
TUGboat, Volume 12 (1991); No. 2

The structure of the processor

Victor Eijkhout

The inner workings of QX are explained by its au-

thor [I] in terms of an analogy with the digestive

tract. Apart from the fact that this gives rise to

a whole genre of jokes1, the analogy becomes defi-

nitely strained when regurgitation takes place in the

mouth, or when the eyes take part in the process.

In this article2 I will describe the 7QX proces-

sor as a multi-layered engine that successively trans-

forms characters into tokens, tokens into lists, and

from these lists builds a typeset page.

Four T ' X processors

The way T@ processes its input can be viewed as

happening on four levels. One might say that the

7QX processor is split into four separate units, each

accepting the output of the previous stage, and de-

livering the input for the next stage. The input of

the first stage is then the t e x input file; the output

of the last stage is a d v i file.

For many purposes it is most convenient and

insightful to consider these four levels of processing

as happening after one another, each one accepting

the completed output of the previous level. In reality

this is not true: QX is not something like a four-

pass compiler. All levels are simultaneously active,

and there is interaction between them.

The four levels are

1. The input processor. This is the piece of QX

that accepts input lines from the file system

of whatever computer runs on, and turns

them into tokens. These are typically charac-

ter tokens that comprise the typeset text, and

control sequence tokens that are commands to

be processed by the next two levels.

2. The expansion processor. A number of tokens

generated in the first level - macros, condition-

als, and a number of primitive 'QX commands -

are subject to expansion. Expansion is the pro-

cess that replaces some (sequences of) tokens

by another (possibly empty) sequence.

3. The execution processor. Control sequences

that are not expandable are executable, and

Tokens being 'sicked up again' [2], output being

"l&Xcrement' [3], or the particularly deplorable title

of [4] . . .
This is basically the first chapter from my

book, called (tentatively) 'A w n i c i a n ' s Reference

Guide', and which is to appear with Addison-Wesley
late this year.

this execution takes place on the third level of

the processor.

One part of the activity here concerns

changes to w ' s internal state: assignments

and macro definitions are typical activities in

this category. The other thing happening on

this level is the construction of horizontal, ver-

tical, and mathematical lists.

The visual processor. In the final level of pro-

cessing the visual part of w processing is per-

formed. Here horizontal lists are broken into

paragraphs, vertical lists are broken into pages,

and formulas are built out of math lists. Also

the output to the d v i file takes place on this

level. The algorithms working here are not ac-

cessible to the user, but they can be influenced

by a number of parameters.

1 The input processor

The input processor is that part of that trans-

lates whatever characters it gets from the input file

into tokens. The output of this processor is a stream

of tokens: a token list. Most tokens fall into one

of two categories: character tokens and control se-

quence tokens. The remaining category is that of the

parameter tokens; these will not be treated here.

1.1 Character input

For simple input text, characters are made into char-

acter tokens. However, 7QX can ignore some input

characters: a row of spaces in the input is usually

equivalent to just one space. Also, Q X itself can in-

sert tokens that do not correspond to any character

in the input, for instance the space token at the end

of an input line, or the \par token after an empty

line.

Not all character tokens represent characters

that are to be typeset. Characters fall into six-

teen categories - each one specifying a certain func-

tion that a character can have - of which only two

contain the characters that will be typeset. The

other categories contain such characters as (, 1 , &,

and #. A character token can be considered as a

pair of numbers: the character code - usually the

ASCII code - and the category code. I t is possible to

change the category code that is associated with a

particular character code.

When the escape character \ appears in the in-

put, w ' s behaviour in forming tokens is more com-

plicated. Basically, 'QX builds a control sequence

by taking a number of characters from the input

and lumping them together into a single token.

The behaviour with which w ' s input proces-

sor reacts to category codes can be described as

TUGboat, Volume 12 (1991), No. 2

a finite-state automaton with three internal states:

N, new line, M, middle of line, and S, skipping

spaces. These states and the transitions between

them are treated in chapter 8 of The W b o o k .

1.2 Two-level input processing

W'S input processor is in fact even a two-level pro-

cessor. Due to limitations of the terminal, the ed-

itor. or the operating system, the user may not be

able to input certain desired characters. Therefore,

7&X provides a mechanism to access with two super-

script characters all of the available character posi-

tions. This may be considered a separate stage of

TEX processing, taking place prior to the three-state

finite automaton mentioned above.

For instance, the sequence - ^ + is replaced by k

because the ASCII codes of k and + differ by 64.

Since this replacement takes place before tokens are

formed, writing \vse^+ip 5cm has the same effect

as \vskip 5cm. Examples more useful than this ex-

ist.

Note that this first stage is a transformation

from characters to characters, without considering

category codes. These come into play only in the

second phase of input processing, where characters

are converted to character tokens by coupling the

category code to the character code.

2 The expansion processor

7&X's expansion processor accepts a stream of to-

kens and, if possible, expands the tokens in this

stream one by one until only unexpandable tokens

remain. Macro expansion is the clearest example of

this: if a control sequence is a macro name, it is

replaced (together possibly with parameter tokens)

by the definition text of the macro.

Input for the expansion processor is provided

mainly by the input processor. The stream of to-

kens coming from the first stage of 7&X processing

is subject to the expansion process, and the result

is a stream of unexpandable tokens which is fed to

the execution processor.

However, the expansion processor comes into

play also when an \edef or \wri te is processed.

The parameter token list of these commands is ex-

panded as if the lists would have been on top level,

instead of the argument to a command.

There is a special fascination to macros that

work completely by the expansion processor. See

the recent articles [4], [5], and [6] for some good

examples.

2.1 The process of expansion

Expanding a token comprises the following steps:

See if the token is expandable.

If the token is unexpandable, pass it to the to-

ken list currently being built, and take on the

next token.

If the token is expandable, replace it by its ex-

pansion. For macros without parameters, and

a few primitive commands such as \jobname,

this is indeed a simple replacement. Usually,

however, needs to absorb some argument

tokens from the stream in order to be able to

form the replacement of the current token. For

instance, if the token was a macro with param-

eters, sufficiently many tokens need to be ab-

sorbed to form the arguments corresponding to

these parameters.

Go on expanding, starting with the first token

of the expansion.

Deciding whether a token is expandable is usually a

simple decision. Macros and active characters, con-

ditionals, and a number of primitive l&X commands

(see the list on page 215 of The W b o o k) are ex-

pandable, other tokens are not. Thus the expan-

sion processor replaces macros by their expansion,

it evaluates conditionals and eliminates any irrele-

vant parts of these, but tokens such as \vskip and

character tokens, including characters such as dollar

signs and braces, are passed untouched.

2.2 Special cases: \expandafter, \noexpand,

and \ the

As stated above. after a token has been expanded

will start expanding the resulting tokens. At

first sight the \expandafter command would seem

to be an exception to this rule, because it expands

only one step. What actually happens is that the

sequence

\expandaf ter(tokenl) (token2)

is replaced by

(tokenl) (expansion of token2)

and this replacement is in fact reexamined by the

expansion processor.

Real exceptions do exist, however. If the cur-

rent token is the \noexpand command, the next to-

ken is considered for the moment to be unexpand-

able: it is handled as if it were \ r e l ax (more about

this control sequence follows below), and it is passed

to the token list being built.

Example: in the macro definition

\edef\aC\noexpand\b)

the replacement text \noexpand\b is expanded at

definition time. The expansion of \noexpand is the

next token, with a temporary meaning of \ re lax .

Thus, when the expansion processor tackles the next

TUGboat. Volume 12 (1991), No. 2

token, the \b, it will consider that to be unexpand-

able, and just pass it to the token list being built,

which is the replacement text of the macro.

Another exception is that the tokens resulting

from \the(token variable) are not expanded further

if this statement occurs inside an \edef macro def-

inition.

2.3 Braces in the expansion processor

Above, it was said that braces are passed as unex-

pandable character tokens. In general this is true.

For instance, the \romannumeral command is han-

dled by the expansion processor; when confronted

with

\romannumerall\number\count2 3{4 .'..
will expand until the brace is encountered: if

\count2 has the value of zero. the result will be the

roman numeral representation of 103.

As another example.

\iftrue <\else 3\fi

is handled by the expansion processor as if it were

\iftrue a\else b\f i

The result is a character token. be this a brace or

a letter.

However, in the context of macro expansion the

expansion processor will recognize braces. First of

all. a balanced pair of braces marks off a group of

tokens to be passed as one argument. If a macro has

an argument

\def\macro#l{ . . . >
one can call it with a single token

\macro I \macro \$

or with a group of tokens, surrounded by braces

\macro Iabc) \macro Cd{ef>g)

Secondly, when the arguments for a macro with

parameters are read, no expressions with unbal-

anced braces are accepted. In

\def\a#l\stopC . . . 1
\a bc<d\stople\stop

the argument is bcCd\stop)e. Only balanced ex-

pressions are accepted here.

3 The execution processor

The execution processor builds lists: horizontal, ver-

tical, and math lists. Corresponding to these lists,

it works in horizontal, vertical, or math mode. Of

these three modes 'internal' and 'external' variants

exist. In addition to building lists, this part of the

TEX processor also performs mode-independent pro-

cessing, such as assignments.

Coming out of the expansion processor is a

stream of unexpandable tokens to be processed by

the execution processor. From the point of view of

the execution processor, this stream contains two

types of tokens:

Tokens that signal an assignment (this includes

macro definitions), and other tokens that are

independent of the mode, such as \show and

\aftergroup.

Tokens that build lists: characters, boxes, and

glue. Handling of these tokens depends on the

surrounding mode.

Some objects can be used in any mode; for in-

stance boxes can appear in horizontal, vertical, and

math lists. The effect of such an object will of course

still depend on the mode. Other objects are specific

to one mode. For instance, characters (to be more

precise: character tokens of categories 11 and 12) are

intimately connected to horizontal mode: if the exe-

cution processor is in vertical mode when it encoun-

ters a character, it will switch to horizontal mode.

For the expansion processor a character token

is just an unexpandable object. On the level of the

execution processor, however, something is actually

done with it. Some characters are typeset. but the

execution processor can also encounter, for instance,

math shift characters (usually $), or braces. When a

math shift character is found in the stream of tokens.

math mode is entered (or exited if the current mode

was math mode); when a left brace is found, a new

level of grouping is entered.

One control sequence handled by the execution

processor deserves special mention: \relax. This

control sequence is not expandable. but the execu-

tion is 'empty'. Compare the effect of \relax in

\countO=l\relax 2

with that of \empty defined by

\def \empty<>

in

\countO=l\empty 2

In the first case the expansion process that is form-

ing the number stops at \relax because it is un-
expandable, and the number I is assigned. In the

second case \empty expands to nothing, so 12 is as-

signed.

4 The visual processor

m ' s visual processor encompasses those algo-

rithms that are outside direct user control: para-

graph breaking, alignment, page breaking, math

typesetting, and dvi file generation. Various param-

eters control the operation of these parts of m.
Some of these algorithms return their results in

a form that can be handled by the execution proces-

256 TUGboat, Volume 12 (1991), No. 2

sor. For instance, a paragraph that has been broken

into lines is added to the main vertical list as a se-

quence of horizontal boxes with intermediate glue

and penalties. Also, the page breaking algorithm

stores its result in \box255, so output routines can

dissect it. On the other hand, a math formula can

not be broken into pieces, and, of course, shipping a

box to the dvi file is irreversible.

5 Further examples

5.1 Skipped spaces

Skipped spaces provide an illustration of the view

that W ' s levels of processing accept the completed

input of the previous level. Consider the commands

Faulty reasoning

"The \ a is encountered, expanded, the space

then delimits the number"

would lead to the conclusion that this is equivalent

to \penalty200 0. It is not. Instead, what results

is

because the space after \ a is skipped in the input

processor.

5.2 Internal quantities and their

representations

TEX uses various sorts of internal quantities, such as

integers and dimensions. These internal quantities

have an external representation, which is a string of

characters, such as 4711 or 91.44cm.

Conversions between the internal value and the

external representation take place on two different

levels. depending on the direction the conversion

goes. A string of characters is converted to an in-

ternal value in assignments such as

or statements like

and all of these statements are handled by the exe-

cution processor.

On the other hand, the conversion of the inter-

nal values into a representation as a string of char-

acters is handled by the expansion processor. For

instance,

value was 'automatic'. The conversion the other way

has to be forced by a command such as \number.

Thus there is no danger that the sequence

will result in assigning either 15 or 35 to \Mycount.

As a final example, suppose \count2=45, and

consider the statement

The expansion processor tackles \number\count2 to

give the characters 45, and the space after the 2 is

absorbed because it only serves as a delimiter of the

number of the \count register. In the next stage of

processing, the execution processor will then see the

statement

and execute this.

6 Conclusion

TJ$ is harder to understand than most program-

ming languages. One reason for this is that the 'm
processor' consists of more than one level. In this

article I have identified four levels of processing in

Tj& and described what goes on on what level. Of-

ten the key to understanding W ' s behaviour is to

consider the four levels as working not simultane-

ously, but one after the other.

References

[I] Donald Knuth, The QXbook, Addison-Wesley

Publishing Company, 1984.

[2] Angela Barden, Some 7$J manuals, TUGboat

12(1991), no. 1, 166-170.

[3] Ron Whitney, private communication.

[4] Victor Eijkhout, Oral 7$J, TUGboat 12(1991),

no. 2, 272.

[5] Alan Jeffrey, Lists in w ' s mouth, TUG-

boat 11(1990), no. 2, 237-245.

[6] Sonja Maus, An expansion power lemma, TUG-

boat 12(1991), no. 2, 277.

o Victor Eijkhout
Center for Supercomputing

Research and Development
University of Illinois
305 Talbot Laboratory
104 South Wright Street
Urbana, Illinois 61801-2932, USA
eijkhout@csrd.uiuc.edu

are all processed by expansion.

Note that in the \basel ineskip example above

the conversion from string of characters to internal

