
64 TUGboat, Volume 9 (1988), No. 1

The outlining macros are now complete. There

is one small problem: One might occasionally need

to use the pound sign for its normal function of

marking a parameter in a \def or \ h a l i p , inside

an outline. We can make that possible by providing

a macro that temporarily changes the category code

of the pound sign back to normal.

\def \normalpoundsignC%

\bgroup

\catcodeC\#=6

\innernormalpoundsign

3 %

\def\innernormalpoundsign#li#:\egroup)%

Thus an \ h a l i p could be enclosed in \nor-

malpoundsignI . . . 3.
Finally we restore the at sign to its former

category code.

\catcode ' \@=\oldatsigncatcode

A Macro Writing Tool:

Generating New Definitions

Amy Hendrickson

TJQhology Inc.

Suppose you come upon a situation where you need

a macro which will generate another new macro

every time it is used. I came upon a solution to this

problem and want to share it with TUG readers in

case someone would find it an useful macro writing

tool, or maybe just find it amusing.

The problem that I ran into that necessitated

this kind of macro (it is by no means the only

application) had to do with a set of macros that I
was writing recently for slide generation: How can

you take large chunks of text possibly containing

tables, listings, verbatim text, or section headers,

and a) print the chunk where it appears in the

document, then b) send it to the end of the file

to be printed in slide format. (This format would

include larger font and baselineskip, possibly be in

landscape mode, and have rounded corner edging.)

Since you cannot send a large body of text

to an auxiliary file, the solution seemed to be to

write one macro which would generate as many

definitions as there were chunks of text to be made

into slides, and send only the control sequence and

slide formatting information to an auxiliary file.

The auxiliary file can then be input at the end of

the original file, and the definitions that were made

earlier in the file will produce the slides.

But how can one generate such a series of

definitions, each with a new name? The solution

involves using the letters of roman numerals as the

name of the each new macro. A counter is advanced

to produce a new roman numeral each time the

macro is used. With the right macro expansion, the

roman numerals will be interpreted as a sequence

of letters, and a new sequence of letters will be

available each time.

For instance, say we set the counter equal to

637 to start, and advance it by one every time the

macro is used. The first set of letters that will

become a control sequence will be \dcxxxvii, the

second \dcxxxviii, etc.

To make certain that these letters have not

already been used in a definition, we can also

supply, following the roman numeral, a sequence of

letters that does not change, and thus make the

possiblity of renaming a previously defined control

sequence very small. That is the function of the

\unique definition below.

Here is some code, showing how \newdefs can

be used to define #1 as a new definition every time

the macro is used.
\newcount\definitionnum \definitionnum=2001

In use,

\newdefs(This is a chunk of t e x t)

will produce

\gdef\mmiiZZZZ(This i s a chunk of t e x t)

a control sequence that can be called for later in

the file in whatever application it might be useful.

