
TUGboat, Volume 21 (2000), No. 2 133

Hints & Tricks

“Hey — it works!”

Jeremy Gibbons

Welcome again to “Hey — it works!”, a column
devoted to useful or surprising (LA)TEX and META

techniques. I am writing this time from TUG2000,
ably organized by Sebastian Rahtz and Kim Bruce
in my home town of Oxford (from which you may
conclude that my timekeeping has not made our no-
ble editor’s life any easier — sorry, Barbara!).

In this issue we have three items: one describing
a macro of unknown provenance for yielding a non-
punctuating comma for a decimal point, a slightly
related one inspired by André Van Ryckeghem from
Belgium on currency conversion, and one by Pedro



134 TUGboat, Volume 21 (2000), No. 2

Palao Gostanza from Madrid on counting the num-
ber of parameter uses in the expansion text of a
macro.

� Jeremy Gibbons
Oxford University Computing

Laboratory
Wolfson Building, Parks Road
Oxford OX1 3QD, UK
jeremy.gibbons@comlab.ox.ac.uk

http://www.comlab.ox.ac.uk/oucl/

people/jeremy.gibbons.html

1 Decimal comma

In some languages, a comma is used instead of a full
stop to separate the whole and fractional parts of a
decimal number: 3,1415. Unless one does something
special about it, TEX prints instead 3, 1415, treating
the comma as punctuation rather than an ordinary
symbol and so putting some space after it.

Someone recently posted the following style file
to comp.text.tex1:
\mathchardef\ocomma="013B

\mathchardef\pcomma="613B

\mathcode‘\,="8000

{\catcode‘\,=\active

\gdef,{\obeyspaces

\futurelet\next\smartcomma}}

\def\smartcomma{\if\space\next

\pcomma\else\ocomma\fi}

This style file defines two different macros to
generate a comma, one as an ordinary symbol and
one as a punctuation. The comma is then made
active in maths mode, and defined to look ahead
to the next token; if this next token is a space, a
punctuation comma is used, and otherwise the ordi-
nary comma is used. Thus, 3,1415 yields the deci-
mal number 3,1415, whereas (3, 4) yields the pair
(3, 4).

It strikes me that it would be better to deter-
mine whether the next token is a digit, and only to
use the ordinary comma when it is; then it does not
matter whether a space is used in, say, (x, y). But
with a little experimentation I could not make this
work; can anyone help?

2 Two decimal digits

On comp.text.tex recently, André Van Ryckeghem
asked how to perform currency conversion. He al-
ready had the translation working on integer values,
with a macro like the following:
\def\convert#1#2{{% evaluate #1/#2

1 Unfortunately, the identity of the original author has
been lost. If it was you, let me know and I’ll give an update
in my next column. The original was called komma.sty, dated
1998/06/28, and had some @ symbols in the macro names.

\count0=#1\relax % numerator

\count1=#2\relax % denominator

\count2=\count1 \divide\count2 by 2\relax

\advance\count0 by \count2\relax

\divide\count0 by \count1\relax

%

\the\count0\relax

}}

The main point here is how to divide one value m
by another n and round the result to the nearest
integer, instead of the usual rounding down to the
next smaller integer; this is done by computing in-
stead (m+n/2)/n and rounding down as usual. For
example, at the time of writing, the exchange rate
is Y=162 to £1, so with

\convert{34567}{162}

we learn that Y=34567 is approximately £213.
André’s problem was to incorporate decimal out-

put. For example, as it stands we learn only that
Y=345 is approximately £2, which is not very accu-
rate. On the other hand, real number arithmetic
is inappropriate, because we do not want umpteen
digits after the decimal point (£2.12962). Instead,
we define
\def\convert#1#2{{% evaluate #1/#2, to 2dp

\count0=#1\relax

\multiply\count0 by 100\relax % 100*numerator

\count1=#2\relax % denominator

\count2=\count1\relax

\divide\count2 by 2\relax % half denominator

\advance\count0 by \count2\relax

\divide\count0 by \count1\relax % rounded divn

%

\count3=\count0\relax

\divide\count3 by 100\relax % whole part

\count4=\count3\relax

\multiply\count4 by -100\relax

\advance\count4 by \count0\relax % frac part

%

\the\count3.%

\ifnum \count4<10\relax 0\fi

\the\count4\relax

}}

The difference is that we work throughout with two
more significant figures (that is, we multiply the nu-
merator by 100). To print the result, we finally di-
vide by 100 again to print the whole part, then print
the remainder (possibly with a leading zero, if it is
just a single digit) to get the fractional part. With
this definition, we find that Y=345 is more accurately
£2.13.

Note that all arithmetic is performed with TEX’s
32-bit integers, so is limited to about nine digits.
There are strong arguments for using arbitrary pre-
cision integers for financial computations. André
observes that a much more elaborate and robust



TUGboat, Volume 21 (2000), No. 2 135

solution than this is provided by Melchior Franz’
euro package, which performs and typesets conver-
sions between arbitrary currencies, using Michael
Mehlich’s fp package for exact arithmetic with 36
significant digits (both packages being available on
CTAN).

3 Number of parameter tokens

While doing some meta-macros I was in need to
count how many parameter tokens appear in a def-
inition parameter text. A complete solution would
need the capability of TEX to match against a {.

It is easy to work with parameter texts if they
are stored in saturated macros: macros with nine
undelimited parameter tokens. The three following
saturated macros containing parameter text will be
used as a running example.
\def\pp#1#2#3#4#5#6#7#8#9{%

#1trivial#2parameter#3}

\def\qq#1#2#3#4#5#6#7#8#9{%

#1\undefined#2parameter#3}

\def\kk#1#2#3#4#5#6#7#8#9{%

#1problem#2\gobbledisttag#3}

In the rest of this note, parameter text usually means
parameter text stored in a saturated macro. The
goal is to define a macro \nop returning in a counter
the number of parameter tokens in a parameter text;
the counter and the parameter text are, in this order,
the only arguments of \nop.

The main idea is simple: substitute each pa-
rameter token for a counting code like
\advance\counta by 1

The following macro allows us to put the same thing
in each parameter token
\def\applyall#1#2{#1%

{#2}{#2}{#2}{#2}{#2}{#2}{#2}{#2}{#2}}

The difficult part is to throw away all the material
between the parameter tokens; we will call it disturb-
ing material. My first solution was really simple and
worked almost always.
\def\nop#1#2{#1=0

\expandafter\expandafter\expandafter

\gobbledist\applyall#2%

{\gobbledisttag\advance#1by1

\gobbledist}%

\gobbledisttag}

\def\gobbledist#1\gobbledisttag{}

But this fails if \gobbledisttag appears in the
parameter text; that is, \pp and \qq parameter texts
are counted without any problem, but \kk raises an
error because of a dangling \gobbledisttag. Al-
though this is not a practical restriction, it is an
aesthetic one. To cope with it we need to mark the
beginning of a parameter token with something that
cannot be used in parameter text: outer macros, {,

} or #. But if the mark cannot be used in a param-
eter text, neither can it appear in the definition of
\gobbledist (1). So, a trick different from a gobble
macro is needed to throw away the material between
parameter tokens (2).

Expanded definitions (\edef) are a good place
to look next. In cooperation with brace hacks from
the TEXbook, allow us to put disturbing material
inside braces.

\def\nopB#1#2{#1=0

\expandafter\expandafter\expandafter

\voidefdist\applyall#2%

{\voidefdistend\advance#1by1

\voidefdist}%

\voidefdistend}

\def\voidefdist{\edef\aux{\iffalse}\fi}

\def\voidefdistend{\iffalse{\else}\fi}

Disturbing material ends in the definition of the
\aux macro. But this solution is even worse because
TEX does not allow undefined token in an expanded
definition; both \qq and \kk give errors because nei-
ther \undefined nor \gobbledisttag are defined.
If the parameter text has conditionals, errors can
happen far beyond \nop.

Neither normal definitions, nor token lists help
in this problem, because they need balanced braces;
they surely solve it completely if combined with the
\scantoken extension of ε-TEX. Boxes definitions
are worse than expanded definitions.

It took me some time to realize that, in TEXory,
(2) cannot be derived from (1) because TEX allows
to match against tokens that cannot appear in a pa-
rameter text: if a parameter text ends with #, TEX
will match against an open brace (The TEXbook,
p. 204). This observation turned me back to search
for a gobble-like solution.

\def\nop#1#2{#1=0

\expandafter\expandafter\expandafter

\gobbledist\applyall#2%

{{}\advance#1by1 \gobbledist}%

{}}

\def\gobbledist#1#{\gobble}

\def\gobble#1{}

This solution is a bit strange because usual TEX
practice dictates that, in order to catch something,
it should be surrounded with { · · · } but, in some
sense, we are surrounding the disturbing material
with } · · · {.

Although the last definition of \nop is aestheti-
cally more pleasant than the first one, it has its same
drawback: \nop cannot count how many parameter
tokens has \gobbledist! I am sure that the reader
will find a nice fix.

� Pedro Palao Gostanza
Universidad Complutense de Madrid, Spain
ecceso@sip.ucm.es


