Using a High-Level Language as an Aid in Writing TEX Documents

Harry L. Baldwin, Jr.
San Diego City College
1313 12th Ave.

San Diego, CA 92101

Abstract

Certain mathematical procedures associated with the preparation of a document
are best handled by some high-level language other than TEX. One example is
the generation of random numbers and the subsequent ordering of those numbers
as a means of scrambling lines or groups of lines in the preparation of different
forms of a test. Other examples involve the generation of curves and angles for
inclusion in graphs and diagrams. An alliance of the True BASIC programming
language and TEX has proven to be a useful combination for the efficient creation

of TEX source files.

Introduction

Although TEX was designed for quality typesetting,
and to reach that goal Don Knuth filled his program
with many capabilities, most users would probably
admit that number crunching is more easily done
in some other high-level language. In my four
years of using TEX as a mathematics teacher, I have
found several applications in which my attempts to
produce high-quality output are simplified by using
TEX in close association with another language. This
article will be a chronological account of some of
those applications.

The high level language that I use is not one
of the latest exotic creations to which Byte Maga-
zine might devote an entire issue, but rather what
has lately been looked upon as the Rodney Danger-
field of computer languages, BASIC. My first mesh-
ing of TgX and BASIC came when I implemented
PCTEX and needed an editor capable of creating an
ASCII file. Although I was doing True BASIC num-
ber crunching on the PC, all my word processing
was being done on a NorthStar Horizon computer
(anybody remember that old warhorse?). I decided
to write my TEX source files using the True BASIC
editor until something better came along.

The True BASIC editor has been working so
well that I've never bothered searching for a bet-
ter one. The only time it complains is when I
occasionally accidently hit F9 (the “RUN” com-
mand) at which time it politely tells me that
“\documentstyle{book}” is an illegal statement.
All the editing features I need are available, such as
search and replace, block move, copy, delete, and so
forth, together with the capability to insert another
file into the working file at any desired location.

Scrambling Questions and Answers

My first uses of TgX were handouts and tests (where
“tests” means both long “examinations” and short
“quizzes”). Since the number of students in my
classes kept getting larger each semester, but the
classroom sizes somehow stayed the same, roving
eyes during tests became a problem. Giving different
versions of a test seemed to be the appropriate
action to take. The versions would differ from one
another by either scrambling the order of choices
to each multiple-choice question, or by scrambling
the order of the questions on the test, or perhaps
by using both of these techniques. Rather than
have TEX create the different versions of a test—
an approach adopted by Don De Smet (1991) — my
strategy is to let True BASIC do the scrambling:
A TEX source document (let’s assume it is named
TEST.SCR) is input to a BASIC program (called
SCRAMBLE.TRU) that searches the lines for certain
code characters. The codes identify lines whose
positions will be changed in a manner that will be
described below. A new source file (let’s name it
TEST.TEX) is written to the hard disk, all ready to
be compiled under IATEX.

Two types of scrambling can be done: scram-
bling of questions and scrambling of answers. A
multiple-choice question comprises a group of lines
that contain the question’s “root” and the five “an-
swers” (the single correct answer and the four “dis-
tractors”). Scrambling of questions requires chang-
ing the positions of blocks of lines, while scrambling
of answers involves shuffling a few contiguous lines
within the block. The type of scrambling that will
be done is determined by “code characters” that ap-
pear on some lines of TEST. SCR. The code characters

272 TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting

are placed to the far right end of the line for easy
identification during screen editing of the source file.
The leftmost character in any sequence of code char-
acters is the comment character %, which will not in-
terfere with the subsequent compilation of the doc-
ument.

The beginning line and ending line of a question
that is to be scrambled are identified by the code
characters %B and %E in character positions 76-77.
These lines, together with all lines in between, form
a block whose position will be scrambled. The end
of the last question in a group of questions that is to
be scrambled is identified by %EL in positions 76-78.

A question that is to be scrambled need not
be a multiple-choice question, but if it is, usually
we want the answers to be scrambled also. Each of
the answers in a multiple-choice question (we will
assume there are five) will be an argument of a
macro designed to output the answers appropriately.
In TEST.SCR the answers must be written on five
contiguous lines, one answer per line. (If an answer
is too long to fit on one line, then that answer should
be made into a macro, and the macro command
put on the line.) To identify an answer that is to
be scrambled, the comment symbol % is placed in
character position 78 on that line. For example,
if only the first four answers are to be scrambled
(maybe the fifth answer is “all of the above”) then
four contiguous lines would contain a percent symbol
in position 78.

The scrambling is done as follows: The source
file TEST.SCR is read into memory, each line des-
tined to become an element of a one-dimensional
string matrix that we’ll name TEST$. As each line
is entered, it is examined for a percent symbol in
position 78, which would identify that line as an an-
swer to be scrambled. If such a symbol is not found,
then the line is merely appended to TEST$, but any
sequence of answer lines that are to be scrambled
are first stored in another temporary array. Pseudo-
random numbers are generated (the “pseudo” is for
the purists—T’ll just call them random numbers)
and placed in another column of that array. The
rows of the array are then reordered so that the
random numbers increase as we go down the col-
umn, and the lines associated with those numbers
have their positions changed as well. The reordered
answer lines are then transferred to TEST$. This
process continues until all lines of TEST.SCR have
been entered.

The lines of the matrix TEST$ can now be
output to TEST.TEX, and the only change from
TEST.SCR will be the order of answers. However,
if scrambling of questions also is desired, then some

A High-Level Language and TEX

more juggling is required: As each line of TEST$
is output, it is examined for %B in positions 76-77,
which would mark the “begin-line” of a question
whose position is to be scrambled. If not found,
then the line is merely output to TEST . TEX; if found,
output is suspended while the program searches
for the corresponding “end-line” of that question,
identified by %E is positions 76—77. The line numbers
that identify that question are stored in a row of
a “line-number matrix”, and search continues for
another begin-end pair of line numbers, which will
be stored in the next row of that matrix. After
the end-line of the last question to be scrambled is
identified (by %EL in positions 76-78), then a random
number is assigned to each row of the line-number
matrix, and those rows are reordered. The output
of TEST$ is then resumed, with the order of the lines
indicated by information contained in the rows of
the reordered line-number matrix.

Sometimes a test should not have all questions
scrambled together, but rather, say, the first twenty
easier questions scrambled, and then the next thirty
more-difficult questions scrambled. This can be
done by the above scheme, by merely terminating
each group that is to be scrambled with a line
containing %EL in positions 76-78.

Each time a True BASIC program is run, the
same sequence of random numbers is generated. To
obtain a version of a test, SCRAMBLE.TRU asks for
the date and the form number, and then discards
the first n random numbers, where the number n
is given by n = 366+ (yr+form) + 31 +-mo + day. For
example, to generate the fifth form of my last April
Fool’s test I entered the “seed” 0401925, and the first
35627 random numbers were discarded (slowing the
execution by less than a second). If, for some reason,
I need to recreate the version I can input the same
seed and obtain exactly the same test.

The macro chosen to output the answers to a
multiple-choice question depends on the lengths of
those answers. Five macros have accommodated
all possibilities I've needed so far; letting r:s:t...
represent r answers on the first line, followed by s
answers on the next line, etc., the macros will print
the answers following one of these patterns: 5, 3:2,
2:2:1, 4:1, and 1:1:1:1:1.

An example of what a couple of questions in the
source file might look like, and what output might
be produced, is shown in Figure 1 (in the Appendix).
The command \QQQQR is the macro that outputs
four answers on one line and the fifth answer on
the second line (such an arrangement would only
be used if the fifth answer is not to be included in
the scrambling); the command \QQRRS outputs two

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting 273

Harry L. Baldwin, Jr.

answers on the first line, two on the second, and one
on the third; (can you guess what \QRSTU would
output?). These macros begin by incrementing the
question number. Then (in a \vtop, so that a
question won’t be split by a pagebreak) a horizontal
rule is drawn for question separation, followed by
printing the root of the question (the first argument
of the macro) and then the answers (arguments two
through six). The macro concludes with another
horizontal rule.

Generating a Test

SCRAMBLE.TRU worked so well that when the City
College Mathematics Department decided to imple-
ment a departmental final exam for the Beginning
Algebra course (and I was drafted to create this fi-
nal), it seemed reasonable to let True BASIC com-
pose the entire test. The test-making philosophy
our department adopted was this: the final exam
would be formed by selecting questions from a test
bank that is so large that test security is of no con-
cern. Currently our test bank contains 215 “mas-
ter questions” (we are aiming for 300), each master
question having ten quite-similar “versions”. Since
a final exam would be formed by selecting 60 master
questions from the bank of 215, and any of the ten
versions of each question will be randomly selected,
and the 60 test questions would be scrambled (in two
groups), and the answers would be scrambled, we
feel that any student capable of beating the system
by remembering all the questions and their correct
answers is probably bright enough to realize that it
would be easier just to learn the algebra.

Each master question (comprising ten versions)
is stored as a separate file; for example, Q130 is the
file that contains master question 130. If that master
question is selected for a test, then part of that file
(a version of the question) is destined to be input
by the BASIC program MAKETEST.TRU that will be
composing the test. A random number determines
which of the ten versions will be selected. Each
version occupies 15 lines of the file, so version 4,
for example, would extend from lines 46 through 60,
with perhaps the last few lines being blank.

Refer to Figure 2 (in the Appendix) as we look
at what MAKETEST.TRU does with the 15 lines of a
question version that has been randomly selected.
The first line contains five pieces of information
about the question, with each of these pieces of
information appearing in a specific location on the
line:

Version number. A whole number, in charac-
ter positions 9-10, identifies the version se-

lected. During any subsequent scrambling,
MAKETEST.TRU will keep track of the question
master number (one of the 215 questions in the
test bank) and the version number (1 through
10). After the test is constructed an answer key
is printed that will include this information. If
a bug in the question shows up then it is easy
to locate the offending version.

Scramble code. A whole number, in character
position 21, tells how many answers are to be
scrambled: 0 (for no scrambling), or 3 (the first
three answers), or 4, or 5.

Answerline code. A whole number (1, 2, 3, 4, or
5), in character position 36, tells MAKETEST . TRU
what macro to use when outputting the an-
swers. For example, code number 1 is five an-
swers on one line.

Rootlines code. A whole number, in character
position 49, tells how many lines contain the
root of the question. The root lines immedi-
ately follow this first codeline, are written in
TEX, and will be inserted directly into the TEX
document being constructed. The maximum
number of root lines is 9; although we have
never needed that many lines, a macro could
be defined and placed in the preamble if neces-
sary.

Correct answer. A letter (A, B, C, D, or E),
in character position 59, identifies the correct
answer. The five answers are on the five lines
that follow the root line, with exactly one an-
swer per line. Before scrambling, answer A is
the first answer listed, B is the second, and so
forth. When writing a test question, I usually
work the problem and write the correct answer
on the first answer line, and then play the part
of an inattentive student as I make up the dis-
tractors. During the subsequent scrambling of
the answers, MAKETEST. TRU tracks the correct
answer for inclusion on the answer key.

The construction of a test by MAKETEST.TRU
proceeds as follows: The person creating the test
selects the master numbers of the questions that
will be on the test. These numbers are written
in a file, perhaps named FIN-S92 if they are the
questions to be used on the final exam for the
Spring semester in 1992. MAKETEST . TRU is then run,
and begins by asking for the test title, subtitle,
and special instructions. (Provision is made for
placing this information in a file before running
MAKETEST . TRU, and merely entering the name of the
file when prompted.) MAKETEST.TRU next asks for
the number of questions, for a random-number seed,

274 TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting

and for information on what groups of questions
are to be scrambled. (If no question scrambling is
to be done, then the questions will be output in
the same order as they appear in the question file.)
Then the master-question numbers are scrambled,
and versions randomly selected.

The output file (let’s again call it TEST.TEX) is
now ready to be created. MAKETEST.TRU first calls
a file named PREAMBLE.TEX that contains all the
commands in a #TEX document preamble. These
lines are output to TEST.TEX. Then the title in-
formation and instructions are appended. Finally,
the randomly selected version of each master ques-
tion is input: the master number of a question is
used to form the name of the file that holds the
ten versions, the lines of that file are entered into
memory, and the 15 lines that correspond to the se-
lected version are retained while all other lines are
discarded. Information is extracted from the code-
line (the first line): how many of the following lines
contain the root, how many answers are to be scram-
bled, how many answers should appear on each line,
and which is the correct answer. The root of the
question is then inserted as an argument of a macro
written by MAKETEST.TRU using BASIC string func-
tions, the answers are scrambled and inserted as ar-
guments into the appropriate macro (also written
by MAKETEST.TRU), and all of the lines are written
to TEST.TEX. This procedure is repeated until the
lines that will print all questions have been output
to TEST.TEX.

The answer key is then constructed. After a
\pagebreak, four columns of information are pre-
sented: the question number as it appears on the
test, the corresponding master-question number, the
version number, and the answer. The last hurrah of
MAKETEST.TRU is to append \end{document}.

After the file containing the master ques-
tion numbers has been created, the running of
MAKETEST.TRU takes only a few minutes. Even
though a lot of computation and scrambling is in-
volved, on an 80386 running at 33 megahertz the
questions are written to TEST.TEX at about one per
second. For the final exam in Beginning Algebra this
last Spring semester, all sections were to be given
a test that used the same master questions. Since
the tests were to be given at different times, eight
runs were made using different seeds to obtain eight
different forms, each form containing eight pages of
questions plus an answer key. Creation of all eight
forms of TEST. TEX, compiling under I4TEX, and then
obtaining HP LaserJet II output ready for photo-
copying took about 40 minutes.

A High-Level Language and TEX

Writing the ten versions of a master question
goes quickly. Since all versions are to be wvery
similar, the roots of the versions usually will be the
same, except perhaps for a mathematical expression
or a few words. The codelines for each version
usually differ only in the version number. Therefore,
one version can be written, duplicated nine times,
and then changes made to those parts where the
versions differ.

Another BASIC program, PRT-VER.TRU, was
written that will read in a master file and print
all versions— a great help in proofreading the ques-
tions. Still another program, PRT-ALL.TRU, prints
a single version from each master question. The
output from PRT-ALL.TRU is what instructors look
at when selecting master questions for a test, and
what students look at when they are curious as to
what might appear on a test.

This testing strategy can be a morale raiser for
students, since they needn’t fear being hit with a
question of a type they have never seen before. But
since the students would see only one version from
each master question (printing all ten versions would
make a booklet of several hundred pages), great care
must be taken to insure that all versions are of the
same difficulty. For example, a question that asks
for one of the binomial factors of x? + 7z + 12 is
not considered to be of the same difficulty as asking
for one of the binomial factors of 22 — 4z — 12,
for this second trinomial involves both positive and
negative integers. To insure that much thought
is applied to the construction of the questions, a
verbal description of the limitations is written for
each master question. For example, the description
of one trinomial-factoring question is as follows:

A given second-degree trinomial has two first-
degree binomial factors, one of which is to be
selected from a list of five possibilities. The
coefficient of the second-degree term is 1; the
constant terms of the binomials will be non-zero
integers, of different sign, having magnitudes less
than 10.
Of course, a student who only knows his multiplica-
tion table up through fives might not consider the
factoring of z2 + 32 — 54 to be of the same difficulty
as 22 + 3z — 10, but at least we tried.

Figure 2 (in the Appendix) shows an example
of a version from each of two master questions,
as they would appear in the master-question files.
Also shown is the output of these same questions as
produced by MAKETEST. TRU.

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting 275

Harry L. Baldwin, Jr.

Graphics Output

Other opportunities to mesh True BASIC and TEX
arose from my efforts to produce mathematically-
accurate drawings for my handouts, and for a ge-
ometry book recently completed (Baldwin, 1992).
A brief description will be given here of only two of
several BASIC programs that were helpful.

Most of the graphs I construct for tests and
handouts require only a simple xy coordinate system
framework, on which an arbitrary curve will be
drawn. In the TEX document, a macro \XYgrid will
construct the framework, label and place scales on
the axes, and then leave the “cursor” at the left
end of the top gridline of the framework. Another
macro enters the I4TEX picture environment, places
the origin at the intersection of the z and y axes,
and sets \unitlength equal to the unit distance on
the framework. The TEX document is then saved
while BASIC constructs the curve.

A True BASIC program named CURVE.TRU will
write I/TEX \multiput statements to a temporary
file, which will then be inserted into the TEX docu-
ment at the proper place. Each \multiput state-
ment will place dots of a selected size along a
straight-line segment defined by the endpoints. By
making the segments quite short, and linking them
together, a curve can be drawn.

The curve is defined by functions of a param-
eter—x and y each as a function of ¢—which
are placed very near the beginning of CURVE.TRU.
These functions are defined by editing CURVE.TRU
before running (which is much easier that having
CURVE.TRU ask for the functions during running).
When run, CURVE. TRU first asks for the framework
scale, the starting and ending values of the param-
eter ¢, and “delta ¢’ (the change in ¢, which will
influence the lengths of the straight-line segments.
Finally, CURVE.TRU asks for the size and spacing of
the dots that will form the curve. After a couple of
seconds the program announces that it is finished,
having written a series of \multiput commands to
a file named TEMP.TRU. The TgX document is then
reloaded, and the lines in TEMP.TRU are inserted at
the proper location.

A dot diameter of 1 point (obtained by using
the smallest possible IATEX \circle*) with a spac-
ing between centers of 0.7 points creates a curve
whose thickness matches a I4TEX \thicklines line
almost perfectly. Thinner curves can be made by
using periods in smaller fonts.

Several variations of CURVE. TRU have been writ-
ten: dotted curves, dashed curves, curves where
checking is done so plotting is restricted to a cer-

tain area, and some other variations. Rather than
have one giant elegant program that will do every-
thing, I have found it more efficient to select one of a
number of special programs available, so that a lot of
queries needn’t be answered during running. For ex-
ample, CURVE-DU.TRU (“dashes, unlimited”) makes
a dashed curve, without checking for out-of-bounds
points, while CURVE-DL. TRU (“dashes, limited”) asks
for the limits on = and y.

Some curves result in many \multiput com-
mands being inserted into the TgX file— perhaps
a few hundred. Occasionally I get a “Sorry, TeX
capacity exceeded” message. Since I don’t under-
stand any of the rest of the message, I usually just
shrink the curve or increase the delta ¢ and try again.

I often draw curves using the excellent curve-
drawing capabilities of PICTEX, especially circles
and ellipses. For other curves, P[CIEX requires
computing the coordinates of some points that lie on
the curve and either entering these coordinates into
the TEX document or storing them on a file. Rather
than worry if enough points have been computed,
or if something strange is happening on the curve
between those points, I just use CURVE.TRU. The
compiling times for TEX documents that produce
curves by the two methods are about the same.

Figure 3, immediately below this paragraph,
shows an example. The framework (axes and labels,
grid lines, and the scale) was generated by XYgrid
(a TEX macro), but the curve was formed from 72
\multiput commands generated by CURVE.TRU, and
inserted into the TEX source file for the document
you are reading.

Y

’ ™~

\ /

e

r =2+ 3cosf

Figure 3: limacon:

If an angle in a drawing is accurate to within
about one degree of its labeled measure, then it takes
a highly-trained eye to detect the error. Whenever

276 TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting

possible, T use the line-drawing capabilities of the
picture environment of IATEX to draw an angle.
The \1line command in IATEX can draw a vertical
line, or a line having slope +y/x, where x and y
are whole numbers six or less. The available slopes
allow an angle of any measure to be constructed
with an error less than one degree, although not
with an arbitrary orientation. If a figure has two
or more angles, or if the orientations of one or more
angles are constrained, then I4TEX \1line commands
may not create a sufficiently-accurate drawing, so
the sides of those angles may have to be drawn by
another method. Furthermore, pictures of angles
often require an arc to indicate the measure of the
angle, and that arc might terminate with an arrow at
one or both ends. Sometimes a picture should show
the sides of an angle to be rays (an arrow pointing
away from the vertex); sometimes an angle’s sides
are segments. A right angle might be indicated by
a square placed at the vertex. All of these facts
served as the incentive to let True BASIC do the
job, by means of a program named ANGLEARC.TRU.

A IXTEX picture environment is established,
with the scale and the origin chosen, and the TEX
source file is saved. When ANGLEARC.TRU is run, it
asks (and I answer) these questions:

What is the scale?

What are the coordinates of the vertex?

What is the direction of the angle’s side?

What is the length of angle’s side?

Is the side a ray? If yes, a ¥TEX \thicklines
vector of zero length having the closest-possible
direction as the side will be placed at the end
of the segment that forms the side.

Should a right-angle square be drawn at the
vertex? If yes, then what is the size of the
square?

What is the radius of the arc that will indicate
the angle’s measure? (An answer of zero indi-
cates no arc is to be drawn, and the next two
questions are skipped.)

Should arrows be placed at the terminal end of
the arc, or at both ends of the arc? If yes,
TEX \thinlines vectors of zero length (and
closest direction) are placed at the appropriate
endpoints of the arc.

What is the central angle of the arc?

Is another side to be drawn? To construct the
terminal side, answer yes and the questioning
begins anew.

A High-Level Language and TEX

As the questions are answered, ANGLEARC. TRU
constructs the proper IATEX \multiput and \put
commands, and outputs them to TEMP.TRU. After
no more angle sides are to be drawn, control
returns to the BASIC editor and the TEX source
file is reloaded. The cursor is moved to the proper
location, and all the lines of TEMP.TRU are copied
into the source file.

An example of output produced mainly by
commands generated by ANGLEARC.TRU is shown
in Figure 4, immediately below this paragraph.
Except for the two angle labels and the Figure
label, all of the drawing was done by commands
generated by ANGLEARC.TRU. The vector arrows,
and the dots that form the arcs, were placed with
\put commands. The angle sides were formed
from \multiput commands, which placed 1-point
dots with their centers spaced 0.7 points apart.
The right-angle square was formed similarly, but
using smaller dots. The three labels were placed
“manually” after returning to TEX.

Figure 4: x =7

Much use was made of \ANGLEARC.TRU and
other True BASIC programs during the writing of
my geometry book. Figure 5 (in the Appendix)
shows part of a page from the book, one of many
in which this program played an important role.

Every program described in this article could,
of course, be implemented in other high-level lan-
guages —perhaps even in TEX. But for ease and
convenience of use, True BASIC has earned my re-
spect. I've enjoyed being a witness to the wedding
of True BASIC and TgX, and I'm sure that the mar-
riage will be a long and happy one in my computer
system.

Bibliography

Kemeny, John G., and Thomas E. Kurtz. True
BASIC Reference Manual. West Lebanon,
N.H.: True BASIC, Inc., 1990.

De Smet, Don. “TEX Macros for Producing
Multiple-Choice Tests.” TUGboat 12(2),

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting 277

Harry L. Baldwin, Jr.

pages 261-268, 1991.

Lamport, Leslie. INTEX User’s Guide and Ref-
erence Manual. Reading, Mass.: Addison-
Wesley, 1986.

Wichura, Michael J. The PICTEX Manuel. TEX-
niques 6, 1987.

Baldwin, Harry L. Jr. Essential Geometry. San
Francisco, Calif.: McGraw-Hill, 1992.

278 TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting

A High-Level Language and TEX

Appendix
character character
position position
1 7
\midexamplespacer % Draws a horizontal rule l
%13 4B

\QQQQR{Which of the four complex numbers listed below has the
greatest modulus?}

{$6+418 %
{$8+2i8} v
{They all have the same modulus.}
\midexamplespacer

%E
yAR: %B

\QQRRS{A circle of radius 1 is centered at the origin. Starting at
the point where $\,x=1\,$ and $\,y=0\,$, a distance $\,u\,$ is
measured along the circle in a counterclockwise direction. The
coordinates of the location after moving this distance u arel}

{$x=\sin u,\ \ y=\cos u$} %
{$x=\cos u,\ \ y=\sin u$} %
{$x=\tan u,\ \ y=\cot u$} %
{$x=\cos u,\ \ y=\tan u$} %
{$x=\sec u,\ \ y=\csc u$} %
\midexamplespacer

Y%EL

1. Which of the four complex numbers listed below has the greatest modulus?
A) 8+2i B) 644 C) 5450 D) 7+3i

E) They all have the same modulus.

2. A circle of radius 1 is centered at the origin. Starting at the point where x =1 and y = 0, a distance
u is measured along the circle in a counterclockwise direction. The coordinates of the location after
moving this distance u are

A) x=cosu, y=tanu B) z=sinu, y=cosu
C) x=cosu, y=sinu D) x=secu, y=cscu

E) z=tanu, y=cotu

Figure 1: An Example of part of TEST.SCR and the resulting output

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting 279

Harry L. Baldwin, Jr.

character character character character character
position position position position position
10 21 36 49 59

b | b

version 2 scramble 5 answerlines 2 rootlines 3 answer B

The graph of the \U{intersection} of the
equations\ \ $\cases{\hskip-.12in & $x-y=-3$ \cr \hskip-.12in
& $x+y=1$ \cr}$\hskip.2in is a point that is located

in Quadrant I.

in Quadrant II.

in Quadrant III.

in Quadrant IV.

on a coordinate axis.

(The remaining 6 lines of the 15 lines that form this version are blank.)

character character character character character
position position position position position
10 21 36 49 59

b | b

version 6 scramble 5 answerlines 1 rootlines 1 answer A
$\displaystyle\frac{x(x+5)+2(x+6)F{x+4}\ =$

$x+3$

$x+2$

$x+1$

$x+4$

$x+5$

(The remaining 8 lines of the 15 lines that form this version are blank.)

1. The graph of the intersection of the equations { ﬁ—T—Z i 1_3 is a point that is located
A) in Quadrant IV. B) in Quadrant III. C) in Quadrant L.
D) on a coordinate axis. E) in Quadrant II.
o x(x +5) +2(x +6)
’ r+4
A) z+1 B) z+3 C) z+2 D) z+4 E) z+45

Figure 2: Examples of a version from each of two master questions, and the resulting output

280 TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting

A High-Level Language and TEX

Sometimes knowledge of the measure of one or more angles in a geometric drawing will enable

you to determine the measures of other angles. The examples below show some of the techniques
that can be used.

1.

Rays BA and BC determine an obtuse angle
having measure 121° (see Figure 2.8 at right).
These same rays also form a reflex angle,
which has been labeled z in the drawing. From
knowledge of the measure of the obtuse angle
ABC, determine the measure of the reflex
angle ABC.

Figllre 2.8 '..'_. _..:E.U

The sum of the measures of the obtuse angle and the reflex angle must be 1 revolution, or 360°.
Although x is a name of the reflex angle, we will also let = represent the measure of this angle.
Therefore,

121° + 2 =360° = 2 =360° —121° = z = 239°.

In Figure 2.9a, angle XYZ is a right Figure 2.9a Figure 2.9b
angle. Determine the approximate lo-

cation of point P on the arc, if /XYP
is to have measure 45°.

Since 45° is half of 90°, point P must be located so that a rotation of ray YX to ray YP would
be half of the rotation of that ray to ray YZ. If P is located halfway along the arc from X to Z
(see Figure 2.9b), then the measure of /XYP will be half the measure of /XYZ.

In Figure 2.10, these angles are shown:

Figure 2.10
LFGI = 135° LHGI = T75°
a) What is the measure of /FGH?
b) What is the measure of reflex /ZFGH? 7

Unless information is given that an angle is a reflex angle, we assume that the angle we are
interested in will be the one having the smallest possible measure. In part (a), therefore, / FGH
is referring to the acute angle, whose measure will be the difference between the measures of
the obtuse angle FGI and the acute angle HGI. In part (b), we can determine the measure of
the reflex angle by subtracting the acute angle’s measure from 360°.

a) LFGH = /FGI — /HGI = 135° — 75° =60°

b) reflex /FGH = 360° — acute /FGH = 360° — 60° = 300°

Figure 5: Example of part of a page from Fssential Geometry that made use of ANGLEARC.TRU

TUGboat, 13, Number 3— Proceedings of the 1992 Annual Meeting 281

