
212 TUGboat, Volume 11 (1990), No. 2

Tutorials

Output Routines: Examples and Techniques.
Part II: otr Techniques.

David Salomon

The warnings and disclaimers in Part I* of this
article also apply to this part. The methods and
macros described here are not canned. They should
not be copied and used verbatim. Rather, they
should be carefully studied and adapted to specific
needs.

The following techniques are discussed in this
article, and are applied to practical situations:
1. Breaking up \box255 in the otr into individual

lines by means of the \lastxx commands.
2. Identifying individual lines or paragraphs to

the otr by means of \rightskip, \parshape,
or the depth of \box255.

3. Attaching very small amounts of \kern to
certain lines of text, to identify those lines to
the otr as special.

4. Placing large negative penalties at certain
points in the document. This has the ef-
fect of invoking the otr at those points. The
otr does not have to shipout anything.

5. Attaching very small vboxes below certain lines,
to identify them to the otr as special lines
that require special treatment.

6. Using marks. This is a common otr technique.
7. Setting \vsize to a very small value. \box255

consists, in such a case, of just one line of text,
which is then easy to examine.

8. Using a 2-pass technique where, in the first
pass, certain information is written on a file, to
be read by the second pass. Certain complex
problems may even call for a multi-pass job.
We also remind the reader of the notation used

in Part I: [. . .] alone makes reference to an item or
items in The TEXbook (e.g., [400] refers to page 400
and [Ch. 6] refers to Chapter 6 in The TEXbook),
whereas [§. . .] refers to a module or modules in
TEX : The Program.

* TUGboat 11, no. 1, pp. 69–85.

TUGboat, Volume 11 (1990), No. 2 213

Technique: Special Penalties

Penalties are used in TEX to control line breaks and
page breaks, depending on the current mode. Penal-
ties generated in h-mode are used by the paragraph
break algorithm [§831, §859]. To communicate with
the otr by penalties, they therefore have to be
generated in v-mode. A penalty of 10000 or more
is considered infinite and prevents a page break.
Similarly, a penalty of −10000 or less always causes
a break. The idea is to say \penalty-10001 at any
point that requires the otr’s attention (TEX must
be in v-mode at that time), in order to invoke the
otr at this point. A macro such as
\def\immed{\vadjust{\penalty-10001}}

can be used for this purpose. The otr should
check \outputpenalty and, if it equals −10001, do
something special. It can then shipout \box255 or
return it to the current page.

This is a good method for communicating with
the otr, and has only one feature that makes it
less than ideal; the special penalty value of −10001
does not invoke the otr immediately. Instead, it is
initially placed in the recent contributions, together
with the rest of the paragraph, and has to wait
until the page builder is exercised. The problem
is that, when the page builder is exercised and the
otr invoked, TEX has already read text past the
special penalty.

In a test such as
..\dimen0=1pt...\immed...\dimen0=2pt..\par

the otr would find \dimen0 to have a value of 2pt.
Exercise: Write an otr that displays the

value of \dimen0, and perform the test above.
The reason for this behaviour is the way

\vadjust is executed. TEX first breaks the entire
paragraph into lines that are placed in the recent
contributions. Only then does it place the \vadjust
material at the proper point between two lines [259].
As a result, the otr is invoked too late.

To solve this problem, a way should be found
to exercise the page builder immediately. The page
builder is exercised (see [117]) at the start and end of
a paragraph; so, if the user wants to invoke the otr
at the end of a paragraph, a \penalty-10001 is the
ideal technique. The page builder is also exercised
before and after a display formula, which suggests
a way to exercise it inside a paragraph. The user
should place, in the paragraph, a \penalty-10001,
preceded by an empty display formula, at the point
where the otr should be invoked.

An empty formula is easy to create by $$ $$.
Furthermore, the large flexible glues surrounding a
display are easily eliminated by:
\abovedisplayskip=1sp
\belowdisplayskip=1sp
\abovedisplayshortskip=1sp
\belowdisplayshortskip=1sp

To eliminate any extra interline spaces around
the display, an \openup-\baselineskip is placed in
it. Finally, setting \postdisplaypenalty=-10001
places the special penalty right below the display
formula, to make sure that the otr is invoked.

The result is made into a new definition of
macro \immed:
\def\immed{$$\postdisplaypenalty=-10001
\openup-\baselineskip$$}

The expansion \immed terminates the current
line (same as \hfil\break), places an empty,
invisible display formula following the line, and im-
mediately invokes the otr with \outputpenalty=
−10001. The paragraph is not terminated.

To see the point where the formula is placed,
\immed can be temporarily changed to:
\def\immed{$$\postdisplaypenalty=-10001
\openup-\baselineskip+$$}

In a test such as
..\dimen0=1pt...\immed...\dimen0=2pt..\par

the otr would find \dimen0 to have a value of 1pt.
This method is, again, not ideal, since it

terminates the current line.

The \lastxx Commands

The otr can examine the contents of \box255 and
also break it up into its components, by means of
the \lastxx commands [§424, §996]. There are
4 of them: \lastbox, \lastskip, \lastkern and
\lastpenalty [271]. To use those commands, the
otr should first open \box255, by means of an
\unvbox. If the last item in \box255 is a glue, its
value will be reflected in \lastskip. Two things
can be done at this point (1) \skip0=\lastskip;
(2) \unskip. The first saves the glue value for future
use, and the second removes it [280]. Similarly for
\lastkern and \lastpenalty. If the last item is
a box, the command \setbox0=\lastbox will both
set \box0 and remove the last box.

Technique: Breaking Up a Page

The otr may use the \lastxx commands in a loop,
to identify successive components of \box255. In
such a loop it is, of course, important to check at

214 TUGboat, Volume 11 (1990), No. 2

each iteration and find out what the next item is,
before copying and removing it. If the next item
is not a glue, \lastskip will have a value of 0pt.
Similarly, \lastkern will be 0pt, \lastpenalty
will be 0, and \lastbox will be void. A macro
\breakup can thus be defined, consisting of a
\loop...\repeat to remove successive elements off
\box255.
\newif\ifAnyleft \newcount\pen
\def\breakup{%
\loop \Anyleftfalse
\ifdim\lastskip=0pt\else \Anylefttrue
\skip0=\lastskip \unskip \fi

\ifdim\lastkern=0pt\else \Anylefttrue
\dimen0=\lastkern \unkern \fi
\ifnum\lastpenalty=0 \else\Anylefttrue
\pen=\lastpenalty \unpenalty \fi
\setbox0=\lastbox
\ifvoid0 \else \Anylefttrue \fi

\ifAnyleft \repeat}

Note the use of variable \Anyleft to check if
there is anything left in the box after each repetition
of the loop. The loop repeats until none of the four
items is found. The otr simply says \unvcopy255
\breakup.

An alternative definition of \breakup, using
nested \ifs, is:

\newif\ifAnyleft
\def\breakup{%
\loop \Anyleftfalse
\ifdim\lastskip=0pt \ifdim\lastkern=0pt \ifnum\lastpenalty=0

\setbox0=\lastbox \ifvoid0 % end of breakup loop
\else \Anylefttrue \fi % box encountered
\else \Anylefttrue \unpenalty \fi % penalty encountered
\else \Anylefttrue \unkern \fi % kern encountered
\else \Anylefttrue \unskip \fi % glue encountered

\ifAnyleft \repeat}

Before discussing specific applications of the
breakup technique, let’s look at its main problems.
1. We have to test \lastskip for 0pt. Unfortu-
nately, TEX does not have an \ifskip or \ifglue
tests. We thus have to use \ifdim, which tests a di-
mension, not a glue. The test \ifdim\lastskip. . .
first converts the glue to a dimension. The problem
is that such a conversion discards the stretch and
shrink components of the glue [118]. Thus if the
next glue item has the form 0pt plus.. minus..,
our macro will consider it zero.

The solution: change the values of certain
common vertical glues that have this form to 1sp
plus... minus... . We thus declare:
\parskip=1sp plus1pt
\def\vfil{\vskip1sp plus1fil}
\def\vfill{\vskip1sp plus1fill}
\abovedisplayshortskip=1sp plus3pt

2. A similar problem exists with penalties. A
math display formula is followed by a \postdis-
playpenalty [189], whose default value is zero. As
a result, any construct using the math display mode,
such as \verbatim or $$\vbox{\halign{...}}$$,
suffers from the same problem. The solution is to
set \postdisplaypenalty=1.

There is also an \interlinepenalty parame-
ter, which goes between the lines of a paragraph. It
is usually zero but can be changed to a large value
[406] to discourage a page break inside a paragraph.
We set it to 1.

The above definitions are all consolidated into
a new macro \zeroToSp, which should be used in
conjunction with any page breakup.
\def\zeroToSp{\parskip=1sp plus1pt

\def\vfil{\vskip1sp plus1fil}
\def\vfill{\vskip1sp plus1fill}
\abovedisplayshortskip=1sp plus3pt
\postdisplaypenalty=1
\interlinepenalty=1}

3. When breaking up a box using the \lastxx
commands, it is easy to identify the 4 types: box,
glue, kern and penalty. There seems no way,
however, to identify the other three components
of vertical lists, namely rules, marks and whatsits.
When our breakup loop gets to one of them, it
stops, assuming that this is the end of \box255.
A whatsit (a \special or a \write) can usually
be specified in horizontal mode, which will bury it
inside an \hbox and out of harm. A mark, on the
other hand, tends to migrate outside horizontal lists
[400] and into the top level of \box255. It therefore

TUGboat, Volume 11 (1990), No. 2 215

causes an incomplete breakup, and its use should
be avoided when this technique is employed.

A similar problem is presented by a rule. An
\hrule at the top level of a \vbox is considered a
box [110]. However, the \lastbox operation cannot
identify it as such, which results in an incomplete
breakup.

A solution: Place the \hrule in its own \vbox,
so it does not appear at the top level of the larger
\vbox.

Partial relief: Such a case, where the breakup
stops prematurely, can be detected by setting a new
box (\brk) to the remains of \box255 after the
breakup. When the breakup stops, \ht\brk should
be zero. An otr can thus be written which breaks
up a copy of \box255, and checks to see if anything
is left.

\newbox\brk
\output={

\setbox\brk=\vbox{\unvcopy255 \breakup}
\ifdim\ht\brk>0pt
\message{Incomplete breakup}\fi

\shipout\box255 \advancepageno}

Exercise: Implement the above otr and use
it to typeset several pages, some containing rules or
marks.

Here are a few simple applications of the
breakup technique.

Duplicating a Page

Macro \breakup can be modified to place broken up
components from \box255 in \box1 in the original
order, creating a copy of the current page.

\zeroToSp
\newif\ifAnyleft \newcount\pen
\def\duplicate{%
\loop \Anyleftfalse
\ifdim\lastskip=0pt \ifdim\lastkern=0pt \ifnum\lastpenalty=0

\global\setbox0=\lastbox \ifvoid0 % end of breakup loop
\else \Anylefttrue % box present
\global\setbox1=\vbox{\box0 \unvbox1}\fi

\else \Anylefttrue % penalty present
\pen=\lastpenalty
\global\setbox1=\vbox{\penalty\pen\unvbox1}\unpenalty\fi

\else \Anylefttrue % kern present
\dimen0=\lastkern
\global\setbox1=\vbox{\kern\dimen0 \unvbox1}\unkern\fi

\else \Anylefttrue % skip present
\skip0=\lastskip
\global\setbox1=\vbox{\vskip\skip0 \unvbox1}\unskip\fi

\ifAnyleft \repeat}

A test such as:
\newbox\brk
\output={
\setbox\brk=\vbox{\unvcopy255 \duplicate}
\ifdim\ht\brk>0pt
\message{Incomplete breakup}\fi

\shipout\box255 \shipout\box1
\advancepageno}

is particularly interesting. It typesets pairs of pages,
with the same page numbers. Two physical pages
are printed for each logical page generated. The two
pages in a pair are duplicates of each other, but are
they identical?

It turns out that they are not. The main
difference between \box255 and \box1 is their

heights. The heights are different because of the
flexible glues on the page. Normally, \box255
contains some flexible vertical glues. Those glues
are flexed to adjust \ht255 to equal \vsize. When
\box255 is opened, however, the glues return to
their natural size.

This can easily be seen by a test such as:
\newbox\brk
\output={

\setbox\brk=\vbox{\unvcopy255 \duplicate}
\ifdim\ht\brk>0pt
\message{Incomplete breakup}\fi

\message{[\the\ht255:\the\ht1]}
\shipout\box255 \shipout\box1
\advancepageno}

216 TUGboat, Volume 11 (1990), No. 2

\parskip=6pt plus6pt minus6pt
\input source
\bye

The \parskip glue is given a lot of flexibility,
and the heights are shown in the log file. Such
a test also shows that the last pair of pages may
differ a lot in their heights. This is because the last
page of a document is normally only partly full, and
has a \vfill glue at the bottom. When \box255
is opened, the \vfill returns to its natural size,
which is 0pt.

How can we make sure that the two pages
in a pair have the same heights? The simplest
approach is to flex \box1 in the otr, just be-
fore it is shipped out, by saying \setbox1=\vbox
to\vsize{\unvbox1}. Now the two pages in a pair
have exactly the same height and the same glue set
ratio; they are identical. Our otr thus becomes:
\newbox\brk
\output={
\setbox\brk=\vbox{\unvcopy255 \breakup}
\ifdim\ht\brk>0pt
\message{Incomplete breakup}\fi

\setbox1=\vbox to\vsize{\unvbox1}
\shipout\box255 \shipout\box1
\advancepageno}

Two \showbox commands can temporarily be
placed in the otr to dump \box1 and \box255
onto the log file, and verify that they have identical
components. It is important to (temporarily)
increase the value of \showboxbreadth. Also, to
make the dumps more manageable, \vsize should
be set to a small value, such as 1in.

Reversing a Page

It is now trivial to modify the definition of \du-
plicate, so that it breaks up items from \box255

and places them in \box1 in reverse order. This is,
perhaps, a useless operation but, since our aim is to
gain an understanding of otrs, let’s ask ourselves
how \box255 and \box1 differ.

1. They are the reverse of each other, which
means that each glob of \baselineskip glue which
used to be below a line of text, is now above it.
The interline spacing in \box1 is thus all wrong.
This is not very noticeable when the entire page is
typeset with the same font. Mixing different font
sizes, however, results in a funny looking reversed
page. Also, the \parskip glues are misplaced but,
since they are normally zero, this is not noticeable.
Changing \parskip to some non-zero value results
in large spaces following the first line of each
paragraph (which are last lines on the reversed
page).

2. They have different vertical dimensions.
The height of \box255 is \vsize and its depth is
usually the depth of the last line of text. \box1,
on the other hand, ends with \topskip, which is
glue and thus has no depth, so \dp1=0pt. Also,
\box1 starts with the bottom line of \box255. To
guarantee that \ht1+\dp1 equals \ht255+\dp255,
we should force \ht1 to be the sum \ht255+\dp255.

Exercise: Write a macro \reversepage to
reverse \box255 into \box1.

Counting the Lines

The \breakup macro can now easily be modified
to count the number of lines of text in \box255.
We assume that \box255 does not contain rules,
marks or whatsits, and we break it up, counting
the number of \hboxes found. Items that we don’t
want to count should be placed in a \vbox. The
macros are:

\zeroToSp
\newif\ifAnyleft \newcount\lineCount
\def\countlines{\global\lineCount=0
\loop \Anyleftfalse
\ifdim\lastskip=0pt \ifdim\lastkern=0pt \ifnum\lastpenalty=0
\setbox0=\lastbox \ifvoid0

\else \Anylefttrue \ifhbox0 \global\advance\lineCount by1 \fi \fi
\else \Anylefttrue \unpenalty \fi
\else \Anylefttrue \unkern \fi
\else \Anylefttrue \unskip \fi

\ifAnyleft \repeat}

\newbox\brk

TUGboat, Volume 11 (1990), No. 2 217

\output={\setbox\brk=\vbox{\unvcopy255 \countlines}
\ifdim\ht\brk>0pt \message{Incomplete breakup} \fi
\message{\the\lineCount}
\shipout\box255 \advancepageno }

Breaking Up a Line of Text

Can we use the same technique to break up individ-
ual lines of \box255? It seems easy to define a macro
\hbreakup that would use \lastxx commands to
break up a line of text. Unfortunately, this does
not work, because a line of text contains individual
characters, which the \lastbox command cannot
recognize as boxes. It is interesting to note that a
character of text is, in general, considered a box [63]
but, evidently, there are differences between a gen-
eral box and a character box. One such difference
is that a character box cannot appear in a vertical
list [110]. Another difference is the one mentioned
above, concerning \lastbox, and this difference is
easy to verify with a test such as
\setbox0=\hbox{ABC}
\unhbox0 \setbox1=\lastbox
\showbox1
\bye

which shows \box1 to be void, and typesets ‘ABC’.
In contrast, the test:
\setbox0=\hbox{AB\hbox{C}}
\unhbox0 \setbox1=\lastbox
\showbox1
\bye

shows \box1 to consist of an hbox with the ‘C’, and
typesets only ‘AB’.

This is an unfortunate situation. The ability
to break up a line of text would have meant a full
and complete communication with the otr. The
user could hide, e.g., a strut with a special depth
in the line, and the otr could easily find it, and
do something with, or add something to, the line at
that point. The strut could even have been left in
the line.

Technique: Using \rightskip

Even though \lastbox cannot be used to break up
a line of text, \lastskip can be used to detect glue
at the right end of such a line. This suggests a way
to identify certain lines to the otr. How can a glob
of glue be placed at the end of a line? It turns out
that TEX places the \rightskip glue at the end
of every line of text when the paragraph is broken
into lines. The plain format value of \rightskip
is 0pt so, setting \rightskip=1sp will not be

visually noticeable and can be used to communicate
with the otr. Unfortunately “TEX uses the same
\rightskip value in all lines of a paragraph” [393].
This method can thus be used to identify certain
paragraphs, but not individual lines, to the otr.

An application demonstrating this technique is
shown later. It has to do with ‘special boxes’ in a
textbook. Following are two examples that are not
developed in detail, since they are easier to do in
other ways:

1. Suppose that a vertical rule should be
typeset on the left margin of certain paragraphs.
The otr can do this by placing a rule, the size
of a strut, on the left of each line that ends with
\rightskip=1sp. However, this is easier to do by
typesetting the paragraph in a \vbox and placing a
rule on the left of the box.

2. If only one or two lines of the paragraph
appear on (the bottom of) the page, we want
to move them to the next page, and to \vfill
up the present one. This can be done by the
otr checking the rightskip glue of the bottom line
or two. However, it may be easier to do with
\filbreak [111].

Technique: Using \parshape

If we want the otr to do something special with,
say, the second line of a paragraph, we can identify
this line by making it 1sp longer or shorter than the
other lines. This can easily be done with \parshape.
Again, there are no practical applications as yet for
this technique.

Technique: Using the Depth of \box255

The following quote, from [400], is relevant to
this technique: “Perhaps the dirtiest trick of all
is to communicate with the otr via the depth of
\box255.” After mastering the techniques described
here, the reader will agree that this is no longer
the dirtiest trick, but is a special case of the
breakup technique. Examples of applications of this
technique are:

1. In certain old religious texts, if a chapter
ends on a certain page, and less than half a page
remains, the next chapter should start on the
following page; otherwise, it should start on the
same page.

218 TUGboat, Volume 11 (1990), No. 2

2. Business contracts usually consist of clauses.
In certain legal situations it is desirable to break
a page between clauses. If the page must be
broken inside a clause, a special footer should
be typeset, saying Continued.... This can be done
by ending each clause with \endclause, a macro
defined as {\unskip\vrule height0pt width0pt
depth3.5002pt}. The \unskip backspaces over
any possible space preceding the special strut, thus
making sure that the strut will end up on the same
line as the preceding word.

The otr simply tests
\ifdim\dp255=3.5002pt \else
\footline={\hfil\sevenrm Continued...}

\fi

3. Certain lines should not appear at the bot-
tom of the page. A business contract is again a
good example. If a certain line contains the most
important words or money sums in the contract, it
should better not appear at the bottom of the page,
where it is less visible.† Again, a special strut can
be used to identify the line and, if the otr detects
such a line, it should alert the user, who can then
correct the situation by rewording the document, or
by moving things around.

Technique: Communications by Kerns

Small amounts (a few sp worth) of \kern can be
placed between the lines of text, and detected by
the otr when breaking up \box255. The problem
is that a kern is discardable, so we have to make
sure that our special kern is not discarded. The
general rule is that a page can be broken at a kern
only if the kern is immediately followed by glue.
We, therefore, will have our special kern followed by
another kern. In fact, we will place two consecutive,
identical pieces of special, small kern after the text
line that we want to identify to the otr. This
is done by \vadjust{\kern1sp\kern1sp}, which
places the kerns immediately below the current
line, i.e., they are placed between the line and the
\baselineskip that normally follows it. If the
line should be followed by a penalty, the order is:

† Beware! Certain businessmen do just this.

the line of text, the pair of kerns, the penalty, the
\baselineskip. The places where a page can be
broken have been mentioned earlier.

Practical Examples of otrs

The techniques described earlier, plus a few others,
are now applied to practical problems.

Example: Start a Chapter On a New Page

The problem*: If a chapter ends on a certain page,
and less than half a page remains, skip the rest of
the page; otherwise, start the new chapter on the
same page.

Solution: Macro \chapter is expanded at the
start of each chapter. It appends a special line to
the end of the preceding chapter (only if there is
a preceding chapter), and invokes the otr by an
\eject. The special line consists of just a small
\hbox with a rule of depth 1sp, and width and
height zero.

Each time the otr is invoked, it checks to
see if \dp255=1sp and \ht255<0.5\vsize. If yes,
the otr returns \box255 to the MVL (it is an
end-of-chapter and more than half a page remains);
otherwise, \box255 is shipped out (either less than
half a page remains or not end-of-chapter).

Actually, the details are a bit more involved. If
\dp255=1sp, then \box255 contains text, followed
by a \vfill, and by the special box. The last two
items have to be removed before \ht255 can be
tested. To do this—

1. \box 255 is opened, the special box at the
bottom is removed by a \lastbox (see later), and
the \vfill is skipped over by an \unskip. The
result then goes back in \box255. The new \box255
now has just the original text, and its height can be
measured.

2. If \ht255<0.5\vsize, \box255 is opened,
and a message (unv) goes in the log file. Otherwise,
a new box is shipped, consisting of \box255, a
\vfill, and a footline. The size of the new box is
\vsize+12pt, and it has to be explicitly specified.

A listing of the macros follows. They are kept,
as usual, simple.

* Proposed by Robert Batzinger.

\newif\ifFirstCh \FirstChtrue \newif\ifRet \newcount\chnum

\newdimen\Hvsize \Hvsize=\vsize \divide\Hvsize 2
\newdimen\Nvsize \Nvsize=\vsize \advance\Nvsize 12pt

TUGboat, Volume 11 (1990), No. 2 219

\def\chapter#1\par{\advance\chnum 1
\ifFirstCh \FirstChfalse
\else \vfill\nointerlineskip

\hbox{\vrule width0in height0pt depth1sp}
\eject \fi

\bigskip\noindent{\bf\the\chnum.\ #1}
\medskip}

\footline={...}

% if \dp255 = 1sp: unvbox255, lastbox (the line with dp = 1sp),
% skip over the \vfill by \unskip, and return to MVL.

\output={\Retfalse
\ifdim\dp255=1sp

\setbox255=\vbox{\unvbox255 \setbox0=\lastbox \unskip}
\ifdim\ht255<\Hvsize \Rettrue \fi \fi

\ifRet \unvbox255 \message{unv}
\else

\shipout\vbox to\Nvsize{\box255\vfill\line{\the\footline}}
\advancepageno \message{ship} \fi

}

Example: A Religious Hymn

One way of communicating with the otr, proposed
in [App. D], is by the use of special penalty values.
Any penalty value ≤ −10000 will cause the otr to
be invoked. Values < −10000 can therefore be used
to tell the otr to do something special.

Note that the otr is not invoked when TEX
first sees the penalty. It is only invoked when
the page builder detects the penalty, while moving
items from the recent contributions to the current
page [§1005].

The otr should check the value of variable
\outputpenalty. If it is < −10000, it should do
something special and then return \box255 to the
MVL without shipping out anything (a dead cycle).
If, however, \outputpenalty equals −10000, the
otr should do a normal \shipout.

The example shown here∗ has to do with
typesetting a religious hymn. A hymn consists of
one chorus and a number of stanzas. The chorus
is usually printed after the first stanza and is sung

∗ Proposed and solved by Robert Batzinger.

after each stanza. The problem is that a long hymn
may occupy more than one page and, in such a
case, the chorus should be printed on the top of
each successive page.

The solution is to write macros that will typeset
a copy of the chorus if we are still within the same
hymn, but have moved to a new page. The original
text of the chorus is saved in a \toks variable, so it
can be used as often as necessary.

Macro \hymn is expanded at the start of each
hymn. It invokes the otr with penalty −10001 and
the otr, in that case, simply saves the current page
number in the count variable \oldpage. Note that
the otr does not shipout anything, and returns
\box255 to the MVL.

Macro \stanza is expanded at the start of each
stanza. It invokes the otr with penalty −10002.
The otr then tests \ifnum\pageno>\oldpage (we
have moved a page or two since the last printing of
the chorus) and sets the boolean variable \prtCorus
to true. The otr then returns \box255 to the MVL.
Macro \stanza tests \prtCorus and, if it is true,
invokes macro \setchorus to typeset the chorus.

Here are the macros used:

\newif\ifprtCorus \newcount\oldpage
\hsize=3.5in \vsize=2.2in

\def\hymn#1#2{\bigbreak\bigskip
\noindent{\bf #1. #2}\nobreak\medskip

220 TUGboat, Volume 11 (1990), No. 2

\nobreak \penalty-10001}

\def\stanza#1\endstanza{\medbreak
\vbox{\noindent#1}\medskip\penalty-10002
\ifprtCorus \setchorus\fi }

\def\chorus#1\endchorus{\toks2={#1}\setchorus}

\def\setchorus{\medskip
\moveright.5in\vbox{\noindent

\hbox to 0pt{\hss\bf Chorus:\ }%
\the\toks2\medskip}

\global\prtCorusfalse }

\output={\ifnum\outputpenalty=-10001
\global\oldpage=\pageno
\global\prtCorusfalse
\unvbox255

\else \ifnum\outputpenalty=-10002
\ifnum\pageno>\oldpage

\global\prtCorustrue \global\oldpage=\pageno \fi
\unvbox255

\else
\shipout\vbox{\box255\smallskip \line{\the\footline}}
\advancepageno

\fi \fi }

Note that this is just a demonstration of a
principle. The macros presented here are simple
and will not always work. One case where they fail
is when a hymn starts at the end of a page, and
the chorus is typeset on the following page. The
chorus will, in such a case, be typeset twice on that
page. There may be other problems, but the idea
in this article is to keep the macros simple and easy
to read.

Exercise: Generalize the above macros so that
they do not typeset the chorus on an odd-numbered
(right hand) page if it was typeset on the preceding
even-numbered (left hand) page. This way the
chorus would be typeset only once on a pair of
facing pages.

Example: Line Numbering

When writing a draft of a book, a thesis, or a
report that should be reviewed by someone else,
it is useful to number the lines on each page (see
Figure 1). This way the reviewer can easily refer
to, e.g., line 48, page 84. The numbers should be
placed in the margin, so they can be suppressed in
the final version without any changes in the layout
of the document.

Line Numbers on the Margin
Figure 1

The method used here counts the number of
lines of text by counting the boxes that make up
the page. Macro \countlines below assumes that
each box on the page is a line of text and should
be numbered. Alternatively, if certain items on the
page should not be numbered, they can be placed
in vboxes, and \countlines revised to count only
hboxes.

TUGboat, Volume 11 (1990), No. 2 221

\zeroToSp
\newif\ifAnyleft \newcount\lineCount
\def\countlines{%
\global\lineCount=0
\loop \Anyleftfalse
\ifdim\lastskip=0pt \ifdim\lastkern=0pt \ifnum\lastpenalty=0
\setbox0=\lastbox \ifvoid0

\else \Anylefttrue \global\advance\lineCount by 1 \fi
\else \Anylefttrue \unpenalty \fi
\else \Anylefttrue \unkern \fi
\else \Anylefttrue \unskip \fi

\ifAnyleft \repeat}

Note that, in an \halign, each line becomes
an \hbox and is, therefore, counted separately. Also
note that a blank line preceding a display equation
becomes an empty paragraph, and is therefore
counted.

The otr breaks up a copy of the page, removing
the lines of text one by one. At the same time,
a new box, \box1, is built, from the bottom up,

with the line numbers on the margin. For each line
removed from the page, its height and depth are
measured, and a line with the same size, containing
the appropriate number, is added to the top of
\box1. Each glue or kern removed from the bottom
of the page is added to the top of \box1. At the
end, the height and depth of \box1 are set to zero
and it is typeset, superimposed on the original page.

\newcount\pen
\def\breakup{%
\loop \Anyleftfalse
\ifdim\lastskip=0pt \ifdim\lastkern=0pt \ifnum\lastpenalty=0

\global\setbox0=\lastbox \ifvoid0 % end of breakup loop
\else \Anylefttrue \appendline \fi
\else \Anylefttrue \pen=\lastpenalty

\global\setbox1=\vbox{\penalty\pen \unvbox1} \unpenalty \fi
\else \Anylefttrue \dimen0=\lastkern

\global\setbox1=\vbox{\kern\dimen0 \unvbox1} \unkern \fi
\else \Anylefttrue \skip0=\lastskip

\global\setbox1=\vbox{\vskip\skip0 \unvbox1} \unskip \fi
\ifAnyleft \repeat}

\def\appendline{%
\setbox2=\hbox{\vrule height\ht0 depth\dp0 width0pt \sevenrm\the\lineCount}
\global\advance\lineCount-1
\global\setbox1=\vbox{\box2 \unvbox1}}

\newbox\brk
\output={\global\lineCount=0

\setbox\brk=\vbox{\unvcopy255 \countlines}
\global\setbox1=\vbox{}
\setbox\brk=\vbox{\unvcopy255 \breakup}
\ifdim\ht\brk>0pt \message{Incomplete breakup} \fi
\ht1=0pt \dp1=0pt
\shipout\vbox{\moveleft20pt\box1 \box255}
\advancepageno}

222 TUGboat, Volume 11 (1990), No. 2

This example illustrates both the power of the
breakup technique, and its main problem. The
problem is the flexible glues in \box255. They
are flexed, by the page builder [§668, §1017], to
adjust \ht255 to \vsize. However, when \box255
is opened, for the breakup, the flexible glues return
to their natural size.

A partial solution is to reduce, or even
eliminate, the flexibility of those glues (mainly
\parskip). This, however, handicaps the page
builder in its most important task, namely, finding
a good point to break a page.

Exercise: Implement an alternative approach
to the line numbering problem. The new approach
should build, in \box1, a duplicate of \box255 with
the line numbers inserted on the left.

Example: Special Footnote Numbering

Another practical problem∗ is to number the foot-
notes in a document by the line number on the
page. This problem is solved here several times, us-
ing different approaches. Each approach illustrates

∗ Proposed by Lothar Meyer-Lerbs.

different otr techniques, and also involves certain
difficulties.

The following quote, from the Chicago Manual
of Style (see also [125]), is relevant. “Since it is
impossible to foresee how [footnotes] will happen
to come out in the make-up, it is impracticable to
number them from 1 up on each page. The best
way is to number them consecutively throughout
an article or by chapters in a book.” The problem
tackled here is much more complicated than the one
proposed in the quote, and demonstrates the power
of otrs in TEX.

A Simple, Wrong Approach

The first approach is simple and intuitive. Macro
\Nfootnote uses a penalty of −10001 to invoke the
otr prematurely. The macro is expanded from
h-mode, and it has to place the penalty at the top
level of \box255, between lines of text. This is done
with \vadjust. The otr breaks up \copy255 and
counts the number of lines in the page so far. It then
returns \box255 to the MVL. Macro \Nfootnote
again takes over and typesets the footnote with the
number calculated by the otr.

The macros are very simple:

\def\Nfootnote#1{%
\vadjust{\penalty-10001}%
\footnote{$^{\the\lineCount}$}{#1}}

\zeroToSp
\newbox\brk \newif\ifAnyleft \newcount\lineCount

\def\breakup{%
\global\lineCount=0
\loop \Anyleftfalse
\ifdim\lastskip=0pt \ifdim\lastkern=0pt \ifnum\lastpenalty=0

\global\setbox0=\lastbox \ifvoid0
\else \Anylefttrue \ifhbox0 \global\advance\lineCount1 \fi \fi
\else \Anylefttrue \unpenalty \fi
\else \Anylefttrue \unkern \fi
\else \Anylefttrue \unskip \fi

\ifAnyleft \repeat}

\output={\ifnum\outputpenalty=-10001
\setbox\brk=\vbox{\unvcopy255 \breakup}
\ifdim\ht\brk>0pt \message{Incomplete breakup} \fi
\unvbox255

\else \plainoutput \fi
}

TUGboat, Volume 11 (1990), No. 2 223

but they don’t work! The serious reader should, by
now, know the reason. The \vadjust with the spe-
cial penalty does not invoke the otr immediately.
Instead, the penalty is placed following the current
line. Thus, in the second part of \Nfootnote, when

it expands \footnote, the otr has not yet been
invoked.

A 2-pass Method

The idea in the second approach is to modify the
otr so that it writes \the\lineCount on a file.
This leads to a 2-pass job, shown below.

\newcount\lineCount \newbox\brk \newbox\sav \newcount\pass

\newread\aux \immediate\openin\aux=\jobname.lin
\ifeof\aux \immediate\openout\aux=\jobname.lin \pass=1 \message{pass 1}
\else \pass=2 \message{pass 2} \fi

\newif\ifAnyleft
\zeroToSp

\def\countlines{%
\global\lineCount=0
\loop \Anyleftfalse
\ifdim\lastskip=0pt \ifdim\lastkern=0pt \ifnum\lastpenalty=0

\global\setbox0=\lastbox \ifvoid0
\else \Anylefttrue \global\advance\lineCount by1 \fi
\else \Anylefttrue \unpenalty \fi
\else \Anylefttrue \unkern \fi
\else \Anylefttrue \unskip \fi

\ifAnyleft \repeat}

\output={\ifnum\outputpenalty=-10001
\ifnum\pass=1
\setbox\brk=\vbox{\unvcopy255 \countlines}
\ifdim\ht\brk>0pt \message{Incomplete breakup} \fi
\immediate\write\aux{\the\lineCount} \fi

\unvbox255 % return to MVL
\else \plainoutput \fi
}

% shipout with footnotes

\def\Nfootnote#1{%
\ifnum\pass=1 \vadjust{\penalty-10001}\footnote*{#1}%
\else \read\aux to\tmp \footnote{$^{\tmp}$}{#1}\fi}

In the first pass, macro \Nfootnote creates the
special penalty and also expands \footnote*{...}
to typeset the footnote, so it takes the right amount
of space on the page. In the second pass, the macro
reads the correct number off the file, and invokes
\footnote with that number. This is still simple
and usually works.

It may fail, however, in cases where a footnote
appears close to the bottom of the page. Imagine
a footnote on line 60 of page 4. Because of the
\penalty-10001 following this line, TEX will invoke

the otr with a 60-line page. The otr will (1) write
the line count, 60, on the file; (2) return \box255
(with the 60 lines) to the current page, removing
the special penalty. Since the current page is now
large, TEX immediately starts looking for a good
page break. It may decide, since the special penalty
isn’t there any more, to break the page after line
59. Line 60 thus becomes line 1 of the next page,
but the number 60 has already been written on the
file.

224 TUGboat, Volume 11 (1990), No. 2

Another 2-pass Solution

The third approach is similar except that, instead
of being written on a file, the line numbers are
saved—by the otr—in memory. This makes sense
since there usually aren’t many footnotes on any
single page. In the second pass, macro \Nfootnote
uses this information to expand \footnote with
the correct line numbers. This approach suffers
from the same problem as the previous one, but
it is shown here because it illustrates how to save

the line numbers, each as an \hbox, in a large
\vbox. Extracting them later is easily done with a
\lastbox.

Note that the 2-pass structure is different from
the previous one. Previously, each pass was a
separate TEX job, and the line numbers were saved
on a file between the jobs. In the present method,
however, the line numbers are saved in a box (\sav),
which is stored in memory and thus disappears at
the end of the job. The two passes must, therefore,
be done in the same job. This is faster but requires
the source text to be \input from a separate file.

\newcount\lineCount \newbox\brk \newbox\sav \newif\ifAnyleft
\zeroToSp

\def\breakup{%
\global\lineCount=0
\loop \Anyleftfalse
\ifdim\lastskip=0pt \ifdim\lastkern=0pt \ifnum\lastpenalty=0

\global\setbox0=\lastbox \ifvoid0
\else \Anylefttrue \ifhbox0 \global\advance\lineCount1 \fi \fi
\else \Anylefttrue \unpenalty \fi
\else \Anylefttrue \unkern \fi
\else \Anylefttrue \unskip \fi

\ifAnyleft \repeat}

% pass 1
\output={\ifnum\outputpenalty=-10001

\setbox\brk=\vbox{\unvcopy255 \breakup}
\ifdim\ht\brk>0pt \message{Incomplete breakup} \fi
\global\setbox\sav=\vbox{\hbox{\sevenrm\the\lineCount}\unvbox\sav}
\unvbox255

\else \plainoutput \fi
}

% The above line should later be changed to:
% \setbox0=\box255 \deadcycles=0,
% since we don’t really want to shipout pages in pass 1.

\def\Nfootnote#1{%
\vadjust{\penalty-10001}%
\footnote*{#1}}

\input source \vfill\eject \pageno=1

% pass 2
\output={\ifnum\outputpenalty=-10001

\unvbox255
\else \plainoutput \fi
}

\def\Nfootnote#1{%
\setbox\sav=\vbox{\unvbox\sav \global\setbox0=\lastbox}%

TUGboat, Volume 11 (1990), No. 2 225

\footnote{\raise4pt\copy0}{#1}}

\input source

A Complex, 3-pass Approach

Approach 4: A three-pass job. The first pass deter-
mines the line numbers (throughout the document)
of lines with footnotes. Those numbers are saved in
a \vbox called \Asav. The second pass counts the
number of lines on each page. Those numbers are
also saved, in another box, \Bsav. The third pass
uses the numbers from the two boxes to determine
the correct line numbers and to typeset the foot-
notes. This is complex and, perhaps, can be done
in a simpler way. Nevertheless, it has the advantage
of demonstrating several useful otr techniques.

Before describing the 3 passes in detail, here
is a simple numeric example: Let’s assume that
we have three pages, with 50, 30 and 40 lines
respectively. There are footnotes on lines 3, 15,
15 and 44 of the first page, and lines, 25 and 34
of the third page. Pass 1 will save the numbers
3, 15, 15, 44, 105 and 114 in \Asav (note that 15
occurs twice). In pass 2, the line counts 50, 30
and 40, of the 3 pages are saved in \Bsav. Pass 3
starts by extracting the 50 from \Bsav. The first
4 times macro \Nfootnote is expanded, it extracts
the numbers 3, 15, 15 and 44 from \Asav. Those

numbers are ≤ 50, so they are used for numbering
the first 4 footnotes. The fifth expansion extracts
105 from \Asav. This is > 50, so the next number,
30, is extracted from \Bsav and added to the 50.
The current footnote number, 105, is still > 80, so
the next number, 40, is extracted from \Bsav and
added to the 80. The current footnote number, 105,
is now ≤ 120, so 80 is subtracted and the result, 25,
is used. The last number is 114, again ≤ 120, so
again 80 is subtracted, yielding 34.

The steps in each pass are:

Pass 1. Macro \Nfootnote computes a running
number for each footnote, and creates a \mark with
that number. The footnote itself is not typeset, but
\Nfootnote typesets an asterisk to occupy space
on the line, approximately equal to that taken by
the final footnote number. \vsize is set to a small
value, so the otr receives a \box255 with just
one line [400], which makes it easy to number the
lines throughout the document. Each time the otr
is invoked, it checks \firstmark, \botmark and
compares them to \topmark. This way it knows if
there are any footnotes on the line. If there are
any, the line number is saved in box \Asav, once for
each footnote on the line.

1. \newcount\temp \newcount\footno \newcount\lineno \newbox\Asav
2.

3. \def\Nfootnote#1{\advance\footno 1 \mark{\the\footno}*} % typeset an *
4.

5. \output={\global\advance\lineno 1
6. \temp=\botmark
7. \advance\temp -\firstmark
8. \advance\temp 1
9. \ifnum\firstmark\botmark \ifnum\topmark\firstmark \temp=0 \fi \fi

10. % \temp is now the number of footnotes on the current page (one line)
11. \ifnum\temp>0
12. \loop
13. \global\setbox\Asav=\vbox{\vskip\lineno sp \null\unvbox\Asav}
14. \advance\temp-1
15. \ifnum\temp>0 \repeat
16. \fi
17. \setbox0=\box255 % get rid of
18. \deadcycles=0
19. }
20.

21. % *** Executable commands ***
22. \message{Pass 1;} \vsize=10pt % small value

226 TUGboat, Volume 11 (1990), No. 2

23. \footno=0 \lineno=0 \setbox\Asav=\vbox{}
24. \input source \eject

Lines 1–19 are macro definitions, and decla-
rations of variables. Lines 22–24 are the actual
commands executed in pass 1.

\vsize is set, on line 22, to the small value
10pt. The page in \box255 will, as a result, consist
of just one line of text.

The otr calculates \temp, on lines 6–8, as
\botmark − \firstmark + 1. \temp is now the
number of footnotes on the current page (which
consists of just one line of text). However, if

\botmark = \firstmark = \topmark, there are no
footnotes on the current line, and \temp is set, on
line 9, to 0.

If \temp �= 0, the loop, on lines 12–15, saves
variable \lineno on top of \box\Asav as glue (in
units of sp).

Pass 2. Macro \Nfootnote typesets each footnote
with an asterisk. No marks are used. \vsize is set
to its normal value, and the otr breaks up a copy
of each page, counts the number of lines, and saves
that number, as the top glue item, in box \Bsav.

1. \newif\ifAnyleft \newbox\Bsav \newbox\brk
2.

3. \def\Nfootnote#1{\footnote*{#1}}
4. % typeset the footnote so it occupies the right space on the page
5.

6. \def\countlines{%
7. \global\lineno=0
8. \loop \Anyleftfalse
9. \ifdim\lastskip=0pt \ifdim\lastkern=0pt \ifnum\lastpenalty=0

10. \global\setbox0=\lastbox \ifvoid0
11. \else \Anylefttrue
12. \ifhbox0 \global\advance\lineno1 \fi \fi % count \hboxes on the page
13. \else \Anylefttrue \unpenalty \fi
14. \else \Anylefttrue \unkern \fi
15. \else \Anylefttrue \unskip \fi
16. \ifAnyleft \repeat}
17.

18. \output={\setbox\brk=\vbox{\unvcopy255 \countlines}
19. \ifdim\ht\brk>0pt \message{Incomplete breakup}
20. \showboxbreadth=1000 \showbox\brk \fi
21. \global\setbox\Bsav=\vbox{\vskip\lineno sp \null\unvbox\Bsav}
22. \plainoutput
23. }
24.

25. % *** Executable commands ***
26. \zeroToSp
27. \message{Pass 2;} \setbox\Bsav=\vbox{}
28. \vsize=2in % or any desired value
29. \input source \vfill\eject \pageno=1

This is a simple pass. It is again divided into
declarations and macro definitions (on lines 1–23),
and executable commands (on lines 27–29).

Note the \plainoutput on line 22. This causes
pages to be shipped out in pass 2, in addition to
the final pages created by pass 3. We end up with
two sets of pages that should be identical, except

for the footnote numbers. Because of the problem
mentioned later, the pages may not be identical,
and it is therefore important to compare the two
sets before they are printed. When the results are
finally printed, the pages created by pass 2 should,
of course, be suppressed.

TUGboat, Volume 11 (1990), No. 2 227

Pass 3. Count variable \lineshiped is set to
zero. Count variable \totalines is set to the
first value of \Bsav (50 in our example). \vsize
remains at its normal value. The otr ships out
pages in the normal way. Each time \Nfootnote
is invoked it (1) extracts the next item from \Asav

into \lineno; (2) if \lineno ≤ \totalines, the
footnote is created with \lineno − \lineshiped;
(3) otherwise, \lineshiped is set to \totalines
and the next number is extracted from \Bsav and
added to \totalines. Step (2) is repeated.

1. \newcount\totalines \newcount\lineshiped
2.

3. \def\compare{%
4. \ifnum\lineno>\totalines
5. \global\lineshiped=\totalines
6. \global\setbox\Bsav=
7. \vbox{\unvbox\Bsav \setbox0=\lastbox \global\temp=\lastskip \unskip}%
8. \global\advance\totalines by \temp
9. \expandafter\compare % expand recursively for each page w/o footnotes

10. \fi}
11.

12. \def\Nfootnote#1{%
13. \setbox\Asav=
14. \vbox{\unvbox\Asav \setbox0=\lastbox \global\lineno=\lastskip \unskip}%
15. % extract bottom glue into \lineno
16. \compare
17. \advance\lineno -\lineshiped
18. \footnote{$^\the\lineno$}{#1}}
19.

20. \output={\plainoutput}
21.

22. % *** Executable commands ***
23. \message{Pass 3;} \lineshiped=0
24. \setbox\Bsav=
25. \vbox{\unvbox\Bsav \setbox0=\lastbox \global\totalines=\lastskip \unskip}
26. \input source
27. \bye

Macro \compare, lines 3–10, expands itself
recursively to implement the (pseudo-code) loop

while \lineno>\totalines
\lineshiped:=\totalines
extract \temp from \Bsav
\totalines:=\totalines+\temp

end while;

The \expandafter on line 9 makes sure that
the \fi, on line 10, is gobbled up by TEX before
\compare is recursively expanded. Without the
\expandafter, the \fi would be saved in a stack
and popped out at the end of the recursion. In case
of a deep recursion, that could overflow the stack.

The macros are deliberately kept simple and
readable and, as a result, are not completely general,
and don’t work in all cases. One such case is where
there are no footnotes on the first page; there may
be other cases. However, in general, this approach

seems to work, and seems to have just one, small
problem. Passes 1 and 2 typeset an asterisk ‘∗’, in
the body of the text, where each footnote should be.
This is done to occupy space on the line, space that,
in pass 3, is taken by the footnote number. Passes
1 and 2 thus end up with the same line breaks
but pass 3 may not. The problem is that footnote
numbers, in our case, are one or two digits, and
thus may be slightly wider or narrower than the ‘∗’.
This may, in rare cases, cause different line breaks
in pass 3, leading to wrong footnote numbers.

Exercise: Why is it true that footnote num-
bers, in our case, can be one or two digits, but not
three?

Saving Numbers in a vbox. An interesting
point is that our line numbers are saved as glue in a
\vbox. This is done by \vskip\lineno sp \null.
The sp is necessary since, otherwise, the value of

228 TUGboat, Volume 11 (1990), No. 2

\lineno would be converted to scaled points. The
\null is an empty \hbox to separate the individual
pieces of glue in the large \vbox. This technique
can only be used if the total number of footnotes in
the document is not too large. For a large number
of footnotes, there may not be enough room in
memory for our boxes, and a file should be used (in
our case, two files).

The actual saving of the count variable \lineno
in box \Asav is done by:
\global\setbox\Asav=
\vbox{\vskip\lineno sp \null\unvbox\Asav}

Extracting the bottom glue item from \Asav is
done by:
\setbox\Asav=
\vbox{\unvbox\Asav \setbox0=\lastbox

\global\lineno=\lastskip \unskip}

Example: Tables Broken Across Pages

Another practical problem∗: In a document with
a lot of tables, many times a table is split over
two pages. In such a case, the otr should typeset
“Continued...” at the bottom of the page.

Two approaches are shown, one using marks
and the other, special boxes, to communicate with
the otr.

The first approach: A \mark{Continued...}
is inserted at the start of each \halign (following
the preamble), and a \mark{} is inserted just before
the end of the table.

The output routine simply typesets \botmark
at the bottom of the page, using the right font. The
following macros are used:
\output={\shipout\vbox{\box255
\smallskip\line{\sevenrm\hfil\botmark}
\smallskip\line{\the\footline}}
\advancepageno}

\def\beginCont{\mark{Continued...}}
\def\endCont{\mark{}}

and a typical table looks like:
\halign{...preamble...\cr \beginCont
...1st line...\cr
...
...last line...\endCont\cr}

Note that the first mark becomes part of the
first table entry (column 1 row 1). The last mark,

∗ Proposed by Mary McClure.

similarly, becomes part of the last table entry (last
column bottom row). This means that, sometimes,
the mark may be locked inside an internal box. For
instance, if the preamble says $#$, then the mark
will be buried in the math box. Generally this
creates no problem but, if the mark is buried too
deeply in \box255, it may not be discovered [259]
during \shipout.

A partial remedy is to use \noalign{\beginCont}
or \noalign{\endCont}, depending on which mark
is missing during \shipout. This way, the mark
precedes (or follows) the entire table. The ta-
ble, in such a case, should end up with ...〈last
line〉...\cr\endCont}. These constructs should be
used only in an emergency, since they also may fail.
A typical example is a table that starts at the top
of a page. Its \mark{Continued...} may, in such
a case, be the last thing in the preceding page.

An interesting feature of this method is the
even page height. Each page shipped out contains
a line with the \botmark, and this line occupies
the same amount of space on the page, regardless
of the size of the mark. Thus if the line preceding
the mark has a depth of 1.94444pt, and the
mark contains the text Continued..., (which has a
height of 4.78334pt), the \baselineskip glue is
set at 5.27222pt. This separates the baselines by
1.94444+5.27222+4.78334 = 12pt. However, if the
mark is empty, and the line preceding it has a depth
of 0.8333pt, the \baselineskip glue right above
the mark is set at 11.1667pt, again separating the
baselines by 0.8333 + 11.1667+ 0 = 12pt.

Communication by Special \vboxes

The second approach uses a \vbox with a special
depth to communicate with the otr. This looks
promising, especially since the \vboxes on both
sides of a table can be attached to it by means of a
\nobreak (which is essentially a \penalty10000).
The implementation is similar to the preceding case.
\def\beginCont{\noalign{\vbox{
\hrule width0pt height0pt depth1sp}
\nobreak}}

\def\endCont{\noalign{\nobreak\vbox{
\hrule width0pt height0pt depth2sp}}}

Note that the \nobreak in \beginCont follows
the special \vbox, while that in \endCont precedes
it.

TUGboat, Volume 11 (1990), No. 2 229

\zeroToSp
\newif\ifAnyleft

\def\breakup{%
\loop \Anyleftfalse
\ifdim\lastskip=0pt \ifdim\lastkern=0pt \ifnum\lastpenalty=0

\setbox0=\lastbox \ifvoid0
\else \Anylefttrue

\ifvbox0
\ifdim\dp0=1sp \Anyleftfalse \global\toks0={Continued...}
\else\ifdim\dp0=2sp \Anyleftfalse \global\toks0={}\fi \fi

\fi \fi
\else\Anylefttrue \unpenalty \fi
\else \Anylefttrue \unkern \fi
\else \Anylefttrue \unskip \fi

\ifAnyleft \repeat}

\newbox\brk
\output={\setbox\brk=\vbox{\unvcopy255 \breakup}

\ifdim\ht\brk>0pt \message{Incomplete breakup} \fi
\shipout\vbox{\box255\smallskip

\line{\sevenrm\hfil\the\toks0}
\smallskip\line{\the\footline}}

\advancepageno
}

This works! Note, however, that macro
\breakup stops when it finds the first special
\vbox. In such a case, there is no point in finishing
the break up of \box255. This method therefore
generates many “Incomplete breakup” messages,
and the user should make sure that the text and
the tables should not contain any of the things that
normally stop the breakup.

Exercise: A variation of the same problem.
Each table is preceded by a header. If the table is
broken across pages, the header should be typeset
at the top of the second page.

Exercise: Add a parameter to macro \begin-
Cont above. The macro should now create a \vbox
whose depth is the value of the parameter, in scaled
points. Modify macro \breakup such that it will
save different messages in \toks0 depending on the
depth of the special boxes found.

Example: Verse Numbers in the Left Margin

The problem∗: In the Bible, each chapter is divided
into verses. If a verse starts on a certain line, we
want the verse number typeset on the left margin
of the line. Also, if two or more verses start on the

∗ Proposed by Robert Batzinger.

same line, a range of verse numbers, such as 23–24

should be typeset on the left margin.
Solution: Each verse starts with an expansion

of macro \verse. The macro computes the verse
number and typesets it in the body of the text. In
addition, it uses a \vadjust to generate a special
\vbox and to attach it, with a \penalty10000,
right below the line of text in \box255. The special
box has a height and width of zero, and a depth
equal to the verse number in scaled points. A
line of text can thus be followed by any number of
such boxes, and no page break can occur in that
area. The verse numbers are stored in the \count
variables \fVerse (final verse) and \sVerse (start
verse).

The otr expands macro \breakup, which
breaks up \box255 and transfers its components
to \box1. On identifying a special \vbox, macro
\breakup expands \verseline which (1) converts
the depth of the special box into a count; (2) checks
for another special box and converts its depth into
another count; (3) removes the line of text above
the special boxes, attaches the verse number(s) (via
\Label) as an \llap, and adds the result to \box1.

After the breakup is complete, the otr ships
out \box1.

230 TUGboat, Volume 11 (1990), No. 2

\newcount\sVerse \newcount\fVerse \newif\iftwo
\def\verseline{%
\fVerse=\dp0 \unpenalty
\global\setbox0=\lastbox
\ifvoid0 \message{error1;}\fi
\twofalse
\ifvbox0 \ifdim\dp0<500sp \ifdim\dp0>0sp \twotrue \fi \fi \fi
\iftwo
\sVerse=\dp0 \unpenalty
\def\Label{\hbox to.4in{\hfil\the\sVerse--\the\fVerse\hfil}}
\global\setbox0=\lastbox
\ifvoid0 \message{error2;}\fi

\else\def\Label{\hbox to.4in{\hfil\the\fVerse\hfil}}\fi
\global\setbox1=\vbox{\line{\llap{\sevenrm\Label\kern6pt}\box0}\unvbox1}
}

\newif\ifAnyleft \newcount\pen \newif\ifverseBox

\def\breakup{%
\loop \Anyleftfalse
\ifdim\lastskip=0pt \ifdim\lastkern=0pt \ifnum\lastpenalty=0

\global\setbox0=\lastbox \ifvoid0 % end of breakup loop
\else \Anylefttrue \verseBoxfalse

\ifvbox0 \ifdim\dp0<500sp \ifdim\dp0>0sp \verseline \verseBoxtrue \fi\fi\fi
\ifverseBox \else \global\setbox1=\vbox{\box0\unvbox1}\fi \fi

\else \Anylefttrue \pen=\lastpenalty
\global\setbox1=\vbox{\penalty\pen\unvbox1} \unpenalty \fi

\else \Anylefttrue \dimen0=\lastkern
\global\setbox1=\vbox{\kern\dimen0\unvbox1} \unkern \fi

\else \Anylefttrue \skip0=\lastskip
\global\setbox1=\vbox{\vskip\skip0\unvbox1} \unskip \fi

\ifAnyleft \repeat}

\newbox\brk
\output={\setbox\brk=\vbox{\unvbox255 \breakup}

\ifdim\ht\brk>0pt \message{Incomplete breakup} \fi
\setbox1=\vbox to\vsize{\unvbox1}
\shipout\box1 \advancepageno}

\newcount\versno \versno=0
\def\verse{%
\advance\versno by 1
\hskip1em{\bf\the\versno: }\nobreak
\vadjust{\nobreak\vbox{\hrule width0pt height0pt depth\the\versno sp}}}

\zeroToSp
\input source
\bye

TUGboat, Volume 11 (1990), No. 2 231

Problems With This Approach

1. To keep our macros simple, they are limited to
at most two verses per line. However, it is easy to
generalize \verseline to handle up to 3 verses. It
is also possible, although probably not necessary,
to generalize it to handle any number of verses per
line.

Exercise: Disregarding the statement above,
generalize \verseline to handle any number of
verses per line. This requires recursive calls to
identify and remove any number of consecutive
special \vboxes below a text line.

2. The verse numbers are typeset on the left
margin, centered in an \hbox to .4in. This is
wide enough for 3-digit verse numbers. For larger
numbers, it may be necessary to enlarge that box.
If no centering is required, then it is enough to say
\def\Label{\the\sVerse--\the\fVerse}.

3. The verse numbers always start from 1. It
is possible to let the user specify a start number by:
\message{enter start verse number:}
\read16to\ent
\versno=\ent

instead of \versno=0.
4. The macros recognize a special box if its

depth is positive and is less than 500sp. In case
of many verses, the 500 should be changed to a
larger value. The following quote (from [400]) is
reassuring: “A distance of 1000sp is invisible to the
naked eye.”

Example: Verse Numbers, An Alternative
Method

Here is an alternative method that does not trans-
fer components from \box255 to \box1. It breaks
up a copy of \box255 and, each time a special
box (or several consecutive special boxes) is dis-
covered, the macro measures the height of the
remaining copy, and uses the height to build, in
\box1, the range of verse numbers in the mar-
gin. When the breakup is completed, \box1 looks
like a skeleton with just the verse number ranges.
The otr then superimposes the two boxes by:
\shipout\hbox{\llap{\box1}\box255}. (A simi-
lar method is used on [391–392].)

Here are the steps in detail:

\newcount\versno \versno=0
\def\verse{\advance\versno by 1

\hskip1em{\bf\the\versno: }\nobreak
\vadjust{\nobreak\vbox{
\hrule width0pt height0pt

depth\the\versno sp}}}

Macro \verse creates a special \vbox whose
depth equals the verse number (in scaled points),
and attaches it, with a \nobreak, below the line
where the verse starts.

The output routine copies \box255 into \box2
and expands \Obreak to break up \box2 and create
the necessary information in \box1. It then invokes
\reversebox to break up \box1 and build, again
in \box2, the correct skeleton. Both steps are
described below. The final step is to shipout a
superposition of \box2 and \box255.
\output={\setbox2=\copy255 \Obreak

\ifdim\ht\brk>0pt
\message{Incomplete breakup}\fi

\reversebox \setbox2=
\vbox to\vsize{\unvbox2\vfil}

\wd2=0pt
\shipout\hbox{\llap{\box2}\box255}
\advancepageno}

Macro \Obreak expands \breakup to break up
\box2 and, if another verse (another special box) is
found, the height of the remaining \box2 is placed,
as \kern, in \box1, and \Obreak expands itself
recursively. The process repeats until no more
verses are found on the page.
\newbox\brk
\def\Obreak{%

\setbox\brk=\vbox{\unvbox2 \breakup}
\ifanotherverse
\global\anotherversefalse
\global\setbox1=
\vbox{\unvbox1\kern\ht\brk}

\setbox2=\box\brk
\expandafter\Obreak

\fi}

Macro \breakup loops and breaks up items
from \box2 until it reaches the end, or until it
finds an item that is a \vbox with a depth in the
range 0–500sp. If it finds such an item, it expands
\verseline.

\newif\ifAnyleft
\def\breakup{%
\loop \Anyleftfalse
\ifdim\lastskip=0pt \ifdim\lastkern=0pt \ifnum\lastpenalty=0

\global\setbox0=\lastbox \ifvoid0 % end of breakup loop

232 TUGboat, Volume 11 (1990), No. 2

\else \Anylefttrue
\ifvbox0 \ifdim\dp0<500sp\ifdim\dp0>0sp \verseline \Anyleftfalse \fi\fi\fi
\fi

\else \Anylefttrue \unpenalty \fi
\else \Anylefttrue \unkern \fi
\else \Anylefttrue \unskip \fi

\ifAnyleft \repeat}

Macro \verseline removes the \penalty10000
that precedes the special box, and checks to see
if there is another special box right above it. If
there is one, the box and the penalty above it are
removed, and the boolean variable \iftwo is set to
true.

Next, macro \Label is defined, as an \hbox
to.4in{\hfil one or two verse numbers \hfil}
and is inserted, as an \llap, into the margin of
\box1.

\newcount\sVerse \newcount\fVerse \newif\iftwo \newif\ifanotherverse

\def\verseline{%
\fVerse=\dp0 \unpenalty
\global\setbox0=\lastbox
\ifvoid0 \message{error1;}\fi
\twofalse
\ifvbox0 \ifdim\dp0<500sp \ifdim\dp0>0sp \twotrue \fi \fi \fi
\iftwo
\sVerse=\dp0 \unpenalty
\def\Label{\hbox to.4in{\hfil\the\sVerse--\the\fVerse\hfil}}
\global\setbox0=\lastbox
\ifvoid0 \message{error2;}\fi

\else \def\Label{\hbox to.4in{\hfil\the\fVerse\hfil}} \fi
\global\setbox1=\vbox{\unvbox1 \line{\llap{\sevenrm\Label\kern6pt}\hfil}}
\global\anotherversetrue}

At the end of the process, the output routine
expands \reversebox to break up items from
\box1, process them and place them in \box2
in the correct order. To understand this process,
let’s imagine a page with three verses at a distance
of 2in, 3in and 6in from the top (Figure 2). The
breakup process starts at the bottom of the page,
measures the height A of verse 3, then B and, finally,
C, creating \box1 as in Figure 3.

However, we want a box that looks like Fig-
ures 4–5, where the \kerns are measured from one
verse to the next, not always from the top. We also
have to make sure that the lines of text do not take
any vertical space, so we add a negative \kern after
each line, to skip back to the top of the line.
\def\reversebox{\setbox2=\vbox{}
\ifvoid1
\else
\dimen1=0pt \unvbox1
\loop

\dimen0=\lastkern \unkern
\dimen2=\dimen0
\advance\dimen0 by-\dimen1
\dimen1=\dimen2
\setbox0=\lastbox
\dimen2=\ht0 \advance\dimen2 by\dp0
\global\setbox2=\vbox{\unvbox2
\kern\dimen0 \box0 \kern-\dimen2}

\ifdim\lastkern>0pt\repeat
\fi}

Macro \reversebox contains a loop that breaks
up \box1, calculates the quantities C, B-C, A-B, and
places them in \box2 with the lines of text, each
followed by a negative \kern. When finished, The
otr appends a \vfil to end up with a height
of \vsize. This way, \box2 has the same height
as \box255, and they can be superimposed and
shipped out together.

To run the whole thing, just say:

TUGboat, Volume 11 (1990), No. 2 233

Figure 2
\kern 2in (=C)
\hbox{\hfil 3 \hfil}
\kern 3in (=B)
\hbox{\hfil 2 \hfil}
\kern 6in (=A)
\hbox{\hfil 1 \hfil}

Figure 3

\zeroToSp
\anotherversefalse
\input source
\bye

This is, perhaps, not the most elegant solution,
nor is it compact. Each macro, however, has its
own, well defined, task, making it easier to read and
understand the whole thing.

A ‘Special Box’ otr

The problem: In many modern science texts, the
main flow of text is interrupted by ‘special boxes’.
They can be used to develop certain topics in detail,
to present a historical background of other topics,
or to present the author’s opinion or reminiscences.
To distinguish such a box from the rest of the text,
it may be surrounded by rules on all sides.

The intuitive approach is to place the special
text in a \vbox and build the rules as in [Ex. 21.3].
This, of course, won’t work since the ‘special box’
may have to straddle two pages, but a \vbox is
indivisible.

Figure 4

\kern 2in (=C)
\hbox{\hfil 1 \hfil}
\kern-(size of preceding line)
\kern 1in (=B-C)
\hbox{\hfil 2 \hfil}
\kern-(size of preceding line)
\kern 3in (=A-B)
\hbox{\hfil 3 \hfil}
\kern-(size of preceding line)
\vfil

Figure 5

The approach used here identifies the start and
end of the special text by making its lines nar-
rower. Macro \startspbox draws the top \hrule
of the special box and expands \narrower. Macro
\endspbox terminates the effect of \narrower, and
draws the bottom \hrule. Note that the hrules are
placed in boxes, since otherwise they would cause
an incomplete breakup.

The otr breaks up the page and creates a
duplicate. Each narrow line (a line for which
\rightskip > 0) is surrounded with two short
rules. To make the rules on successive lines touch,
the normal interline glue is suppressed when a
narrow line is found.

\def\Hrule{\line{\vrule width\hsize height.4pt}}
\def\startspbox{\medskip \Hrule \nobreak \smallskip \begingroup \narrower}
\def\endspbox{\smallskip \nobreak \endgroup \Hrule \medskip}

\zeroToSp

234 TUGboat, Volume 11 (1990), No. 2

\newif\ifsurround
\def\Strut{\vrule height8.5pt depth3.5pt}
\def\checkline{%
\setbox2=\hbox{\unhcopy0

\ifdim\lastskip>0pt \global\surroundtrue
\else\global\surroundfalse\fi}}

\newif\ifAnyleft \newcount\pen
\def\specialbox{%
\loop \Anyleftfalse
\ifdim\lastskip=0pt \ifdim\lastkern=0pt \ifnum\lastpenalty=0

\global\setbox0=\lastbox \ifvoid0 % end of breakup loop
\else \Anylefttrue

\ifhbox0\checkline \ifsurround\setbox0=\hbox{\Strut\box0\Strut}\fi \fi
\global\setbox1=\vbox{\box0 \unvbox1} \fi

\else \Anylefttrue \pen=\lastpenalty
\global\setbox1=\vbox{\penalty\pen\unvbox1} \unpenalty \fi

\else \Anylefttrue \dimen0=\lastkern
\global\setbox1=\vbox{\kern\dimen0 \unvbox1} \unkern \fi

\else \Anylefttrue \skip0=\lastskip
\ifsurround\skip0=0pt \fi % suppress the normal interline glue
\global\setbox1=\vbox{\vskip\skip0 \unvbox1} \unskip \fi

\ifAnyleft \repeat}

\newbox\brk
\output={\setbox\brk=\vbox{\unvbox255 \specialbox}

\ifdim\ht\brk>0pt \message{Incomplete breakup} \fi
\shipout\box1 \advancepageno}

Example: Revision Bars

Certain documents— such as the bylaws of an or-
ganization, or the user’s manual for a computer
system—may go through many revisions. Some-
times it is desirable to emphasize (or flag) the
revised parts by placing a vertical bar on the left
margin of revised lines. If the revision is short,
affecting only one line, there is no need for a special
otr and a \vadjust like the one below, can be
used (see also [Ex. 14.28]).
\def\rev{\vadjust{\moveleft6pt\vbox to0pt{
\kern-12pt\hrule height10pt width1pt\vss}}}

However, if the revision may affect more than
one line, the problem becomes much more complex
and the otr should be involved.

A Simple Method. We start with a relatively
simple approach,* which is sketched below, but is
not implemented.

1. Macro \beginvbars saves the page-so-far in
a box \partialpage.

2. Macro \endvbars places a bar on the left of
\box255, appends it to \partialpage, and returns

the whole thing to the MVL, so that a good page
break can be found.

The problems with this approach are:
1. The revision may start in mid-paragraph.

In such a case, the first part of the paragraph goes
in box \partialpage, and eventually has to be
seamlessly glued to the rest of the paragraph. A
similar case occurs when the revision ends within a
paragraph.

2. When \box255 is appended to \partial-
page, its \topskip glue should be replaced by the
normal interline skip.

A Better Solution. The approach shown here is
different. The start and end of each revision are
flagged with small, special boxes placed between
the text lines. The otr breaks up \box255 looking
for the special boxes. The distance of each special
box from the top of the page is measured. The
distances are then used to prepare vertical rules in
a separate box (\box3), which is eventually typeset
on the left of \box255.

* Due to Amy Hendrickson.

TUGboat, Volume 11 (1990), No. 2 235

Macro \startrev uses \vadjust to place a
special \vbox with a height of 1sp below the line
where the revision starts. Macro \endrev places a
similar box, with a height of 2sp, below the last line
of the revised text. Note that, if the revised text
is short, the two special boxes may end up being
placed, one above the other, below the same line.
\def\startrev{\vadjust{%
\nointerlineskip\nobreak\vbox to1sp{}}}

\def\endrev{\vadjust{%
\nointerlineskip\nobreak\vbox to2sp{}}}

Macro \Obreak expands \breakup with a copy
of \box255. The breakup loop stops when a
special box, with height = 2sp is found. \Obreak
then measures the height of the remaining page,
stores that height in \box1 as \kern, stores a
flag indicating that a vertical bar should end at
that point, and restarts the loop. When a box with
height = 1sp is found, \Obreak does a similar thing,
except that it places a different flag, indicating that
the bar should start at that point. The flags are
special hboxes with a width of either 1sp or 2sp.

\zeroToSp

\output={\global\setbox1=\vbox{}
\setbox2=\copy255 \Obreak
\ifdim\ht\brk>0pt \message{Incomplete breakup} \fi
\arrangebox
\setbox3=\vbox to\vsize{\unvbox3\vfil} \wd3=6pt
\shipout\hbox{\llap{\box3}\box255}
\advancepageno}

\newbox\brk
\newif\ifstartbar \startbarfalse \newif\ifendbar \endbarfalse
\def\Obreak{%
\setbox\brk=\vbox{\unvbox2 \breakup}
\ifstartbar
\global\startbarfalse
\global\setbox1=\vbox{\unvbox1\kern\ht\brk\hbox to1sp{}}
\setbox2=\box\brk
\expandafter\Obreak
\fi

\ifendbar
\global\endbarfalse
\global\setbox1=\vbox{\unvbox1\kern\ht\brk\hbox to2sp{}}
\setbox2=\box\brk
\expandafter\Obreak
\fi

}

\newif\ifAnyleft
\def\breakup{%
\loop \Anyleftfalse
\ifdim\lastskip=0pt \ifdim\lastkern=0pt \ifnum\lastpenalty=0

\global\setbox0=\lastbox \ifvoid0
\else \Anylefttrue

\ifvbox0
\ifdim\ht0=1sp \global\startbartrue \Anyleftfalse \fi
\ifdim\ht0=2sp \global\endbartrue \Anyleftfalse \fi

\fi \fi
\else \Anylefttrue \unpenalty \fi
\else \Anylefttrue \unkern \fi

236 TUGboat, Volume 11 (1990), No. 2

\else \Anylefttrue \unskip \fi
\ifAnyleft \repeat}

At the end of the breakup loop, the otr
expands macro \arrangebox, which reads the kerns
and flags from \box1, and uses them to generate the
actual vertical bars in \box3. It uses the following
algorithm:
PrevKern:=0;
read Kern,Flag from \box1
if Flag=start

place \kern of size Kern-PrevKern
in \box3

PrevKern:=Kern, PrevFlag:=Flag;
if Flag=end

place a rule of size Kern-PrevKern
in \box3

PrevKern:=Kern, PrevFlag:=Flag;
if \box1 is empty and PrevFlag=start

place a rule of size \vsize-PrevKern
in \box3,

End;
And here is a listing:
\newif\ifcontin
\def\arrangebox{
\setbox3=\vbox{} \dimen1=0pt
\loop
\ifdim\ht1>0pt

\setbox1=\vbox{\unvbox1
\global\setbox0=\lastbox
\global\skip0=\lastkern \unkern}

\contintrue \dimen0=\wd0
\dimen2=\skip0
\advance\dimen2 by-\dimen1
\dimen1=\skip0
\ifdim\dimen0=1sp
\setbox3=\vbox{\unvbox3 \kern\dimen2}
\fi

\ifdim\dimen0=2sp
\setbox3=\vbox{\unvbox3
\hrule height\dimen2 width1pt}

\fi
\else

\continfalse
\ifdim\dimen0=1sp \dimen2=\vsize
\advance\dimen2 by-\dimen1
\setbox3=\vbox{\unvbox3
\hrule height\dimen2 width1pt}

\fi
\fi

\ifcontin \repeat}

As usual, the macros can be improved. The
user may notice that the size and placement of the

bars is not ideal, and can be improved. This is
especially true for cases where only one line of text
is revised.

Exercise: Generalize the macros so that they
can typeset a revision number, in \sevenrm, on the
left of each bar. The number should be specified by
the user, as a parameter of \startrev.

Summary

The examples and techniques described here, even
though incomplete and simplified, demonstrate how
very powerful TEX is, compared to other typesetting
systems.

The main concepts behind TEX namely, boxes,
glue, penalties and macros, are different from those
used by other systems, and are more difficult to
master. At the same time, they are more powerful,
and the user who is willing to invest the time and
effort necessary to learn TEX, is rewarded by high
quality results.

Part III will introduce insertions and their use
in otrs. There will be a general introduction to
insertions, examples of otrs with insertions, and a
description of the plain format otr.

� David Salomon
California State University,

Northridge
Computer Science Department
Northridge, CA 91330
dxs@mx.csun.edu

