The pervasiveness of the Internet today is such that it hardly warrants special mention—hard to realise that GUTenberg’s own list (gut@ens.fr) has been in operation for over ten years now. And we probably haven’t even begun to realise its possibilities. The “journées GUTenberg” continue to prove that \TeX users are a dynamic component in Internet developments. We can view .dvi files via browsers, click on hyperlinks, move from document to document, add colour where we want . . . Conversion utilities make it easier to produce Web pages from \LaTeX documents, and HTML, while itself providing nowhere near the typographic quality of \TeX, does seem to be moving more and more into a kind of close symbiotic relationship with \LaTeX.

Recent efforts to make \LaTeX more accessible and flexible are bearing fruit: the tetex CD for easier installation on UNIX and other platforms has been around for a year now; Web2C, together with the TDS standard, is bringing uniformity and simplicity to the general distribution of \LaTeX . . . these are just some of the tremendous international efforts by dedicated volunteers.

The number of applications using \TeX and \LaTeX are such that they have passed the point of being simple ‘projects’—they’re now integral parts of what’s happening on the ‘Net. And we still have so much more to look forward to: \Omega, \varepsilon-\TeX, \LaTeX.
This is part of a tutorial on fonts. First, the evolution from hot metal types to digitized characters is shown. Then, the main concepts used in digital typography (bitmaps, outlines, hints, Multiple Masters, etc.) are explained.

A rather precise description of the installation procedure of a multiple master text font family like Minion MM is given.

A normal \TeX distribution is made of a large number of programs interacting via files in various formats. We commonly manipulate several of these formats without knowing their contents: DVI, GF, TFM, VF, etc. We examine here in a more detailed manner the contents of these files, using programs that are included in the standard distributions.

This paper is a translation of the paper: Conrad Taylor, “What has WYSIWYG done to us”, Seybold Report, volume 26(2), 30 September 1996, pp. 1–12, and was translated and printed in Cahier 27 with permission.

This is part of a tutorial on fonts. First, the evolution from hot metal types to digitized characters is shown. Then, the main concepts used in digital typography (bitmaps, outlines, hints, Multiple Masters, etc.) are explained.

Will style files become a required element of the Web? While no-one has the answers just yet, we examine here a “new” approach and its consequences with respect to the Web and Cascading Style Sheets.

The two articles in this issue, translations from English, argue for quality, particular when texts are to eventually find their way onto the net. And a final editorial note: that it is interesting to see that some of the problems raised are targeted by \vTeXX.

Taylor questions the predominance of WYSIWYG systems, and replays the arguments of their proponents and critics, in light of ten years’ professional experience. He dwells on the difficulty of doing proper page composition with commercial interactive programs, and practically praises programs which unite the structuralism of SGML and the quality of \TeXX. His great fear: that the companies currently fighting for dominance in Web publishing pretend that there’s no further need to address typographic quality.
haut niveau [hz micro-typography for advanced typesetting]; pp. 34–70

In the fall of 1992, URW completed computer programs for manufacturers of setting and composition equipment. These programs are outstanding in the field of micro-typography. To express his delight over the results, Hermann Zapf, the inventor, has called them “nonplusultra” in advanced typography. At the beginning, he and URW wanted to rediscover, in the age of computers, that which Johannes Gutenberg had achieved five hundred years ago: namely, a justified setting of text with equal inter-word spacing and optically straight aligned margins. Our hz-program has achieved this and even more: its application saves 3–5% of paper, thereby contributing to environmental protection via typographic means.

[from author’s abstract]

[From the editorial, the following comments serve as a useful summary:

... Karow addresses mediocre fonts used in document exchange not by shouting “they did it better with lead” but by demonstrating a program which does as well as, if not better than, what was achieved in Gutenberg’s day — and on our computer screens, no less.

[The article is based on several presentations made in 1992 and 1993. A published version can be found in EPODD — Electronic Publishing, vol. 6(3), September 1993, pp. 283–288.]


[[No abstract or resume for reviews.] The 1930 edition of 3 volumes comprised the two volumes of the Manuel typographiques (1764 and 1766), along with Carter’s English-language addition, entitled Fournier on Typefounding. This last brings out the quality and quantity of Fournier’s activities, not only in actual type production but also in his correspondence, in setting standards, in managing his business, in writing articles — a prodigious legacy. The 1995 facsimile edition has an introduction and notes by James Mosley, which again enhance Carter’s work, as well as bringing Fournier’s work again to the fore to a new audience.]

[Compiled by Christina Thiele]

Articles from Cahiers issues can be found in PostScript format at the following site:
http://www.univ-rennes1.fr/pub/GUTenberg/publicationsPS