
12 TUGboat, Volume 18 (1997), No. 1

Software&Tools

A GNU Emacs editing mode for METAFONT

and METAPOST sources

Ulrik Vieth

Abstract

This article announces the release of meta-mode.el,
a GNU Emacs editing mode for METAFONT and
METAPOST source �les. meta-mode.el provides a
number of features commonly found in GNU Emacs
editing modes for programming languages, such as
automatic indenting of source code, syntactic high-
lighting, symbol completion for partially-typed key-
words, motion commands to move to the beginning
or end of the enclosing environment, or commands
to comment out or reindent environments, regions,
or bu�ers. An interface to running METAFONT or
METAPOST in a shell bu�er from within Emacs is
currently under development and may be integrated
into meta-mode.el later.

1 Introduction

The GNU Emacs1 editor [1, 2] is one of the most
widely used editors on Unix systems and some other
platforms. As one of its most remarkable features it
provides a vast number of specialized editing modes
for a large variety of text formatting or programming
languages. While support for editing TEX or LATEX
�les has been included in Emacs for many years,
either as part of the standard GNU Emacs distribu-
tion or through the optional AUC-TEX package [3],
no such mode-speci�c editing support existed so far
for the somewhat esoteric programming languages
of METAFONT and METAPOST.

When I started using METAPOST on a regular
basis in early 1995, shortly after I had completed
my �rst port of METAPOST, integrating it into the
Web2C/Kpathsea distribution, I wasn't too much
concerned about the lack of editing support since I
was primarily interested in getting acquainted with
METAPOST so that I could get some data plotted.
During the course of time, however, especially after
I started gaining a little experience with Emacs Lisp
programming [4, 5], I became increasingly unhappy
about being stuck with fundamental mode for edit-
ing METAPOST sources in Emacs.

1 While this article only refers to GNU Emacs, most of it

should be applicable to the XEmacs editor as well. Although

meta-mode.el was developed exclusively under GNU Emacs,

it was tried to make sure that everything will also work under

XEmacs.

TUGboat, Volume 18 (1997), No. 1 13

So it happened one day in January 1997 that I
began asking myself (and also our local Emacs guru)
what it would take to write a new major mode for
editing METAFONT or METAPOST sources. After
consulting the GNU Emacs Lisp Manual [5] the task
turned out to be simpler than expected and pretty
much straightforward. On the following weekend,
when I had some spare time, I sat down to begin
writing what was to become meta-mode.el. By
coincidence, it happened to be February 1, 1997,
exactly twenty years after the day on which genesis
of TEX took place according to Don Knuth's own
account.2 I suppose I couldn't have chosen a better
date to embark on this project nor a better way to
celebrate this very special anniversary . . .

2 Overview of meta-mode.el

2.1 Installation

From the technical point of view meta-mode.el is a
contributed Emacs Lisp package that �rst needs to
installed in a place where it can be found by Emacs,
i. e. either in a personal or system-wide Emacs Lisp
library directory listed in the load-path variable.
To activate the features provided in meta-mode.el

the package then needs to be loaded, which is most
easily arranged for by adding a few lines of Lisp code
like these

(autoload 'metafont-mode "meta-mode"

"Major mode for editing Metafont sources" t)

(autoload 'metapost-mode "meta-mode"

"Major mode for editing MetaPost sources" t)

(setq auto-mode-alist

(append '(("\\.mf\\'" . metafont-mode)

("\\.mp\\'" . metapost-mode))

auto-mode-alist))

to the personal or system-wide Emacs startup �le
to have meta-mode.el autoloaded at the �rst time
a METAFONT or METAPOST source �le is opened.

2.2 Initialization

Once meta-mode.el is loaded, the above code has
the e�ect of invoking an Emacs Lisp function called
metafont-mode or metapost-modewhenever a `.mf'
or `.mp' �le is loaded, which then proceeds to set up
everything necessary when entering the new editing
mode. Much of this initialization code is actu-
ally identical for both METAFONT and METAPOST
mode as far as it concerns routine tasks needed for
every Emacs editing mode, such as setting up a
syntax table or installing a keymap and a pull-down
menu for the mode-speci�c functions. However, it

2 Donald E. Knuth, The Errors of TEX, reprinted as

Chapter 10 of Literate Programming, p. 249.

turned out to be necessary to have two separate
initialization functions to be able to take care of
subtle di�erences between the two modes, most no-
tably, perhaps, when it comes to the list of known
symbols for the completion function or the list of
shell commands to generate proof sheets.

Following the usual Emacs conventions, both of
these initialization functions provide hook variables
metafont-mode-hook and metapost-mode-hook to
allow adding extra setup or customization code to
the individual modes if desired. In addition, there is
also a meta-common-mode-hook that applies to both
modes as well as a meta-mode-load-hook that is
evaluated when meta-mode.el is �rst loaded.

2.3 Features

Once the general framework for a major mode is
in place, adding more features and mode-speci�c
functions becomes relatively easy since they can be
conveniently added one by one as needed. The func-
tionality currently implemented in meta-mode.el

can be summarized in the following areas:

� automatic indenting of source code

� syntactic highlighting (a.k.a. fonti�cation)

� completion for partially-typed keywords

� other miscellaneous editing functions

Additional functionality for running METAFONT or
METAPOST and related commands for producing
proof sheets in a shell bu�er from within Emacs is
currently under development and may be included
into meta-mode.el later. At present, a preliminary
test version is implemented in a separate Emacs
Lisp package, tentatively called meta-buf.el, which
may be integrated with meta-mode.el by making
clever use of the various hook variables discussed
above. For example, the load hook may be used to
load meta-buf.el at the same time meta-mode.el
is loaded while the common mode hook may be
used to make the functions provided in meta-buf.el
available in the keymap.

2.3.1 Indentation

The default keymap used in meta-mode.elmaps the
TAB key to a function that reindents the current line
using an appropriate indent level computed auto-
matically. Furthermore, the RET key also reindents
the current line before jumping to the appropriate
indent level on the next line. This allows you
to blindly type arbitrary META3 code, terminating
each line with RET as you type, and get a nicely

3 We will henceforth use the term \META" whenever we

discuss features that are applicable to both METAFONT and

METAPOST.

14 TUGboat, Volume 18 (1997), No. 1

indented source �le from which the grouping level
and the control
ow of conditionals and loops is
immediately apparent.

At present, meta-mode.el recognizes all stan-
dard META language constructs, including if : : :�,
for : : : endfor and def : : : enddef blocks, as well as
common variants like forever, forsu�xes, vardef ,
or even mode def . In addition, it also recognizes
standard macros introducing block structures such
as beginchar : : : endchar in METAFONT as well as
begin�g : : :end�g and begingraph : : : endgraph

in METAPOST.
Furthermore, occurrences of begingroup and

endgroup are also considered, although this might
actually be the wrong thing to do if these are used
unbalanced across di�erent macro de�nitions. Users
should therefore be aware that it may occasionally
be necessary to adjust the indentation of their source
�les manually in some unusual cases.

Much of the Emacs Lisp code used in the in-
dentation function in meta-mode.el was adopted
from AUC-TEX's latex.el, which actually had a
somewhat simpler job since it only had to look out
for \begin : : : \end environments or lonely \items
while we have to handle a wider variety of META
language constructs. Nevertheless, most of the AUC-
TEX code could be put to a very good use. For
example, the code that previously used to outdent
\items could be adapted to handle occurrences of
elseif and else within if : : :� blocks. It would
have been possible to apply the same logic to exitif
and exitunless in the middle of forever : : : endfor

blocks, but this idea was rejected since it appeared
too di�erent from common coding style.

In any event, meta-mode.el allows easy cus-
tomization of the kinds of META language con-
structs recognized by modifying the default regular
expressions, either by using M-x edit-options or
by writing a few lines of Lisp code to put in the
personal ~/.emacs startup �le. Some familiarity
with Emacs regular expressions will be unavoidable,
however, to customize meta-mode.el at this level.

2.3.2 Fonti�cation

Font Lock mode is a minor mode provided in GNU

Emacs which allows modi�cation of the appearance
of a variety of major editing modes for di�erent pro-
gramming or text formatting languages. The basic
idea is to have a number of di�erently colored text
faces, which are used to highlight various language
elements consistently throughout all editing modes,
such as keywords, function or variable names, refer-
ences to external �lenames, etc. In addition, certain
language elements are also highlighted on the basis

of their syntactic properties, such as comment lines
or quoted strings.

Since Font Lock mode is an optional package it
needs to be loaded and activated �rst. With recent
versions of GNU Emacs this has become very easy,
as it is possible to turn on Font Lock mode as well as
optional Font Lock support packages globally with
just two lines of Lisp code:

(global-font-lock-mode t)

(setq font-lock-support-mode 'lazy-lock-mode)

Once Font Lock mode is globally activated like
this, it will automatically apply to any new editing
mode that supports it. In order to take advantage
of fonti�cation when writing a major mode such as
meta-mode.el, it su�ces to set up a few syntactic
variables and put together a list of regular expres-
sions that match the various language elements we
wish to have highlighted.

While putting together a regular expression to
match a list of keywords is fairly easy, writing good
patterns to match macro de�nition headers presents
quite a challenge since we have to cope with the rich
variety of language constructs that are available in
the META languages. For instance, we have to be
aware that there are not only straightforward unary
macro de�nitions introduced by def or vardef , in
which the name of the function follows immediately
after the de�nition keyword, but also binary oper-
ator macro de�nitions introduced by primarydef ,
secondarydef , or tertiarydef , in which the name
of the function is embedded in between the param-
eter arguments. Furthermore, function or variable
names don't necessarily have to consist of alphabetic
characters or underscores; they might just as well
consist of non-word symbols such as `$' or `@' or
operator symbols such as `**' or `&&'.

If this isn't enough, another complication arises
when it comes to parsing seemingly straightforward
variable declarations that involve a list of comma-
separated arguments of arbitrary length. To handle
this case a simple regular expression isn't enough;
instead, it is necessary to write a special-purpose
utility function to match the arguments.

While all this has caused many headaches dur-
ing the development of meta-mode.el, it appears
that the Font Lock patterns currently implemented
are good enough to handle most common cases, as
can be veri�ed by loading plain.mf or plain.mp

into GNU Emacs and turning on fonti�cation.
Finally, it should be noted that there was one

more case that required special attention, namely
TEX code embedded in between btex : : : etex or
verbatimtex : : : etex in METAPOST sources.

TUGboat, Volume 18 (1997), No. 1 15

From the point of view of syntactic highlighting
it seemed best to treat this embedded TEX code just
like a quoted string as it isn't interpreted in any way
by METAPOST itself, but just passed on to MakeMPX
for typesetting. However, to ensure proper parsing
this interpretation also made it necessary to retain
the meaning of escape character for the backslash,
although this doesn't agree with its usual meaning
of relax in the META languages.

2.3.3 Symbol Completion

Automatic completion of partially-typed keywords
or �lenames is a concept found throughout most
parts of GNU Emacs as well as in some modern
Unix shells. The basic idea is to save keystrokes
by allowing one to type just the �rst few letters
and perform completion on pressing M-TAB, resulting
in partial completion and a display of all possible
matches if no unique match is found.

An appreciable side-e�ect of symbol completion
is that it provides a way of spell checking keywords
in a programming language, which helps to avoid
some of the most annoying compilation errors.

To implement symbol completion when writing
a new major mode it takes two things: a completion
function that does the actual job, and a list of known
symbols that are o�ered for completion.

As for the completion function implemented in
meta-mode.el, there is little to say. It was directly
adopted from AUC-TEX's latex.el, but the frame-
work was considerably simpli�ed since it appeared
unnecessary to support multiple completion lists for
di�erent kinds of symbols in META mode, whereas
it did make sense to have them in LATEX mode.

As for the list of known symbols, there is a
slightly more interesting story to tell: The idea was
to have one comprehensive list of symbols for each
of METAFONT and METAPOST which should in-
clude all primitives and macros de�ned in plain.mf

or plain.mp, optionally augmented by the macros
de�ned in standard packages, such as graph.mp or
boxes.mp in the case of METAPOST. So what's the
best method to get a complete list of primitives?
The answer is simple: Use the source, Luke!

I eventually ended up with a little bit of Unix
shell hackery along the lines of

$ grep '^primitive("[a-zA-Z]*"' {mf,mp}.web \

| sed 's/primitive(\("[a-zA-Z]*"\).*/\1/' \

| sort > {mf,mp}_prim.list

to extract the information about primitives directly
from the WEB sources. Unfortunately, extracting the
corresponding information from the macro de�nition
headers in plain.mf and plain.mp didn't work out
quite as well and required a little editing to �x up

the extracted list, but this didn't matter too much
since it had to be done only once anyway.

In any case, the resulting completion lists in
meta-mode.el should be fairly comprehensive and
might actually serve to give a good overview of what
commands are available. Thus, if you ever wanted
to know what tracing options exist, just type `trac'
followed by M-TAB twice and see for youself. As this
example illustrates, typing `trac' is su�cient to get
a partial completion to `tracing', whereupon typing
another one or two letters will be enough to resolve
the remaining ambiguities.

In comparison to the completion in AUC-TEX
it should be mentioned that meta-mode.el doesn't
currently provide any context-sensitive completion,
nor does it prompt the user to �ll in the arguments
where applicable. Instead, it just o�ers any known
symbols for completion that match, regardless of
whether they would make any sense in that context.
Given the versatility of the completion function, it
would certainly be possible to implement some of
this by preparing a more involved completion list
and some supporting functions if desired, but there
are no such plans for the near future. After all, one
might reasonably assume that users of METAFONT
or METAPOST will be programmers who may be
expected to know what they are doing, whereas
authors of TEX documents don't necessarily have to
be TEX macro programmers, and thus might require
a little more help.

2.3.4 Miscellaneous Functions

As usual in Emacs editing modes for programming
languages meta-mode.el also provides a small num-
ber of basic editing functions that are adapted to
the mode-speci�c semantics. For instance, there are
motion commands to move to the beginning or end
of the previous or next \environment", or commands
to apply the mode-speci�c indentation function or
the standard Emacs comment-region function to
each line in an \environment", a region, or a bu�er.

As for what kinds of META language elements
constitute an \environment", a somewhat di�erent
set of regular expressions is used than in the indenta-
tion function. Only the outermost block structures
such as beginchar : : : endchar in METAFONT or
begin�g : : : end�g in METAPOST are taken into
account for this purpose, whereas conditionals and
loops are disregarded. In addition, de�nition blocks
such as def : : : enddef and variants thereof are also
considered as de�ning an \environment" for the con-
venience of editing more extensive macro packages.
However, this may lead to problems if local macro
de�nitions are nested inside beginchar : : : endchar

16 TUGboat, Volume 18 (1997), No. 1

blocks, in which case a command on an environ-
ment might be incorrectly applied to the inner block
rather than the outer one. Unfortunately, there
doesn't seem to be a general solution to this other
than modifying the default regular expressions.

2.3.5 Keybindings

Most of the mode-speci�c editing functions provided
in meta-mode.el are bound to fairly standard key-
bindings also used in Emacs editing modes for other
programming languages. For example, M-C-a and
M-C-e are bound to the motion commands applica-
ble to environments while M-a and M-e are retained
for the motion commands applicable to sentences,
primarily for use in comment paragraphs. Likewise,
M-C-q reindents an environment of META code while
M-q is retained as the function to re�ll text in a
comment paragraph.

A complete listing of mode-speci�c keybindings
in meta-mode.el can be obtained using the Emacs
help system. Furthermore, if Emacs is run under
a windowing system such as X11, all mode-speci�c
editing commands are also accessible from a pull-
down menu entitled \Meta" that gets installed in the
menubar when entering METAFONT or METAPOST
mode. This menu lists all available mode-speci�c
editing commands along with their corresponding
keybindings.

3 Availability

In the past, preliminary versions of meta-mode.el
have been made available by postings to the Usenet
newsgroup gnu.emacs.sourcesand theMETAFONT
mailing list at metafont@ens.fr. As of version 1.0,
meta-mode.el has been uploaded to CTAN where
it has found a place in the tex-archive/support/
emacs-modes/ directory.

Shortly after releasing one of the early test
versions, I was contacted by Richard Stallman about
signing a copyright transfer agreement to the Free
Software Foundation to allow the integration of
meta-mode.el into the GNU Emacs distribution,
which I have done now. Therefore, readers may
look forward to �nding meta-mode.el as the default
METAFONT or METAPOST editing mode when the
next version of GNU Emacs eventually arrives.

While the functionality provided in version 1.0
of meta-mode.el is pretty stable now, development
of some additional features will continue. Most
importantly, there are plans to implement an in-
terface to allow running METAFONT or METAPOST
in a shell bu�er from within Emacs. In order to
ensure stability, however, such development will be
con�ned to add-on packages such as meta-buf.el

that may be merged back into meta-mode.el from
time to time, when the new features have proved
stable.

4 Acknowledgements

A number of features implemented in meta-mode.el
have been signi�cantly in
uenced by features found
in various Emacs editing modes for other program-
ming or text formatting languages, among them,
in particular, the AUC-TEX package, from which
I drew much of the indentation and symbol com-
pletion functions. Emacs Lisp code was borrowed
and adapted to the new purposes wherever possible,
thereby sharing all the good ideas in the true free
software tradition while at the same time avoiding to
reinvent the wheel unnecessarily. Putting it all to-
gether and supplying the necessary knowledge about
META language features to write appropriate font
lock patterns and regular expressions, however, is
the main ingredient for which I take responsibility
entirely myself. I hope METAFONT and METAPOST
users using any
avor of Emacs will enjoy it!

References

[1] Debra Cameron, Bill Rosenblatt, and Eric Ray-
mond. Learning GNU Emacs. O'Reilly & Asso-
ciates, Inc., September 1996.

[2] Richard Stallman. GNU Emacs Manual. Free
Software Foundation, August 1996. 12th edition,
for Emacs version 19.34.

[3] Kresten Krab Thorup. GNU Emacs as a front
end to LATEX. TUGboat, 13(3):304{308, October
1992.

[4] Robert J. Chassell. Programming in Emacs

Lisp|An Introduction. Free Software Founda-
tion, October 1995. edition 1.04.

[5] Bil Lewis, Daniel LaLiberte, Richard Stallman,
and GNU Manual Group. GNU Emacs Lisp

Reference Manual. Free Software Foundation,
June 1995. edition 2.4, for Emacs Version 19.29.

� Ulrik Vieth

Heinrich-Heine-Universit�at

D�usseldorf

Institut f�ur Theoretische Physik II

Universit�atsstra�e 1

D-40225 D�usseldorf

Germany

vieth@thphy.uni-duesseldorf.de

URL: http://www.thphy.

uni-duesseldorf.de/~vieth/

