
Typesetting with TEX and LATEX

Alan Hoenig
17 Bay Avenue
Huntington, NY 11743
ajhjj@cunyvm.cuny.edu

(This presentation appears in a considerably ex-
panded form as chapter 1 of my book TEX Unbound:
LATEX and TEX Strategies for Fonts, Graphics, and
More published just this year by the Oxford
University Press.)

By typesetting, we mean the ability to place el-
ements of a document on a page according to gen-
erally accepted principles which most people seem
to agree look best and make it easiest to read and
comprehend the document. It’s surprisingly diffi-
cult to do that — a typesetter has to decide how
best to break paragraphs into lines, how to hyphen-
ate words, how to leave space for footnotes, how to
prepare indexes and the other detritus of scholarly
publishing, and provide the optimum space between
elements on the page (among many other things).
The spacing issue is particularly critical for techni-
cal documents. Formulas make extensive use of ar-
cane symbols which have different appearances and
spacing depending on context. Consider, for exam-
ple, how the placement and spacing of the ordinary
numeral ‘2’ changes in

2x x2 e−x
2

and how the spacing surrounding minus sign changes
in

x− y and −x+ y

Other symbols may change depending upon whether
the equation appears in text ‘

∫
xdx’ or display

mode: ∫
xdx.

Furthermore, if a computer system is going to con-
trol the typesetting, we expect more of it than from
a mere human. We may expect, for example, to be
able to label an equation in some logical way and
then refer to it later by this label in our source doc-
ument. It would be up to the typesetter to resolve
these labels and references and replace the labels by
properly formatted label numbers.

The TEX system has been freely available since
the mid-80s or so and accomplishes all of the above
tasks (and more) in a particularly effective manner.
TEX is the creation of Donald E. Knuth of Stanford
University, who has placed all the source code for

TEX in the public domain. The logo ‘TEX’ is related
to the Greek root ‘τεχ’ from whence come words
like ‘technology’. If pronounced properly, the face
of your listener may become slightly moist (but no
one complains if you say ‘tek’).

The purpose of this survey is to acquaint read-
ers with the aspects of the TEX cycle necessary to
produce handsome papers and books. This presen-
tation should not be regarded as a be-all-and-end-
all tutorial, since (like many other mature and so-
phisticated software systems) lengthy books are not
enough to do full justice to it.

The TEX production cycle

Why is ‘typesetting’ not the same thing as ‘word
processing’? Typically, a word processor allows edit-
ing of the document, but in its impatience to display
the results immediately onscreen (most word proces-
sors are aggressively wysiwyg in behavior), certain
niceties are sacrificed. These niceties — fine control
of spacing, word placement, hyphenation, and so
forth — are never ignored in TEX.

It’s useful to consider the TEX production cycle
by comparing it with that of word processors. In a
word processor, the program assists you in preparing
the document, after which it is printed. TEX relies
on three steps.

1. We use a text editor to prepare the source docu-
ment — the document file which consists of the
text and data of your document together with
the TEX formatting commands. Let’s suppose
this file is called myfile.tex.

2. We run myfile.tex through the TEX program.
If all goes well, this generates a file in which the
typesetting commands are made explicit using
a generic printer description language indepen-
dent of any particular printer; it is device inde-
pendent. TEX names this file myfile.dvi. Just
like a computer program source file with syn-
tax errors, if there are any errors, we return to
step 1 and correct them before continuing.

3. Finally, we need the assistance of a special de-
vice driver customized to the printer. It’s the

TEXNorthEast Conference, March 22 – 24, 1998 168



TUGboat, Volume 19 (1998), No. 2 169

driver’s task to translate the generic dvi com-
mands into the form the printer understands.
The advantages of creating a .dvi file are that

we can print the document on any printer (at least,
any printer for which device drivers exist) and rest
assured that the output is identical on each device
(except for raster resolution).

Macros; logical document design

TEX has been called an assembly language for type-
setting. This means that there are plenty of primi-
tive commands to control fine points, but these com-
mands may not be entirely appropriate for creating
a new section head or aligned equation. As a re-
sult, TEX has a rich and powerful macro creation
facility. It’s possible (as we will see later) to string
primitive commands and pre-existing macro com-
mands together to create new, custom typesetting
commands.

Remember that the TEX production cycle
means that we prepare a source file which is fed
into TEX at a later point. This plus the nature of
the macros means that TEX supports the notion of
logical document design. We can embed components
of the document by means of tags which can be
defined or redefined depending upon context. One
example suffices. Here’s a theorem.
Theorem There is no royal road to typesetting.

Computer typesetting is a surprisingly
complex task.

This was typeset by means of inserting
\theorem There ...

in the source document. It may happen that it is
more appropriate to display that theorem as

Theorem There is no royal road
to typesetting. Computer typeset-
ting is a surprisingly complex task.

The same command string will accomplish this pro-
vided that only the macro definition of \theorem
needs be changed. The implications are enormous —
we can design our document so that it will properly
printed for any set of particular formatting require-
ments provided only that we change the particular
definitions of the macros. Many strategies exist for
facilitating this use of definitions.

A first TEX document

The “steps” for generating a TEX document are well-
defined, but there are sufficiently idiosyncratic im-
plementations of TEX floating around so that it may
be necessary to adapt these procedures to a local
adaptation. By the way, some readers may be inter-
ested in the TEX dialect called ‘LATEX’; as we will

see, LATEX is the same as TEX, so these procedures
follow for a LATEX document as well.

1. Use a text editor to create the source document
for subsequent processing by TEX. The source
document is the document file — text and type-
setting commands. Take care not to use a word
processor. These programs aim to do the for-
matting themselves, and tend to do so by insert-
ing non-Ascii characters into the document file.
Quite apart from the fact that TEX (or LATEX)
needs no help with the typesetting, these binary
characters will only confuse TEX. (If it is neces-
sary to use a word processor, make sure to save
the document in some way so as not to include
the word processing formatting information.)

2. Run this source file through the TEX program.
the simplest form of the command to do that is

tex myfile

where the source file has the name myfile.tex.
LATEX users will use the command

tex &lplain myfile

(Unix users may have to enter the ampersand
as \&.)

As in any compilation process, TEX may un-
cover errors. (Warnings may be ignored, at
least at this stage.) Return to step 1 to cor-
rect these errors, and re-run it through TEX.
Repeat this process until all errors have been
dealt with (or until there is enough of a docu-
ment to print.)

The result of a successful TEX compilation is
a new file with a dvi extension. In this example,
we would have a new file myfile.dvi.

3. With the document in hand, it can be printed or
previewed on screen. In each case, appropriate
device drivers are necessary to properly render
the document on screen or on paper.

As we see, the TEX process is actually a con-
certed action between several programs in addition
to TEX — a text editor, a device driver, and a
screen previewer. Many implementations of TEX
may merge several or all of these into one integrated
module.

The TEX document: input conventions

Although it is not practical or possible to deal with
all or even a completely useful subset of all TEX (or
LATEX) commands in this article, it is possible to
summarize the keyboard conventions that any TEX
typesetting must adhere to.

TEXNorthEast Conference, March 22 – 24, 1998



170 TUGboat, Volume 19 (1998), No. 2

White space. TEX normally regards all white
space as equivalent, where we include carriage re-
turns, tabs, and of course spaces in this category.
Furthermore, multiple spaces are generally equiva-
lent to a single space. Important exception: we
signal the end of one paragraph and the beginning of
another by skipping a line in the source file; that is,
we enter two hard carriage returns in a row. (But
three or more consecutive carriage returns is still
equivalent to a pair of carriage returns.)

Once in a while, spaces are special in that we
don’t want a line broken between two words or
word groups. For example, in a discussion of World
War I, it would look silly if a line broke between
‘World War’ and ‘I’; it would be too confusing to
the reader. To guarantee that the line break won’t
happen at that point, we replace the space with
the tilde character ~. If this conditional space is
typeset in the middle of a line, it appears as a
regular space. Aspiring TEX typists should develop
the habit of typing things like King Henry~VIII,
Dr.~Knuth, and pages~44--55 to protect the
manuscript from unwarranted line breaks. Note
that whereas Henry~VIII will work as advertised,
Henry ~ VIII will not. Here is one instance where
users need to be careful.

Characters. We generate most characters by sim-
ply entering the character in the source document.
That is, we type

Oh! What a beautiful morning.

to get

Oh! What a beautiful morning.

See below for exceptions to this; certain special char-
acters need be entered in a special way.

But TEX is smarter than that. Certain charac-
ter pairs are replaced by special glyphs. For exam-
ple, if we type ‘‘ or ’’ we get true “quotes.” With
its special attention to details, TEX will replace cer-
tain character combinations such as fi, fl, and ff
by the ligatures fi, fl, and ff (provided these ligatures
are present in the current font).

TEX does a similar thing with hyphens and
dashes. We can type -, --, or --- to put -, –,
or — in our documents. (And we will see later
that the mathematical minus sign — yet a different
dash — can be gotten using the hyphen character in
mathematics mode.)

By the way, no user should ever put an explicit
line-break hyphen in a word which has to be split
at the end of a line. TEX’s hyphenation algorithm
takes care of such should a word break be necessary.

In summary, we type

‘‘Oh, the selfish shell-fish---that
lobster mobster---tasted
best when basted west,’’ quoth Aaron
while reading
pages~12--33 of his cookbook.

to typeset

“Oh, the selfish shell-fish — that lobster mob-
ster — tasted best when basted west,” quoth
Aaron while reading pages 12 – 33 of his cookbook.

TEX formatting instructions and commands.
TEX is very good about applying default typesetting
parameters to text, but there will be many times
when you wish to actively control the printed ap-
pearance of your document by issuing commands to
TEX. Since the entire file must contain Ascii charac-
ters only, TEX has decided to reserve the meanings
of certain characters to itself. The tilde ~ is one such
special character. To typeset an actual tilde ˜ in the
document, you must enter a short command to do
so.

These characters

\ # $ % ^ & ~ { }

have special meanings to TEX. The backslash \
is TEX’s escape character — it escapes the normal
meaning of the following bit of text. This character
generally begins all of TEX’s commands. For exam-
ple, to typeset an ampersand &, you would type \&.
Typesetting commands for some of these symbols
are formed in the same way. (All the symbols can
be typeset, but for some, addtional TEX expertise is
needed.)

TEX can do àçc̈éñṫs. as well. If you need them,
check your main manual. We can get the Spanish
punctuation marks ¿ and ¡ by typing ?‘ and !‘.

We will discuss the special TEX characters bit
by bit, but commands generally begin with the es-
cape character. The escape character can be fol-
lowed one single non-letter, or by an arbitrary se-
quence of letters, terminated by a space. Exam-
ples of commands from the first category include
\&, \1, \$, and \". Examples of the second cat-
egory include \TeX, \L, \noindent, \vskip, and
\futurelet. Note that TEX is case sensitive, so
the command \TeX (which typesets the TEX logo) is
different from the (nonsense) commands \tex and
\TEX.

These rules lead to our first piece of TEXarcana.
As part of TEX’s digestive process, it is smart
enough to know that when a non-letter follows an
escape character (the backslash), the command
name consists only of a single letter. Hence, any-
thing following that command, such as a space, is

TEXNorthEast Conference, March 22 – 24, 1998



TUGboat, Volume 19 (1998), No. 2 171

typeset as you expect. To get the sequence, ‘& &’,
type \& \&.

The situation is subtly different when a com-
mand name follows the backslash. For now, TEX
has no way a priori to know the length of the com-
mand name. It reads your file, and terminates the
command name when it encounters a space or a new
command. Consequently the space following a com-
mand is ‘eaten up’ by TEX — it serves not introduce
a space into the document but rather to delimit the
command. But since at other times, spaces typed in
the document file do generate a space, it’s easy to
see why newcomers are easily confused.

Anyway, to illustrate the point, suppose you
wanted to typeset ‘TEX TEX’. The way not to do it
would be by entering \TeX \TeX into the source, for
the interior space terminates the initial \TeX com-
mand and is therefore eaten alive. (\TeX \TeX type-
sets as TEXTEX.) Since multiple spaces count as a
single space to TEX, the solution is not to insert ad-
dtional spaces. The following list, which suggests
several ways out of the impasse, also hones your be-
ginning TEX skills.

1. Use the TEX command which explicitly gener-
ates an interword gobber of space. This control
space command is \ , and so your source should
like \TeX\ \TeX if you use this method.

2. Terminate the command by inserting some
command which does not print anything. The
empty group {} is one such; thus, we could
type \TeX{} \TeX.

3. Simply surround the command in its own
group: {\TeX} \TeX is one appropriate way to
do this.

A working TEX system

A complete TEX system is actually a concert be-
tween several different component pieces of hard-
ware and software. There are at least three different
but necessary pieces of software.

First is a version of TEX for a particular com-
puter and operating system. At this time, there are
versions of TEX available for every reasonable com-
puter. In the unlikely event that there isn’t, it’s
possible to customize TEX by doing a reasonable
amount of spade work yourself. The TEX program
is in the public domain (and in electronic form), and
all you need to do is make whatever changes (if any)
are called for and recompile the TEX source code in a
robust Pascal compiler that works on your system.
(Most likely, you will translate the original Pascal
WEB source to a C source program using the freely
available web2c utility, and then use a robust C com-

piler to compile TEX.) TEX was originally written
in Pascal, and depending on how you “pretty print”
the listing, it amounts to between 20,000 and 30,000
lines of code. TEX exercises all the dark corners of
any compiler, so you need a compiler that has it-
self been thoroughly debugged. (There is a white
lie of omission in this account. All this source code
is written in WEB, so some mastery of this WEB

system must be acquired.)
Do we need a special version of LATEX to match

our hardware? The core LATEX files, which “sit”
on top of TEX, are ASCII files, and we can easily
transfer ASCII files from one computer to another.
However, proper behavior of LATEX will require us to
install LATEX and in that process to create a special
binary format file for use by our computer. In gen-
eral, binary files may not be transferred from one
type of hardware to another (but format files are
easy to construct).

Next is a text editor . This was discussed earlier
and is necessary for preparing the document source
file.

Finally there are the device driver and screen
previewer . TEX’s output is a file containing com-
mands to typeset all the letters, rules, and special
symbols in the document. Unfortunately, differ-
ent printers obey distinctly different sets of such
commands. Therefore, TEX employs a generic,
no-frills, device-independent language in which to
express these commands. That’s why the output
file from TEX has the extension dvi, to suggest
device-independence. In this way, the TEX program
is relevant to virtually any hardware setup, but it
does mean that we need yet another program, a
so-called device driver. The purpose of this pro-
gram is simply to translate TEX’s generic, device
independent typesetting commands into commands
that our particular printer understands.

Everybody will want to arm themselves with
a screen previewer , a special-purpose device driver.
Remember, TEX is not wysiwyg, and we frequently
want to see what the TEX document will look like
without going to the bother of printing it out. (This
may be because we share printing facilities in some
computer center, or because your printer takes a
long time to deliver a single page. Anyone who has
tried generating TEX output on a dot matrix printer
knows that feeling.) A video monitor is just a special
purpose printing device, and it is usually a straight-
forward matter to write a device driver to paint the
image of the page on a monitor screen.

It makes sense to choose hardware on the
basis of TEX software. For example, you’ll want to
make really sure that the printer is one for which

TEXNorthEast Conference, March 22 – 24, 1998



172 TUGboat, Volume 19 (1998), No. 2

a device driver exists. (Or else make sure that
the printer is one that will emulate — imitate — a
supported printer. For example, there are many
laser printers for sale, each with its own protocol for
generating printed images. There are relatively few
laser printer device drivers available. Among these
few with support are the Hewlett-Packard laser
printers, which many other laser printers emulate
well. Since there are several Hewlett-Packard laser
printer drivers available, an HP-like laser printer
may be a safe bet.)

TEX also runs well on printers that understand
the PostScript page description language. This
PostScript language is another means for creating
device-independent files, because the mechanism
for rendering the PostScript document resides in
the printer itself. Consequently, we need a special
PostScript printer in order to take advantage of the
PostScript technology. (That there are hundreds of
beautiful digital PostScript fonts is another induce-
ment to use PostScript.) Special dvi-to-PostScript
postprocessors translate a dvi file to a PostScript
equivalent. Many such programs are available from
any number of vendors. Fortunately, one of the
best, dvips by Tomas Rokicki, is freely available.

Getting TEX

Although the TEX software is “free” — within the
public domain — it often takes work to port it to
a particular computer. This is true of implemen-
tations for the original IBM PC and for the Apple
Macintosh, for example. In any case, device drivers
and screen previewers were never part of the origi-
nal TEX package. Consequently, some firms sell their
implementations for TEX.

An interesting recent phenomenon is the avail-
ability of several public domain TEX implementa-
tions for microcomputers. One or more such im-
plementations exist for all kinds of personal com-
puter, including IBM-type computers, Apple Mac-
intosh, Amiga, Atari, and Acorn. Some of them may
even be as good or better than commercial products.
Of course, when we use a public domain version, we
are on our own. Companies have “helplines” for
users who find themselves in trouble. With rare ex-
ceptions, no such lifelines exist for users of public
domain TEXs. Public domain implementations are
available from user groups (TUG, Dante, GUT, and
so on), from Internet archives, and from special TEX
CDROMs.

When acquiring a TEX “package,” make sure
it’s complete. In addition to the TEX executable,
the associated ancillary files TEX needs, various im-
portant input files, and the latest version of im-

portant macro packages, we must make sure ad-
ditional utilities are part of the suite even if your
current plans don’t include using them. I have in
mind here the Metafont program (and the MP

program if possible), various TEXware utilities (of
which tftopl, vftovp and their inverses pltotf and
vptovf are probably the most important), and the
Metafontware utilities. The TEX program should
be version 3.1415 or higher, and the Metafont pro-
gram should be version 2.71 or higher.

Unique TEXs. Although each implementation of
TEX is typographically equivalent to any other, a
few are worthy of special notice by virtue of some
distinguishing feature. A few of these special TEXs
are worthy of mention here.

The em-TEX software collection is especially in-
teresting — it’s a complete implementation of TEX,
Metafont, all TEXware and MFware programs,
printer drivers, previewers, and documentation (in
English and German) for PC-DOS and OS/2 oper-
ating systems, and it’s all free. Several executables
of TEX and Metafont are provided, from “small”
to “huge” versions. (These designations refer to
the speed and/or the amount of material these
TEXs and Metafonts can process.) Eberhard
Mattes is the man behind this prodigious effort, but
there are those who wonder if “Eberhard Mattes”
doesn’t refer, like the fictional “Nicolas Bourbaki,”
to a dedicated group of workers. In any case,
this material is all available free for downloading
from any CTAN site, and some user groups make
it available to their members for a nominal fee.
Furthermore, there is a special em-TEX Internet
list, so this is one important instance where public
domain software does have some support. Over
the last several years, Mattes has proven to be a
conscientious developer, providing bug fixes in a
timely way and keeping up with the latest master
source files of TEX, Metafont, and their friends.

Tom Rokicki is well-known in TEX circles for
his dvips post-processor (it converts dvi output to a
form suitable for rendering on a PostScript printer).
Less well known but just as impressive is TEXView,
his version of TEX for the NextStep operating sys-
tem. NextStep, which runs on the Intel-486 archi-
tecture among others, is a flavor of Unix (BSD 4.2)
onto which has been grafted a very convenient win-
dowing system. NextStep contains a version of Dis-
play PostScript, which means that TEX documents
that incorporate PostScript graphics and PostScript
fonts may be previewed effortlessly (including color).
Because Unix is a multitasking system, an author

TEXNorthEast Conference, March 22 – 24, 1998



TUGboat, Volume 19 (1998), No. 2 173

can run a document through TEX, begin the pre-
viewing process, and continue editing. One odd fea-
ture has proven invaluable — the ability to measure
actual distances on a page with clicks of a mouse.
It’s surprising how often it is possible to fix a bug
in a TEX file by simply knowing how much extra
or missing space there is. Most of the TEXView
enhancements can be found incorporated into the
web2c TEX kits for Unix platforms. (As a result
of various corporate acquisitions, NextStep is now
called OpenStep.)

Lightning Textures, by Blue Sky Research, is a
version of TEX for the Macintosh. Its distinguish-
ing feature is its ability to show TEX output pro-
duced simultaneously as text is keyed in. (And look
for its newly-arrived sibling “Synchronicity.”) The
freely available InstantTEX for NextStep (originally
by Dmitri Linde and now maintained by Gregor Hof-
fleit) provides the same functionality — it’s great for
debugging macros. InstantTEX is freely available
from the ftp site peanuts.leo.org and others, in
the area
pub/comp/platforms/next/Text/tex/apps

and its mirrors. The file will have a name like
InstantTeX.3.11d.NIHS.b.tar and there is an
accompanying “readme” file as well.

AucTEX is not an implementation, but an
editing enhancement available to Unix users of
the Emacs editor. With it, Emacs becomes highly
TEX-aware, making available a large number of
shortcuts, command completion, automatic inden-
tation, special outlining, online documentation, the
ability to customize (provided you can program
in Lisp, the language in which it is programmed),
and a good bit more. Kresten Krab Thorup is its
author, and it is available from any CTAN site.

Inking the page

Neither TEX nor LATEX (nor any other macro pack-
age) actually paints the page. TEX simply creates a
file, the dvi file, which precisely records the position
of each character, rule, and other graphic element in
the document. Other programs take responsibility
for using this information to place ink on the page.
Remember, the TEX program needs only to know
how much space is required for each character, rule,
and typographic element on the page.

The characters of a font. It’s the province of
the device driver (or previewer, just another type of
device driver) to deal with the characters of a digital
font. Information in the dvi file tells it where to
position each character, and then the driver paints
each character where it is supposed to be.

Bitmap fonts. How does the driver know these
shapes? One way to store shape information is
within a collection of pixel files. Computer printers
generate their shapes by putting lots of tiny dots
next to each other in such a way that they form
patterns which our eyes resolve into letters and
graphs. Office laser printers, for example, are
capable of placing as many as 600 dots per inch (or
more) to the left or right and up or down. Only
the dots needed to create a character are printed,
and the human eye smoothes out any jaggedness as
it perceives the image. Pixel files, or bitmap fonts ,
provide instructions as to which dots to blacken
and which to leave blank.

There are lots of pixel files because TEX needs
a different file for each font of “type” at each size
and at each magnification. What’s the difference
between the size of a font and the magnification of
a font? Type designers of old took care to slightly
redesign each font of type at different sizes. Subtle
issues of spacing require that the proportions be-
tween thick and thin strokes, the size of the white
areas within some letters, and so on be readjusted
at each size. The TEXbook makes this point early
on, on page 16, which shows the difference between
10-point type and 5-point type magnified two hun-
dred percent. That and the following demonstra-
tions have members from the Computer Modern Ro-
man families. Computer Modern Roman type at a
10-pt design size (type size or just size) is referred
to as cmr10.

Although TEX has been designed to appreci-
ate this subtle difference in type sizing, many com-
puter typesetting systems do not . Therefore, pre-
vailing electronic fonts of type construct different
type sizes by taking a single font and magnifying it
by whatever amount necessary to get the size you
want. That is, there is generally no difference be-
tween type size and magnification unless you work
with Computer Modern types. (Recently, there are
some indications that the non-TEX world may be be-
ginning to perceive the importance of this distinc-
tion. Adobe’s Multiple Master technology is one
sign of this trend.)

The many different font files that normally
come with TEX often confuse users, but now we
know why they are necessary. TEX does distinguish
between size and magnification, and TEX’s ability
to make this distinction calls this diversity into
being.

On DOS systems (and any others that impose
rigid lengths on possible file names), the necessity
for having many different fonts at different sizes and
magnifications calls an intricate directory structure

TEXNorthEast Conference, March 22 – 24, 1998



174 TUGboat, Volume 19 (1998), No. 2

into being. All cmr10 fonts at any magnification
have the name cmr10.pk. The magnification is dis-
tinguished by creating different directories to hold
pixel files with like magnifications. For fonts ren-
dered to print on a 300 dpi printer, fonts at mag-
nification 1000 (normal size) appear in directories
named something like
\tex\fonts\dpi300

while for 120% magnification, since 360 = 1.2×300,
the directory will be
\tex\fonts\dpi360

Scalable fonts and a PostScript postscript.
PostScript technology has come to dominate

the world of computer typesetting and desktop
publishing. Files fully (and carefully) prepared in
PostScript are device-independent and are generally
ASCII (so they can be freely transferred across com-
puter platforms). “Device independence” means
any PostScript device. (With the Level 2 enhance-
ment, PostScript supports some binary encoding,
so such files may no longer be pure ASCII. Such
files may still be moved across platforms as Adobe
took great care to ensure this.)

Since PostScript files are independent of the
printer resolution, fonts for PostScript cannot rely
on bitmap descriptions, which are inherently tied
to a printer’s resolution. Each character in a Post-
Script font is given by a mathematical description
of the outline of that character (hence, the appel-
lation ‘outline font’); this description is not depen-
dent on any printer resolution. Nevertheless, any
raster printing device is, in the final analysis, a set
of bitmap images, but it’s the job of the special Post-
Script printer to resolve the outline descriptions to
their bitmap equivalents.

PostScript fonts are called scalable fonts be-
cause the technology scales these outline descrip-
tions up or down to get different sizes.

TEX and PostScript technology coexist quite
companionably. To render a dvi file on a Post-
Script printer, the dvi file must be translated to the
PostScript language. A variety of dvi-to-PostScript
converters exist for this purpose; one such, and one
of the most highly regarded, is the freely available
dvips by Tomas Rokicki. (It has been compiled for
virtually every computer platform.) The end prod-
uct of the translation is a series of statements in the
PostScript language, which are either transmitted
immediately to the printer or saved to a special file
with a ps extension.

Beware — these dvi postprocessors are savvy
enough to embed bitmap descriptions into the out-
put .ps file in the proper format for printing on

a PostScript printer. Only now the file has be-
come device-dependent — it will print properly only
on the printer for which the bitmaps were created.
PostScript does try to scale the bitmap image, but
an inevitable loss of quality accompanies this oper-
ation. Thus, if you plan to print the document later
via phototypesetter, you’ll have to regenerate the
.dvi and .ps files with the proper bitmaps.

Document files

What do TEX commands look like? TEX re-
serve ten characters for their own use. Otherwise,
when TEX encounters a letter or symbol such as an
“A” or “9” it interprets the symbol as a command
to typeset that symbol (to typeset an uppercase A
or the numeral 9). We call the character that alerts
TEX to an immediately following command the es-
cape character , but this character bears no relation
to the key marked “escape” or “esc” on many key-
boards.

We issue explicit commands to TEX by means
of one of several hundred commands beginning with
the backslash, the usual escape character for TEX.
Immediately following the backslash are one or more
characters, which may be followed by additional in-
formation that the command needs. For example,
the command

\noindent

suppresses indentation at the beginning of a para-
graph while

\vspace{1in}

instructs LATEX to skip one inch of vertical space.
It’s important that special reserved characters

begin or introduce special formatting instructions,
because you never know when you might want to
include the word “noindent” or “vspace” within the
document. By the way, there are special commands
to typeset any of the reserved symbols, so it is pos-
sible (and easy) to typeset a backslash or a dollar
sign within the document.

TEX contains a rich set of several hundred or
so commands. Although by themselves they do just
about anything we might wish, their real strength
flows from the ability to string commands together
to form new commands for special typesetting pur-
poses.

We might create our own personal \newchapter
command to begin a new page, skip down a third of
the page, center the chapter title, skip a quarter of
an inch, suppress indentation on the first paragraph,
and set the first two words of the chapter in a small
caps font. These new commands are called macros .

TEXNorthEast Conference, March 22 – 24, 1998



TUGboat, Volume 19 (1998), No. 2 175

Creating a macro is a lot like writing a com-
puter program. TEX possesses several commands
to test conditions and perform action on the basis
of the test, to perform looping, and to handle in-
put/output operations. Tricky macros can take a
long time to write and test, but more often than
not, it’s possible to write simple macros on the fly
that make typesetting much easier.

TEX lets us place all our personal macro defini-
tions into a separate style file. The document would
contain special instructions for TEX to read and
assimilate those macros before typesetting. Pub-
lishers, for example, could exploit this by making
generic style files available to their authors while
commissioning a designer to prepare a style file to
implement a specialized book layout. The typeset
document file remains the same, and only the macro
definitions change. LATEX exploits this philosophy
to the hilt.

Learning and joining

Although the numbers of users of TEX are (as of
yet) dwarfed in magnitude by users of famous com-
mercial products, the growth in use of TEX is as-
tonishing. For consider this: an idiosyncratic prod-
uct, passed along by word of mouth, has no public-
relations dollars behind it. The reaction of users
learning it was “free” was often the same — if it is
so good, why isn’t anyone selling it?

But as these words are written, it has become
clear that there will always be a prominent place for
TEX. Although there is widespread perception that
TEX may be difficult to use well, no desktop pub-
lishing package is particularly easy. Furthermore,

TEX has been able to perform certain nice things
from the beginning that some famous commercial
programs are still struggling over, and this has won
the hearts of several mainstream publishers. Scien-
tists the world over will never relinquish TEX — how
else will they unambiguously capture on the page
their technical expressions? Furthermore, the many
millions of pages of LATEX and TEX electronic man-
uscript already in existence require TEX’s continued
presence.

Joining the TEX community. TEX, Meta-

font, and their friends form a rich set of tools.
Many workers have spent many happy hours adapt-
ing TEX to various specialized tasks or to creating
special front ends that might be just what you were
looking for. Although the many computer networks
form a platform for the communication of this news,
the various user groups provide a more formal forum
for the exchange of important news. Not only do the
larger of these groups publish their own newsletters,
but they often sponsor annual meetings.

The TEX Users Group — TUG — is the original
user group organization. Originally an offshoot of
the American Mathematical Society, it is now an
independent organization. TUG serves as a clear-
inghouse for all information on TEX, and members
receive the journal TUGboat, the transactions of the
TEX User Group.

Other user group organizations have since
arisen. New user groups, particularly behind the
former Iron Curtain, are constantly being formed.
(The attention of English-speaking readers must
certainly be drawn to UK TUG, whose journal
Baskerville is well worthwhile.)

TEXNorthEast Conference, March 22 – 24, 1998


