
CM-Super: Automatic creation of efficient Type 1 fonts
from METAFONT fonts

Vladimir Volovich
Voronezh State University
Moskovsky prosp. 109/1, kv. 75, Voronezh 304077 Russia
vvv@vsu.ru

Abstract

In this article I describe making the CM-Super fonts: Type 1 fonts converted from
METAFONT sources of various Computer Modern font families. The fonts contain
a large number of glyphs covering writing in dozens of languages (Latin-based,
Cyrillic-based, etc.) and provide outline replacements for the original METAFONT

fonts. The CM-Super fonts were produced by tracing the high resolution bitmaps
generated by METAFONT with the help of TEXtrace, optimizing and hinting the
fonts with FontLab, and applying cleanups and optimizations with Perl scripts.

1 The idea behind the CM-Super fonts

The Computer Modern (CM) fonts are the default
and most commonly used text fonts with TEX. Orig-
inally, CM fonts contained only basic Latin letters,
and thus covered only the English language. There
are however a number of Computer Modern look-
alike METAFONT fonts developed which cover other
languages and scripts. Just to name a few:

• EC and TC fonts, developed by Jörg Knappen,
which are the default LATEX fonts for the T1 and
TS1 font encodings and cover many Latin-based
scripts (mainly European).

• EC and TC Concrete and Bright fonts, devel-
oped by Walter Schmidt, which are additional
font families containing the same glyphs as EC

and TC fonts.
• LH Cyrillic fonts, developed by Olga Lapko,

which support the family of T2 font encodings:
T2A, T2B, T2C, X2, and others. They support
the same font families as the original EC fonts,
EC Concrete and EC Bright fonts.

• TIPA (International Phonetic Alphabet) fonts,
developed by Rei Fukui, which support the T3

font encoding. There exist Concrete (CIPA) and
Bright (BIPA) families of the TIPA fonts too.

• FC fonts, developed by Jörg Knappen, which
support the T4 font encoding for African lan-
guages.

• VNR fonts, developed by Cuong Nguyen, Wern-
er Lemberg and Hàn Thé̂ Thành, which support
the T5 font encoding for Vietnamese.

• CBgreek fonts, developed by Claudio Beccari,
which support the Greek font encoding (LGR).

There exist free Type 1 versions of the original CM

fonts, provided by Blue Sky Research, Elsevier Sci-
ence, IBM Corporation, the Society for Industrial
and Applied Mathematics (SIAM), Springer-Verlag,
Y&Y and the American Mathematical Society, but
until not long ago there were no free Type 1 versions
of other “CM look-alike” fonts available, which lim-
ited their usage in PDF and PostScript target docu-
ment formats. The CM-Super fonts were developed
to cover this gap.

Such a conversion from METAFONT to Type 1
fall into one of two general categories. First, base the
conversion on analytic study of the METAFONT out-
put (which may include “patching” the METAFONT

program, analyzing the output of METAPOST, or
similar approaches). Such an approach can give
(potentially) the most accurate results, but I did
not choose to use it, since it is much harder to de-
velop. (There are some commercial translators of
METAFONT to Type 1 which I did not evaluate,
mainly due to their “closedness”, which I wanted
to avoid.) The second, straightforward, approach is
based on tracing the high-resolution bitmaps gen-
erated by METAFONT, and thus obtaining outline
versions of the fonts.

I was considering several approaches to con-
verting the METAFONT fonts to Type 1 format—
it seems that the GNU fontutils package developed
by Karl Berry is capable of this, but it had some
problems with glyph positioning. Since the appear-
ance of TEXtrace, it became very easy to do this.
TEXtrace is a free automatic converter of META-
FONT fonts to Type 1 format, developed by Péter
Szabó. It is based on Autotrace by Martin Weber.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 75



Vladimir Volovich

And, as far as I know, some code was taken from
the GNU fontutils package.

It would be possible to simply generate Type 1
variants of all needed METAFONT fonts (each con-
taining no more than 256 glyphs), but this will have
disadvantages: the total number of files will be truly
vast (several thousands), and also the total size of
these fonts will be much bigger than necessary, be-
cause of glyph duplication: Latin letters (and some
other characters and glyphs) will be present in more
than one font, e.g., the fonts ecrm1000 (T1 encod-
ing), larm1000 (T2A), lbrm1000 (T2B), lcrm1000
(T2C), fcr10 (T4), and vnrm1000 (T5) are all of the
same family and shape (Computer Modern Roman)
and design size (10pt), and will thus duplicate at
least the basic Latin alphabet. Given the total num-
ber of font files (several thousands), such duplication
will give significant overhead.

Thus, it seems natural to try to combine all
fonts which have the same font family, shape and
design size, and differ only by font encoding (set
of supported glyphs) into one SuperFont (the name
comes from Karl Berry’s Fontname package), which
will contain all the unique glyphs from these fonts
just once. Then it is possible to create map files for
dvips, pdftex or other programs which will re-encode
the big Super-fonts into specific 256-character font
encodings, selecting the glyphs needed for a partic-
ular font encoding.

Such an approach is undertaken in the CM-

Super font package: each Type 1 SuperFont includes
all the glyphs from several METAFONT fonts which
have the same font family, font shape and design
size. Currently, only text font encodings are sup-
ported. The name “super” does not imply that this
font collection contains Type 1 variants of all ex-
isting CM look-alike fonts (e.g., there are no glyphs
from math fonts in CM-Super), but that each font
in this collection is a SuperFont supporting many
glyphs, languages, and scripts. These SuperFonts
can be used with other applications as well as TEX.

2 Font encodings, families, shapes, and
names

The New Font Selection Scheme (NFSS) in LATEX
serves as a very good classifying mechanism in the
chaos of various fonts: each font is classified by its
encoding, family, shape and design size. The font
encoding defines the set (and order) of glyphs which
are contained in a font. Currently, the CM-Super
font collection supports glyphs from the following
LATEX font encodings: T1, TS1, T2A, T2B, T2C, X2.
In the near future I’ll try to add support for these
encodings as well: T3, T4, T5, LGR, and others (e.g.,

additional Cyrillic and Latin glyphs which are not
already present in supported encodings).

The original CM fonts used file names such as
cmr10, cmbx12, etc., while their EC analogues use
font names consisting of four letters, the first two
of which are always “ec” while the second two de-
note font family and shape: ecrm1000, ecbx1200,
etc. Design sizes are specified differently in the two
families: EC fonts use a 4-digit scheme, while CM

fonts use two digits. I’ve chosen to use font names
of SuperFonts which follow the scheme used in EC

fonts (with “sf” instead of “ec”, “tc”, etc.), since
the majority of METAFONT fonts included into the
CM-Super package follow this naming scheme (EC,
TC, LH).

Families and shapes currently supported (the
README file in the CM-Super distribution contains a
more detailed list):

1. 29 font shapes supported by EC/TC fonts. Each
font shape comes in 14 font design sizes ranging
from 5pt to 35.83pt (or 11 design sizes for type-
writer font shapes ranging from 8pt to 35.83pt),
giving 23 · 14 + 6 · 11 = 388 font files;

2. 13 font shapes for SliTEX (each comes in one
design size);

3. 14 fonts from Computer Modern Concrete fam-
ily (font file names correspond to the scheme
used in EC Concrete fonts, again with “sf” in-
stead of “ec”);

4. 19 fonts from Computer Modern Bright family
(font file names correspond to the scheme used
in European Computer Modern Bright fonts).

The total number of Type 1 font files included in
the CM-Super package is 434.

Each Type 1 font contains glyphs from sev-
eral METAFONT fonts with the same font shape
and design size. For example, sfrm1000.pfb com-
bines unique glyphs from the following METAFONT

fonts: ecrm1000.mf, tcrm1000.mf, larm1000.mf,
lbrm1000.mf, lcrm1000.mf, rxrm1000.mf (for en-
codings T1, TS1, T2A, T2B, T2C, X2, respectively).
In a future version, this font will also include
glyphs from tipa10.mf, fcr10.mf, vnrm1000.mf,
grmn1000 (for font encodings T3, T4, T5, LGR).

Caps and small caps fonts do not include glyphs
from TC fonts (TS1 font encoding), since there are
no small caps TC fonts (but it may make sense to
include glyphs from the TS1 encoded fonts into these
fonts, for completeness, by duplicating glyphs from
the corresponding non-smallcaps font shapes).

Our approach provides big savings: if we were
making separate Type 1 fonts for each of the above
mentioned METAFONT fonts, we would have 256 ·

76 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting



CM-Super: Automatic creation of efficient Type 1 fonts from METAFONT fonts

5 + 128 = 1408 glyphs from the five METAFONT

sources mentioned; but sfrm1000.pfb contains only
585 unique glyphs, which includes some glyphs which
were added for the sake of completeness.

The CM-Super fonts come with AFM and INF

files and are thus usable with non-TEX-related ap-
plications as multilingual fonts.

3 Details on making the CM-Super fonts

As mentioned above, CM-Super fonts were made
by tracing the high resolution bitmaps created by
METAFONT. Below is a more detailed description
of this process.

First, I created map files which contain each
font shape per line corresponding to each META-
FONT font which is to be traced. Each map file
contains fonts for some particular font encoding (T1,
TS1, T2A, T2B, T2C, X2). Also there is a map file
for additional glyphs (ellipsis and alternative variant
of the sharp “s”).

Also, for each supported font encoding, I cre-
ated the encoding vector with standard glyph names
following the Adobe Glyph List (AGL) conventions
(a few glyphs absent from the AGL and even from
Unicode were named arbitrarily).

Now we can run the script traceall.sh from
TEXtrace to make Type 1 fonts from each META-
FONT font, using the map files and encoding vectors
made in the previous step.

Now we need to combine these small Type 1
font files into Super-fonts. First, we “disassemble”
them using t1disasm from the t1utils package, to
convert them into plain text format, convenient for
processing. Then we can run a script which com-
bines unique glyphs from the fonts with the same
font shape and design size into one (disassembled)
Type 1 font. The script not only check for unique
names, but also checks that the glyphs with the same
names from different fonts (e.g., the Latin letters)
are represented identically.

Since we combined several Type 1 fonts into one
big font, the FontBBox parameter needs to be fixed.
This is done using the pf2afm PostScript program
from the Ghostscript distribution.

We also fix the isFixedPitch, ItalicAngle, and
Weight values using a script, since TEXtrace doesn’t
set them right. The value of ItalicAngle is extracted
from the TFM file using the Font::TFM perl module.

To make the resulting fonts smaller, we
make some cleanups, like removing redundant “0
hmoveto” from glyph charstrings dictionary, setting
the default font encoding to StandardEncoding, set-
ting the value of lenIV parameter in the private dic-
tionary to 0, etc.

At this point, we have “raw” Type 1 fonts which
should be optimized (which is done later).

Now we gather information contained in the
TFM files (which are generated by METAFONT), and
apply it to PFB files, and also create AFM font met-
ric files. This in itself involves several steps:

• First, we extract kern values from each of the
TFM files, using the script based on the Font::
TFM perl module, and generate the textual rep-
resentation of kerns which is used in AFM file
format.

Then we combine the kern values from indi-
vidual TFM files which correspond to the same
font shape and design size (but differ by font
encoding) into one big kern table. While doing
such combining, we always check that there no
inconsistent kerns (for the same glyph pairs) in
different fonts. A few such inconsistencies were
indeed found.

• Now we’d like to make the glyph widths in the
PFB files use precise (non-integer) values which
better match the values in the TFM files. These
widths are generated using the best approxima-
tion (based on continued fractions) with the de-
nominator not exceeding 107 to fit in 1 byte in
CharStrings (giving space economy), and are
stored using the div operator in CharStrings.
Apparently, such a subtle technique was used
first in the BSR/Y&Y CM fonts.

Again, we combine the exact glyph widths
obtained from different METAFONT fonts into
glyph widths for SuperFonts. And finally, we
fix the hsbw operators in the PFB files to use
the calculated precise glyph widths.

• We extract font parameters (fontdimen values)
from individual METAFONT fonts. They are
converted to the corresponding values like As-
cender, Descender, XHeight, CapHeight which
are stored in the AFM files.

• The ligatures contained in the TFM files are also
extracted and put into the AFM files.

• Finally, glyph bounding boxes are extracted
from the PFB files using pf2afm, and all the
pieces obtained in previous steps are combined
into final AFM files for the CM-Super fonts.

Now it’s time to optimize the PFB files, since they
contain a lot of “junk” control points and do not fol-
low the rules which should be obeyed in good Type 1
fonts. This is the only step which was performed us-
ing commercial software: FontLab, but now it is also
possible to use PFAedit1 which may give comparable

1 This program has since been renamed to FontForge and
is available from http://fontforge.sourceforge.net/. Ed.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 77



Vladimir Volovich

results. The optimization consists of adding nodes
at extremes, removing overlaps in contours, optimiz-
ing contours (removing unnecessary control points,
simplifying the contours), and also autohinting. We
intentionally used only automatic optimization (in
packet mode, without human interaction). The aim
was to use totally automatic conversion of META-
FONT fonts to Type 1 format, automatic optimiza-
tion and hinting, with the best achievable quality of
final Type 1 fonts, to be able to re-generate the fonts
if necessary (e.g., when a new version of original
METAFONT fonts is released). Undoubtedly, there
is room for improvement of this approach, which we
will attempt in future versions of the fonts. After
passing the fonts through FontLab, we perform some
cleanup again by disassembling, processing and re-
assembling back the fonts.

Finally, we create the INF files using a simple
script.

The above description may seem a bit compli-
cated at the first glance, but all steps are performed
by running a few simple Perl scripts. Some of them
may appear to have wider application, so I’ll put
them into the distribution at some point.

4 Related works

Some packages have been developed which may be
useful in conjunction with the CM-Super font pack-
age. First, the type1ec package which is analogous
to the existing type1cm package and makes the EC-
based fonts available at any size (as opposed to the
set of the standard font sizes defined in the default
LATEX font definition files). This will work efficiently
since the CM-Super fonts are vector fonts and will
be preloaded only at the few design sizes scaled ap-
propriately.

The second package, recently developed, is the
cmap package, to be used with pdfLATEX, which
“hooks” into the low-level LATEX font pickup com-
mand to preload the CMap resources for the fonts
which are used in the document. This adds search-
ing and copying capabilities to the PDF files, by
defining the “meaning” (Unicode values) for the

glyphs used in the document. At the moment this
works only for Type 1 fonts, since pdfTEX had been
ignoring the \pdffontattr command for the Type 3
fonts, but this was fixed recently and thus it will
soon be possible to make the files “searchable” even
if the document uses some bitmap fonts.

Both these packages are available on CTAN.

5 Future work

There are many possibilities for improving and ex-
tending the CM-Super package. Unfortunately, I
haven’t had much time recently to work on it, but
hopefully I’ll move forward soon. Some of the ideas
are written in the TODO file in the distribution. Most
important are:

• cover more fonts — support some other LATEX
font encodings: T3 (TIPA), T4 (African writ-
ings, FC fonts), T5 (Vietnamese fonts), LGR

Greek font encoding (CB-Greek fonts), . . . ;
• make the fonts even more efficient (smaller) by

using techniques similar to the ones described in
Thanh’s paper (putting glyphs and accents into
subroutines, and constructing accented glyphs
from them instead of putting the whole defini-
tion of accented glyph into the font);

• make an ultimate step forward to improve the
quality of glyph shapes by using analytic trans-
formation rather than tracing.

6 Acknowledgements

I am grateful to the following people who made this
work possible: Hàn Thé̂ Thành who inspired me to
make a joint talk at TUG 2003 and who gave me
many ideas for improving the package and helped
to understand some mechanisms (in particular, how
to add the CMap entries into font dictionaries into
PDF files); Peter Szabo and Martin Weber and Karl
Berry who made it possible to easily generate Type 1
fonts from bitmaps; Yuri Yarmola from FontLab
for providing a copy of FontLab; William Adams,
Wendy McKay, Robin Laakso and Patricia Mono-
hon for the help with corrections of this article and
friendly help before and during this conference.

78 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting


