
Inside PSTricks

Timothy Van Zandt
Department of Economics, Princeton University, Princeton, New Jersey USA

tvz@Princeton.EDU

Denis Girou
Institut du Développement et des Ressources en Informatique Scientifique

Centre National de la Recherche Scientifique, Orsay, France

Denis.Girou@idris.fr

Abstract

The macro-commands of the PSTricks package offer impressive additional ca-
pabilities to (LA)TEX users, by giving them direct access to much of the power
of PostScript, including full support for color. The purpose of this article is to
outline the implementation of a few of the features of PSTricks (version 0.94).

Introduction

When a PostScript output device and a dvi-to-ps
driver are used to print or display TEX files, TEX
and PostScript work together, as a preprocessor and
a postprocessor, respectively. The role of PostScript
may simply be to render TEX’s dvi typesetting in-
structions. However, the full power of PostScript
can be accessed through \special’s and through
features, such as font handling, built into the dvi-
to-ps driver.

One can divide the PostScript enhancements to
TEX into roughly four categories:

1. The use of PostScript fonts.

2. The inclusion of PostScript graphics files.

3. The coloring of text and rules.

4. Everything else.

Most TEX-PS users are familiar with the first three
categories. The PSTricks macro package, by Timo-
thy Van Zandt, attempts to cover the fourth cate-
gory.1

The PSTricks package started as an implemen-
tation of some special features in the Seminar doc-
ument style/class, which is for making slides with
LATEX2ε. However, it has grown into much more.
Below are some of its current features:

1. Graphics objects (analogous to LATEX picture
commands such as \line and \frame), in-
cluding lines, polygons, circles, ellipses, curves,
springs and zigzags.

1 PSTricks is available by anonymous ftp from

Princeton.EDU:/pub/tvz and the CTAN archives.

2. Other drawing tools, such as a picture environ-
ment, various commands for positioning text,
and macros for grids and axes.

3. Commands for rotating, scaling and tilting text,
and 3-D projections.

4. Text framing and clipping commands.

5. Nodes and node connection and label com-
mands, which are useful for trees, graphs, and
commutative diagrams, among other applica-
tions.

6. Overlays, for making slides.

7. Commands for typesetting text along a path.

8. Commands for stroking and filling character
outlines.

9. Plotting macros.

For information on PSTricks from the user’s
point of view, consult the PSTricks User’s Guide

(Van Zandt, 1994) and the article by Denis Girou
(Girou, 1994) in Cahiers GUTenberg, the review of
the French TEX users’ group. The latter article is
useful even to those who do not read French, because
it consists predominantly of examples. Several of
these examples appear in this paper, courtesy of
Cahiers GUTenberg.

Who can use PSTricks?

A goal of PSTricks is to be compatible with any TEX
format and any dvi-to-ps driver. Compatibility with
the various TEX formats is not difficult to achieve,
because PSTricks does not deal with page layout,
floats or sectioning commands.

However, compatibility with all dvi-to-ps drivers
is an unattainable goal because some drivers do

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 239



Timothy Van Zandt and Denis Girou

not provide the basic \special facilities required
by PSTricks. The requirements are discussed in
subsequent sections. All of PSTricks’ features work
with the most popular driver, Rokicki’s dvips, and
most features work with most other drivers.

Two dvi-to-ps drivers that support the same
\special facility may have different methods for
invoking the facility. Therefore, PSTricks reads a
configuration file that tells PSTricks how to use the
driver’s \special’s.

Header files

A PostScript header (prologue) file is analogous to
a TEX macro file. It comes towards the beginning
of the PostScript output, and contains definitions
of PostScript procedures that can be subsequently
used in the document.

It is always possible to add a header file to a
PostScript file with a text editor, but this is very
tedious. Most drivers support a \special or a
command-line option for giving the name of a header
file to be included in the PostScript output. For
example, the \special

\special{header=pstricks.pro}

tells dvips to include pstricks.pro.
However, a few drivers, such as Textures (up

through v1.6.2, but this may change) do not have
this feature. Therefore, PSTricks can also be used
without header files. From a single source file, one
can generate a header file, an input file for use with
headers, and an input file for use without headers.

For example, the main PSTricks source file,
pstricks.doc, contains the line:

\pst@def{Atan}<%

/atan load stopped{pop pop 0}if>

When generating the header file pstricks.pro, the
line

/Atan {/atan load stopped{pop pop 0}if}def

is written to pstricks.pro. When generating the
input file pstricks.tex for use with pstricks.pro,
the line

\def\tx@Atan{Atan }

is written to the input file. The input file for use
without pstricks.pro contains instead the line

\def\tx@Atan{%

/atan load stopped{pop pop 0}if }

Other macros can use \tx@Atan in the PostScript
code, without having to know whether it expands
to a name of a procedure (defined in a header file)
or to the code for the procedure (when there is no
header file).

One can also use the source file directly, in
which case no header is used. This is convenient
when developing the macros, because TEX and Post-
Script macros can be written together, in the same
file, and it is not necessary to make stripped input
and header files each time one is testing new code.

The use of header files in PostScript documents
reduces the size of the documents and makes the
code more readable. However, the real benefit of us-
ing header files with PSTricks is that it substantially
improves TEX’s performance. It reduces memory
requirements because, for example, the definition of
\tx@Atan takes up less memory and, more impor-
tantly, \tx@Atan takes up less string space each time
it is used in a \special. It reduces run time because
the writing of \special strings to dvi output is very
slow. A file that makes intensive use of PSTricks can
run 3 to 4 times slower without header files!

Parameters and Lengths

To give the user flexible control over the macros,
without having cumbersome optional arguments
whose syntax is difficult to remember, PSTricks uses
a key=value system for setting parameters.2 For
example,

\pscoil[coilarm=0.5,linewidth=1mm,

coilwidth=0.5]{|->}(5,-1)

The coilarm parameter in this example is the
length of the segments at the ends of the coil.
Note that coilarm was set to 0.5, without units.
Whenever a length is given as a parameter value
or argument of a PSTricks macro, the unit is op-
tional. If omitted, the value of \psunit is used.
In the previous example, the value of \psunit

was 1cm. Therefore, coilarm=0.5cm would have
given the same result. Omitting the unit saves key
strokes and makes graphics scalable by resetting the
value of \psunit. This is why the arguments to
LATEX’s picture environment macros do not have
units. However, unlike LATEX’s picture macros,
with PSTricks the unit can be given explicitly when
convenient, such as linewidth=1mm in the previous
example.

The implementation of this feature is simple.
\pssetlength is analogous to \LaTeX’s \setlength
command, but the unit is optional:

2 PSTricks has recently adopted David Carlisle’s improved

implementation of the parsing, contained in the keyval pack-

age.

240 TUGboat, Volume 15 (1994), No. 3— Proceedings of the 1994 Annual Meeting



Inside PSTricks

\def\pssetlength#1#2{%

\let\@psunit\psunit

\afterassignment\pstunit@off

#1=#2\@psunit}

\def\pstunit@off{%

\let\@psunit\ignorespaces\ignorespaces}

One advantage of the key=value system is that
PSTricks has control over the internal storage of val-
ues. For example, PSTricks stores most dimensions
as strings in ordinary command sequences, rather
than in dimension registers. It uses only 13 of the
scarce dimension registers, whereas, for example,
PICTEX uses over 120. When PSTricks processes
the parameter setting coilarm=0.5, it executes:

\pssetlength\pst@dimg{0.5}

\edef\psk@coilarm{\pst@number\pst@dimg}

\pst@dimg is a register. \pst@number\pst@dimg

expands to the value of \pst@dimg, in pt units, but
without the pt. Hence, \psk@coilarm is ready to
be inserted as PostScript code.

Color

To declare a new color, the user can type:

\newrgbcolor{royalblue}{0.25 0.41 0.88}

The color can then be used to color text and can be
used to color PSTricks graphics. For example:

\psframebox[linewidth=2pt,framearc=.2,

linecolor=royalblue,framesep=7pt]{%

\LARGE\bf It’s {\royalblue here} now!!}

It’s here now!!

The \newrgbcolor command defines \royalblue

to switch the text color, and it saves the color
specification under the identifier royalblue so that
the PostScript code for setting the color can be
retrieved by color graphics parameters.

This support for color has been part of PSTricks
since its inception. However, a problem that has
arisen is that there are now many packages available
for coloring text, and the user is likely to end up
using some other color package in conjunction with
PSTricks. But then the color names used for text
cannot be used with PSTricks graphics parameters.

It is therefore important that a dominant set
of color macros emerge in the TEX community, and
that the macros allow the PostScript code for the
declared colors to be accessible, in a standard way,
by packages such as PSTricks. Version 0.94 of
PSTricks is distributed with an independent set of
color macros that may be a prototype for such a
standard color package.

Arithmetic

One of the limitations of TEX is its lack of fast,
floating-point arithmetic. It is possible to write
routines for calculating, for examples, sines and
cosines using TEX’s integer arithmetic, but these are
notoriously slow. Therefore, PSTricks offloads such
arithmetic to PostScript, whenever possible.

Such offloading is not always possible because
PostScript cannot send information to TEX. If TEX
needs to know the result of some calculation, it must
do the calculation itself. For example, suppose that
one wants a macro that puts a triangle around a
TEX box, analogous to LATEX’s \fbox command.
The macro can measure the TEX box, and pass
these dimensions to a PostScript procedure via a
\special. PostScript can then use its trigonometric
functions to calculate the coordinates of the vertices
of the triangle, and then draw the triangle. However,
it may be important for TEX to know the bounding
box of the triangle that is drawn, so that the triangle
does not overlap surrounding text. In this case,
TEX must do (slowly) the trigonometric calculations
itself.

Pure graphics

A large chunk of PSTricks consists of graphics
macros, which you can think of as a fancy replace-
ment for LATEX’s picture environment. The quali-
fier “pure” means that the graphics do not interact
with TEX. For example, a rectangle is “pure”,
whereas a framed box is not.

A pure graphics object scans arguments and
puts together the PostScript code ps-code for the
graphics. When the code is ready, the object con-
cludes with:

\leavemode\hbox{\pstverb{ps-code}}

\pstverb should be defined in the configuration file
to insert the code in a \special that reproduces
ps-code verbatim in the PostScript file, grouped
by PostScript’s save and restore. The graphics
state should have PostScript’s standard coordinate
system (bp units), but with the origin at TEX’s
current point. For dvips, the definition of \pstverb
is:

\def\pstverb#1{\special{" #1}}

This \special is the only output generated.
Thus, within TEX, the object produces a box with
zero height, depth and width. Within PostScript,
the graphics object is grouped by save and restore,
and hence has no effect on the surrounding output.

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 241



Timothy Van Zandt and Denis Girou

For example, here is a polygon:

\pspolygon[linewidth=2pt,

linearc=.2,fillstyle=crosshatch]

(1,0)(1,2)(4,0)(4,2)

1 2 3 4

0

1

2

\pspolygon first invokes \pst@object, which
collects (but does not processes) optional parameter
changes, and subsequently invokes \pspolygon@i:

1 \def\pspolygon{\pst@object{pspolygon}}

2 \def\pspolygon@i{%

3 \begin@ClosedObj

4 \def\pst@cp{}%

5 \pst@getcoors[\pspolygon@ii}

\begin@ClosedObj (line 3) performs various oper-
ations that are common to the beginning of closed
graphics objects (as opposed to open curves), such
as processing the parameter changes and initializing
the command \pst@code that is used for accumu-
lating the PostScript code. \pst@getcoors (line 5)
processes the coordinates one at a time (\pspolygon
can have arbitrarily many coordinates), converting
each one to a PostScript coordinate and adding it
to the PostScript code in \pst@code.

Then \pst@getcoors invokes \pspolygon@ii:

6 \def\pspolygon@ii{%

7 \addto@pscode{\psline@iii \tx@Polygon}%

8 \def\pst@linetype{1}%

9 \end@ClosedObj}

Line 7 adds the PostScript code that takes the
coordinates from the stack and constructs the path
of the polygon. \pst@linetype (line 8) is used by
the dashed and dotted linestyles to determine how
to adjust the dash or dot spacing to fit evenly along
the path (the method is different for open curves and
open curves with arrows). Then \end@ClosedObj

(line 9) performs various operations common to the
ending of closed graphics objects, such as adding the
PostScript code for filling and stroking the path and
invoking \pstverb.

Here is the resulting PostScript code for this
example:

1 tx@Dict begin STP newpath 2 SLW 0 setgray

2 [ 113.81097 56.90549 113.81097 0.0

3 28.45274 56.90549 28.45274 0.0

4 /r 5.69046 def

5 /Lineto{Arcto}def

6 false Polygon

7 gsave

8 45. rotate 0.8 SLW 0. setgray

9 gsave 90 rotate 4.0 LineFill grestore

10 4.0 LineFill

11 grestore

12 gsave 2 SLW 0 setgray 0 setlinecap stroke

13 end

Line 1 is added by \begin@ClosedObj. STP scales
the coordinate system from PostScript’s bp units to
pt units, which are easier for TEX to work with (e.g.,
\the\pslinewidthmight expand to 5.4pt, and the
pt can be stripped).

Lines 2 and 3 are the coordinates, which are
added by \pst@getcoors.

Line 4 sets the radius for the rounded corners
and line 5 defines Lineto, a procedure used by
Polygon, so that it makes rounded corners. If the
linearc parameter had been 0pt instead, then,
instead of lines 4 and 5, \psline@iii would have
added /Lineto{lineto}def.

Lines 7 to 11 are added by the fillstyle, and
line 12 is added by the linestyle, both of which
are invoked by \end@ClosedObj.

The code for the graphics objects is highly
modular. For example, nearly all graphics objects
invoke the fill style to add the PostScript code for
filling the object. To define a new fill style foo for
use with all such objects, one simply has to define
\psfs@foo to add the PostScript code for filling a
path.

The graphics objects can be used anywhere,
and can be part of composite macros such as for
framing text. However, they are most commonly
used by the end-user to draw a picture by combining
several such objects with a common origin. For
this purpose, PSTricks provide the pspicture en-
vironment, which is very similar to LATEX’s picture
environment. In particular, it is up to the user to
specify the size of the picture. This is an unfortunate
inconvenience, but one that is insurmountable. The
PSTricks graphics objects include curves and other
complex objects of which TEX could not calculate
the bounding box, at least not without doubling the
size of PSTricks and slowing it to a crawl. This is
the main way in which TEX’s lack of graphics and
floating point capabilities hinders PSTricks.

Nodes

Drawing a line between two TEX objects requires
knowledge of the relative position of the two objects
on the page, which can be difficult to calculate.
For example, suppose one wants to draw a line
connecting “his” to “dog” in the following sentence:

The dog has eaten his bone.

242 TUGboat, Volume 15 (1994), No. 3— Proceedings of the 1994 Annual Meeting



Inside PSTricks

One could calculate the relative position of these two
words, as long as their is not stretchable glue in the
sentence, but the procedure would not be applicable
to connecting other objects on a page.

With PostScript as a postprocessor, there is a
straightforward solution. By comparing the trans-
formation matrices and current points in effect at
two points in the PostScript output, one can deter-
mine their relative positions. This is the basic idea
that lies behind PSTricks node and node connection
macros, and is one that PSTricks adapted from
Emma Pease’s tree-dvips.sty.

Here is how PSTricks connects the words:

\large

The \rnode{A}{dog} has eaten

\rnode{B}{his} bone.

\ncbar[angle=-90,nodesep=3pt,arm=.3]{->}{B}{A}

The dog has eaten his bone.

\rnode{A}{dog} first measures the size of “dog”.
Then it attaches to “dog” some PostScript code that
creates a dictionary, TheNodeA, with the following
variables and procedures:

NodeMtrx The current transformation matrix.
X The x-coordinate of the center.
Y The y-coordinate of the center.
NodePos See below.

Here is the code that appears in the PostScript
output for this example:

1 tx@Dict begin

2 gsave

3 STV CP T

4 8.33331 2.33331 18.27759

5 9.1388 3.0

6 tx@NodeDict begin

7 /TheNodeA 16 NewNode

8 InitRnode

9 end

10 end

11 grestore

12 end

This codes gets inserted with \pstVerb, which
should be defined in the configuration file to in-
clude ps-code verbatim in the PostScript output, not

grouped by (g)save and (g)restore. PostScript’s
current point should be at TEX’s current point, but
the coordinate system can be arbitrary. For dvips,
the definition of \pstVerb is:

\def\pstVerb#1{\special{ps: #1}}

\pstVerb is used instead of \pstverb because
the latter groups the code in save and restore,

which would remove the node dictionary from Post-
Script’s memory. However, PSTricks still wants to
work in pt units, and so STV scales the coordinate
system.

Line 4 contains the height, depth and width of
the dog. The next line (9.1388 3.0) gives the x and
y displacement from where the code is inserted (on
the left side of dog, at the baseline) to the center of
dog. Actually, by “center” we mean where node
connections should point to. This is the center
by default, but can be some other position. For
example, there is a variant \Rnode that sets this
point to be a fixed distance above the baseline, so
that a horizontal line connecting two nodes that are
aligned by their baselines will actually be horizontal,
even if the heights or depths of the two nodes are
not equal.

NewNode, in line 7, performs various operations
common to all nodes, such as creating a dictionary
and saving the current transformation matrix. Then
InitRnode takes the dimensions (lines 4 and 5) off
the stack and defines X, Y and NodePos.

A node connection that wants to draw a line
between a node named A and a node named B can
go anywhere after the nodes, as long as it ends
up in the dvi file after the nodes, and on the
same page. The node connection queries the node
dictionaries for the information needed to draw the
line. In the example above, \ncbar needs to know
the coordinate of the point that lies on the boundary
of “his”, at a −90◦ angle from the center of node.
After setting Sin and Cos to the sine and cosine
of 90◦ and setting NodeSep to 0, the procedure
NodePos in the TheNodeA dictionary returns the
coordinates of this point, relative to the center of
the node. The connection macro can then convert
this to coordinates in the coordinate system in effect
when the node connection is drawn, by retrieving
and using NodeMtrx, X and Y from TheNodeA.

A node connection macro, after drawing the
connection, should also save a procedure for finding
the position and slope of a point on the line, so
that labels can be attached to node connections.
This task is similar to that of a node; it should
save the coordinates of the node connection and the
current transformation matrix and a procedure for
extracting from this information a position on the
node connection. Example 1 makes extensive use of
labels.

There are many ways to position nodes, de-
pending on the application. To create a diagram
with arrows from one object to another, one can
position the objects in a pspicture environment.
For applications with more structure, one may want

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 243



Timothy Van Zandt and Denis Girou

\psmatrix

[mnode=circle,colsep=.85cm,rowsep=1cm]

% States:

[mnode=R]{\mbox{Start}}

& & [doubleline=true,name=0]$q_0$ \\

& & [name=1]$q_1$ \\

& [name=2]$q_2$ & & [name=3]$q_3$ \\[0pt]

[name=4]$q_4$ & & [name=5]$q_5$ & &

[name=6]$q_6$

\endpsmatrix

% Transitions:

\psset{nodesep=3pt,arrows=->,arcangle=15,

labelsep=2pt,shortput=nab}

\footnotesize

\ncline[linestyle=dotted]{1,1}{0}

\nccircle{0}{.4cm}_{0}

\ncline{0}{1}_{1}

\ncline{1}{2}^{0}

\ncline{1}{3}_{1}

\ncarc{2}{4}^{0}

\ncarc{4}{2}^{1}

\ncline{2}{5}^{1}

\ncline{3}{6}^{0}

\ncarc{<-}{0}{3}^{1}

\nccurve[angleA=140,angleB=210]{4}{0}^{0}

\nccurve[angleA=10,angleB=180]{5}{3}^{0}

\ncarc{5}{4}^{1}

\ncarc{6}{5}^{0}

\nccircle[angleA=270]{6}{.4cm}_{1}

Start q0

q1

q2 q3

q4 q5 q6

0

1

0 1

0

1
1 0

1

0

0

1 0

1

Example 1: An example of nodes and node
connections and labels, used with the psmatrix

environment. (Courtesy of Mark Livingston.)

a more automated way to position nodes. PSTricks
does not come with any high-level macros explic-
itly for commutative diagrams, but it does have
a psmatrix environment for aligning nodes in an
array, and this can be used for commutative dia-
grams. Example 1 shows psmatrix beings used for
a graph. PSTricks also contains very sophisticated
tree macros.

Overlays

To make overlays with SliTEX, for example, you
have to use invisible fonts, and TEX has to typeset
the slide once for each overlay. This makes it
impossible to make overlays if a slide uses fonts
other than the few for which invisible versions are
available, or if the slide contains non-text material.

PSTricks uses a simple idea for creating over-
lays. Its operation is illustrated in Example 2. A
box from which a main slide and overlays are to be
created is saved, using the overlaybox environment.
The \psoverlay{2} command in this box simply
inserts the code

(2) BeginOL

and similar code at the end of the current TEX group
to revert to the main overlay. BeginOL compares
the string on the top of the stack to the PostScript
variable TheOL. If it does not match, the output is
made invisible. Otherwise, it is made visible. To
print out overlay 2,

\putoverlaybox{2}

simply has to insert

/TheOL (2) def

before a copy of the box.
Because we can insert PostScript procedures in

the box that can be redefined before each copy of the
box, TEX only has to typeset the box once, which
saves processing time and saves us from having to
come up with a way to read the TEX input for the
box several times.

There are several ways to make output invisible
with PostScript, none of which is entirely satis-
factory. PSTricks’ default method is to translate
everything far away (e.g., over by the coffee pot) so
that, except in very unusual circumstances, all the
“visible” output ends up off the page. This is easy
to undo, by translating back.

The only problem with translation is that the
node connections and labels, which use absolute
coordinates, end up on the same overlay as the nodes
that are connected. Therefore, users can select
an alternate method for making material invisible:
setting a small clipping path off the page. The
problem with this method is that it can only be

244 TUGboat, Volume 15 (1994), No. 3— Proceedings of the 1994 Annual Meeting



Inside PSTricks

\large

\begin{overlaybox}

$\frac{n-2}{n-3}

+ \psframebox{\psoverlay{2}

\frac{n-1}{n}}

= \frac{2(n-2)(n-1)}{n(n-3)}$

\end{overlaybox}

\psset{boxsep=6pt,framearc=.15,

linewidth=1.5pt}

\psframebox{\putoverlaybox{main}}

\psframebox{\putoverlaybox{2}}

n − 2

n − 3
+ =

2(n − 2)(n − 1)

n(n − 3)

n − 1

n

Example 2: Overlays.

undone with initclip, which can mess up other
macros that set the clipping path.

PSTricks does not use PostScript’s nulldevice
operator, because this cannot be undone except by
using grestore. It would thus be impossible to have
nested overlays. The PSTricks overlay macros are
used to implement overlays in the Seminar package.

Typesetting text along a path

One facility that TEX users have long desired but
have been unable to obtain is to typeset text along
a path. This is a task that also stretches the limits
of PostScript \special’s, but PSTricks contains
an implementation that works for several dvi-to-ps
drivers. It is illustrated in Color Example 4.

The main difficulty is that the text that goes
along the path should be typeset by TEX, not by
PSTricks, and then converted to PostScript output
by the dvi driver. For PSTricks to get this text
along the path, it has to redefine the operators that
the dvi driver uses to print the text. This requires
knowledge of the PostScript code the dvi driver uses
to print text.

In the best case, the dvi driver simply uses
PostScript’s show operator, unloaded and unbound.
PSTricks simply has to redefine show so that it
takes each character in the string and prints it along
the path. The redefined show checks the current
point and compares it with the current point at
the beginning of the box that is being typeset to

find out the x and y positions of the beginning of
the character. The x position is increased by half
the width of the character to get the position of
the middle of the character. This is the distance
along the path that the middle of the character
should fall. It is straightforward, albeit tedious, to
find the coordinates and slope of any point on a
path. We translate the coordinate system to this
point on the path, and then rotate the coordinate
system so that the path is locally horizontal. Then
we set the current point to where the beginning of
the character should be, which means to the left
by half the character width and up or down by the
relative position of the base of the character in the
box. Then we are ready to show the character.

This method works with Rokicki’s dvips. For
other drivers, one of two problems arises:

1. show is “loaded” or “bound” in procedures de-
fined by the driver for displaying text. This
means that the procedures do not invoke the
command name show, which can be redefined
by PSTricks, but instead invoke the primitive
operation show, which cannot be altered. The
workaround for this is to remove the appropri-
ate load’s and bind’s from the driver’s header
file.

2. The driver uses PostScript Level 2’s large fam-
ily of primitives for showing text. The only
workaround is to redefine all these operators,
which has not been attempted. The usual dvi
drivers do not use Level 2 constructs. However,
NeXTTEX’s TEXView, which is a dvi driver
based on the NeXT’s Display PostScript win-
dowing environment, does use Level 2 opera-
tors. The workaround for NeXT users is to use
dvips to generate a PostScript file and then
preview it with Preview.

Stroking and filling character paths

It is also possible to stroke and fill character paths,
as illustrated in Color Example 4. The methodology
is the same as typesetting text along a path, but it
is easier because show just has to be changed to
charpath. Nevertheless, the two problems that can
trip up PSTricks’ \pstextpath macro can also trip
up \pscharpath. Furthermore, \pscharpath only
works with PostScript outline fonts, since bitmap
fonts cannot be converted to character paths.

Charts

PSTricks has many primitives for a wide variety of
applications, but sophisticated graphics can involve

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 245



Timothy Van Zandt and Denis Girou

tedious programming. In such cases, a preproces-
sor can be constructed to automatically generate
the PSTricks commands. The preprocessor can
generate standardized representations using only a
minimum amount of information, but the user does
not lose flexibility because the PSTricks code can
subsequently be tweaked as desired.

For instance, we can think of preprocessors
for automatic coloration of maps, generation of
graphs or trees, etc. For his own needs, Denis
Girou has written (in Shell and AWK) a preproces-
sor (pstchart.sh) for automatic generation of pie
charts, which he extended to generate other forms
of business graphics (line and bar graphs, 2D or 3D,
stacked and unstacked).

Example 3 shows a data file, the unix command
line for generating the PSTricks code from the data
file, and the output. Color Example 3 shows the
output from another example, generated with the
unix command line:

pstchart.sh vbar dimx=9 3d boxit center\

figure print-percentages < file2.data

Conclusion

There is much talk about the future of TEX and
about the need to create a replacement for TEX be-
cause TEX is, by design, just a typesetting program
for positioning characters and rules. We believe that
when today’s TEX is supplemented by PostScript,
through the use of \special’s and good dvi-to-ps
drivers, many of the special effects that users clamor
for can be achieved today. PSTricks provides an
example of this.

When PSTricks is combined with the Seminar
LATEX2ε document class for making slides, plus
PostScript fonts and macros for including graphics
files, one has a complete presentation software pack-
age, that is quite far from the usual use of TEX for
typesetting technical papers.

However, there are still some limitations that
can only be solved by changes to TEX. The most
obvious one is TEX’s lack of fast, floating-point
arithmetic. Although TEX can pass information to
PostScript through \special’s, it is not possible for
PostScript to pass information to TEX. This slows
down many calculations and makes it impossible to
calculate the bounding box of some graphics.

Data file:

3094 | LUU

1438 | SOL

365 | LMD

267 | LEG

248 | PPM

236 | MEF

122 | ASF

57 | DRT

33 | AMB

18 | TPR

9 | RRS

Command line:

pstchart.sh vbar dimx=7 3d nb-values=8 \

print-percentages print-values \

grayscale=white-black data-change-colors \

title="VP users’ files" center <users.data

Output:

VP users’ files

0

800

1600

2400

3200

4000

3094

52.6%

LUU

1438

24.4%

SOL

365

6.2%

LMD

267

4.5%

LEG

248

4.2%

PPM

236

4%

MEF

122

2.1%

ASF

117

2%

Others

Example 3: Using the preprocessor pstchart to
generate PSTricks graphs.

References

Girou, Denis. “Présentation de PSTricks,” Cahiers

GUTenberg, No. 16, pp. 21–70, Février 1994.

Van Zandt, Timothy. “PSTricks: Documented Code.”

1994

Van Zandt, Timothy. “PSTricks: PostScript Macros for

Generic TEX — User’s Guide.” 1994.

246 TUGboat, Volume 15 (1994), No. 3— Proceedings of the 1994 Annual Meeting



Inside PSTricks

ann
ou

You
!

I L

You
!

I Lov
e
Y

You
!

I Lov
e
You

!

You
!

I Lov
e
You

!
I Lo

e
You

!
I Lov

e
You

!
I Lov

e
Yo

ve
You

!
I Lov

e
You

!
I Lov

e
You

!
I

ve
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e

ov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

ov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I L

You
!

I Lov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
Y

I Lov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!

ov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

ou
!

I Lov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
Yo

I Lov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e

u!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!

ov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lo

You
!

I Lov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
Y

I Lov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I

ve
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

ou
!

I Lov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

Lov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I L

You
!

I Lov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!

ov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lo

ou
!

I Lov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
Yo

I Lov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I

ve
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e

ou
!

I Lov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

Lov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I L

You
!

I Lov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

ov
e
You

!
I Lov

e
You

!
I Lov

e
You

!
I Lov

ou
!

I Lov
e
You

!
I Lov

e
You

!
I Lo

I Lov
e
You

!
I Lov

e
You

!
I Lo

e
You

!
I Lov

e
You

!
I L

u!
I Lov

e
You

!
I L

Lov
e
You

!
I L

You
!

I

!
I

Happy Birthday!!

Example 4: Typesetting text on a path, filling character outlines, and using a TEX box as a fill pattern.

Set of Motif widgets classes
Core

Primitive

Label Scrollbar List Text ArrowButton

Composite

Constraint

Manager

Shell

OverrideShell

MenuShell

WMShell

VendorShell

Core Xt Class List Motif Class

Example 5: Tree representation.

TUGboat, Volume 15 (1994), No. 3 —Proceedings of the 1994 Annual Meeting 247



Timothy Van Zandt and Denis Girou

Unemployment rate in 1974 and 1981 in France

1974 1981

?

1% 2.5% 4% 5.5% 10% 12.5%

Source INSEE

Example 6: Coloration of maps.

248 TUGboat, Volume 15 (1994), No. 3— Proceedings of the 1994 Annual Meeting


