
1245, 1999.

Dominguez, A., J. Tojo, and M. Castier. “Auto-
matic implementation of thermodynamic models
for reliable parameter estimation using computer

172 TUGboat, Volume 25 (2004), No. 2

algebra”. Computers and Chemical Engineering
26(10), 1473–1479, 2002.

Frenkel, M., R. D. Chirico, V. V. Oiky, K. N.
Marsh, J. H. Dymond, and W. A. Wake-
ham. “ThermoML — An XML-based approach
for storage and exchange of experimental and
critically evaluate thermophysical and thermo-
chemical property data. 3. Critically evaluated
data, predicted data, and equation representa-
tion”. Journal of Chemical and Engineering Data
49(3), 381–393, 2004.

Kearfott, R. B. and M. Novoa. “INTBIS, A Portable
Interval Newton Bisection Package”. ACM Trans-
actions on Mathematical Software 16(2), 152–
157, 1990.

Klioner, S. A. “New system for indicial computation
and its applications in gravitational physics”.
Computer Physics Communications 115(2-3),
231–244, 1998.

Piecuch, P. “Maple Symbolic Computation of
the Long-Range Many-Body Intermolecular Po-
tentials —3-Body Induction Forces Between 2
Atoms and A Linear Molecule”. International
Journal of Quantum Chemistry 47(4), 261–305,
1993.

Sharf, I. “Geometrically non-linear beam element
for dynamics simulation of multibody systems”.
International Journal for Numerical Methods in
Engineering 39(5), 763–786, 1996.

Strange, R., F. R. Manby, and P. J. Knowles.
“Automatic code generation in density func-
tional theory”. Computer Physics Communica-
tions 136(3), 310–318, 2001.

Talole, S. E. and S. B. Pradke. “Generating LATEX
documents through Matlab”. TUGboat 24(2),
245–248, 2003.

Weinzierl, S. “gTybalt — A free computer alge-
bra system”. Computer Physics Communications
156(2), 180–198, 2004.

� Marcelo Castier
Escola de Qúımica, Universidade

Federal do Rio de Janeiro
Rio de Janeiro, RJ, 21949-900
Brazil
castier@eq.ufrj.br

� Vladimir F. Cabral
Departamento de Engenharia

Qúımica, Universidade Estadual
de Maringá

Maringá, PR, 87020-900
Brazil
vfcabral@yahoo.com.br

